
2 Fundamental
Data Structures

10 February 2022

Sebastian Wild
COMP526 (Spring 2022)
University of Liverpool

version 2022-01-31 22:19 H

Learning Outcomes
1. Understand and demonstrate the

difference between abstract data type
(ADT) and its implementation

2. Be able to define the ADTs stack, queue,
priority queue and dictionary / symbol table

3. Understand array-based implementations
of stack and queue

4. Understand linked lists and the
corresponding implementations of stack
and queue

5. Know binary heaps and their performance
characteristics

6. Understand binary search trees and their
performance characteristics

Unit 2: Fundamental Data Structures

1

Outline

2 Fundamental Data Structures
2.1 Stacks & Queues
2.2 Resizable Arrays
2.3 Priority Queues
2.4 Binary Search Trees
2.5 Ordered Symbol Tables
2.6 Balanced BSTs

2.1 Stacks & Queues

Abstract Data Types

abstract data type (ADT)

I list of supported operations
I what should happen
I not: how to do it
I not: how to store data

≈ Java interface
(with Javadoc comments)

vs.
data structures

I specify exactly
how data is represented

I algorithms for operations
I has concrete costs

(space and running time)

≈ Java class
(non abstract)

Why separate?
I Can swap out implementations “drop-in replacements”)
 reusable code!
I (Often) better abstractions
I Prove generic lower bounds (Unit 3)

2

Stacks

Stack ADT

I top()
Return the topmost item on the stack
Does not modify the stack.

I push(G)
Add G onto the top of the stack.

I pop()
Remove the topmost item from the stack
(and return it).

I isEmpty()
Returns true iff stack is empty.

I create()
Create and return an new empty stack.

3

Linked-list implementation for Stack
Invariants:

I maintain top pointer to topmost element

I each element points to the element below it
(or null if bottommost)

Linked stacks:
I require Θ(=) space when = elements on stack

I All operations take $(1) time

4

Array-based implementation for Stack
Can we avoid extra space for pointers?
 array-based implementation

Invariants:

I maintain array S of elements, from bottommost to topmost
I maintain index top of position of topmost element in S.

What to do if stack is full upon pop?

Array stacks:

I require fixed capacity � (known at creation time)!
I require Θ(�) space for a capacity of � elements
I all operations take $(1) time

5

2.2 Resizable Arrays

Digression – Arrays as ADT
Arrays can also be seen as an ADT! . . . but are commonly seen as specific data structure

Array operations:

I create(=) Java: A = new int[=];
Create a new array with = cells, with positions 0, 1, . . . , = − 1

I get(8) Java: A[8]
Return the content of cell 8

I set(8,G) Java: A[8] = G;
Set the content of cell 8 to G.

 Arrays have fixed size (supplied at creation).

Usually directly implemented by compiler + operating system / virtual machine.

Difference to others ADTs: Implementation usually fixed
to “a contiguous chunk of memory”.

6

Doubling trick
Can we have unbounded stacks based on arrays? Yes!

Invariants:

I maintain array S of elements, from bottommost to topmost
I maintain index top of position of topmost element in S

I maintain capacity � = S.length so that 1
4� ≤ = ≤ �

 can always push more elements!

How to maintain the last invariant?

I before push
If = = �, allocate new array of size 2=, copy all elements.

I after pop
If = < 1

4�, allocate new array of size 2=, copy all elements.
 “Resizing Arrays

an implementation technique, not an ADT!
”

7

Amortized Analysis
I Any individual operation push / pop can be expensive!
Θ(=) time to copy all elements to new array.

I But: An one expensive operation of cost) means Ω()) next operations are cheap!

Formally: consider “credits/potential”
distance to boundary

Φ = min{= − 1
4�, � − =} ∈ [0, 0.6=]

I amortized cost of an operation = actual cost (array accesses) − 4 · change in Φ
I cheap push/pop: actual cost 1 array access, consumes ≤ 1 credits amortized cost ≤ 5
I copying push: actual cost 2= + 1 array accesses, creates 1

2= + 1 credits amortized cost ≤ 5
I copying pop: actual cost 2= + 1 array accesses, creates 1

2= − 1 credits amortized cost 5

 sequence of < operations: total actual cost ≤ total amortized cost + final credits
here: ≤ 5< + 4 · 0.6= = Θ(< + =)

8

Queues
Operations:

I enqueue(G)
Add G at the end of the queue.

I dequeue()
Remove item at the front of the queue and return it.

Implementations similar to stacks.

9

Bags
What do Stack and Queue have in common?

They are special cases of a Bag!

Operations:

I insert(G)
Add G to the items in the bag.

I delAny()
Remove any one item from the bag and return it.
(Not specified which; any choice is fine.)

I roughly similar to Java’s Collection

Sometimes it is useful to state that order is irrelevant Bag
Implementation of Bag usually just a Stack or a Queue

10

2.3 Priority Queues

Priority Queue ADT – min-oriented version
Now: elements in the bag have different priorities.

(Max-oriented) Priority Queue (MaxPQ):

I construct(�)
Construct from from elements in array �.

I insert(G,?)
Insert item G with priority ? into PQ.

I max()
Return item with largest priority. (Does not modify the PQ.)

I delMax()
Remove the item with largest priority and return it.

I changeKey(G,?′)
Update G’s priority to ?′.
Sometimes restricted to increasing priority.

I isEmpty()

Fundamental building block in many applications.
11

PQ implementations
Elementary implementations

I unordered list Θ(1) insert, but Θ(=) delMax

I sorted list Θ(1) delMax, but Θ(=) insert

Can we get something between these extremes? Like a “slightly sorted” list?

Yes! Binary heaps.

Array view

Heap = array � with
∀8 ∈ [=] : �[b8/2c] ≥ �[8] ≡

store nodes
in level order
in �[1..=]

Tree view

Heap = tree that is
(i) a complete binary tree

all but last level full
last level flush left

(ii) heap ordered

parent ≥ children

12

Binary heap example

13

Why heap-shaped trees?
Why complete binary tree shape?

I only one possible tree shape keep it simple!
I complete binary trees have minimal height among all binary trees
I simple formulas for moving from a node to parent or children:

For a node at index : in �
I parent at b:/2c
I left child at 2:
I right child at 2: + 1

Why heap ordered?

I Maximum must be at root! max() is trivial!
I But: Sorted only along paths of the tree; leaves lots of leeway for fast

how? . . . stay tuned

inserts

14

Insert

15

Delete Max

16

Heap construction

17

Analysis
Height of binary heaps:
I height of a tree: # edges on longest root-to-leaf path
I depth/level of a node: # edges from root root has depth 0

I How many nodes on first : full levels?
:∑
ℓ=0

2ℓ = 2:+1 − 1

 Height of binary heap: ℎ = min : s.t. 2:+1 − 1 ≥ = = blg(=)c

Analysis:
I insert: new element “swims” up ≤ ℎ steps (ℎ cmps)
I delMax: last element “sinks” down ≤ ℎ steps (2ℎ cmps)
I construct from = elements:

cost = cost of letting each node in heap sink!
≤ 1 · ℎ + 2 · (ℎ − 1) + 4 · (ℎ − 2) + · · · + 2ℓ · (ℎ − ℓ) + · · · + 2ℎ−1 · 1 + 2ℎ · 0

=

ℎ∑
ℓ=0

2ℓ (ℎ − ℓ) =
ℎ∑
8=0

2ℎ

28
8 = 2ℎ

ℎ∑
8=0

8

28
≤ 2 · 2ℎ ≤ 4=

18

Binary heap summary

Operation Running Time

construct(�[1..=]) $(=)
max() $(1)
insert(G,?) $(log =)
delMax() $(log =)
changeKey(G,?′) $(log =)
isEmpty() $(1)
size() $(1)

19

2.4 Binary Search Trees

Symbol table ADT
Symbol table / Dictionary / Map

Java: java.util.Map<K,V>

/ Associative array / key-value store:

I put(:,E) Python dict: d[:] = E

Put key-value pair (:, E) into table
I get(:) Python dict: d[:]

Return value associated with key :
I delete(:)

Remove key : (any associated value) form table
I contains(:)

Returns whether the table has a value for key :
I isEmpty(), size()
I create()

Most fundamental building block in computer science.
(Every programming library has a symbol table implementation.)

20

Symbol tables vs mathematical functions
I similar interface

I but: mathematical functions are static (never change their mapping)
(Different mapping is a different function)

I symbol table = dynamicmapping
Function may change over time

21

Elementary implementations
Unordered (linked) list:

Fast put

Θ(=) time for get

 Too slow to be useful

Sorted linked list:

Θ(=) time for put

Θ(=) time for get

 Too slow to be useful

 Sorted order does not help us at all?!

22

Binary search
It does help . . . if we have a sorted array!

Example: search for 69
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 12 17 28 35 55 57 63 69 77 79 80 82 85 88 97
ℓ A<

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 12 17 28 35 55 57 63 69 77 79 80 82 85 88 97
ℓ A<

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 12 17 28 35 55 57 63 69 77 79 80 82 85 88 97
ℓ A<

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 12 17 28 35 55 57 63 69 77 79 80 82 85 88 97
ℓ

Binary search:

I halve
±1

remaining
list in each step

 ≤ blg =c + 1 cmps
in the worst case

needs random access

23

Binary search trees
Binary search trees (BSTs) ≈ dynamic sorted array
I binary tree

I Each node has left and right child
I Either can be empty (null)

I Keys satisfy search-tree property

all keys in left subtree ≤ root key ≤ all keys in right subtree

24

BST example & find

11

12

17

28

35

55

57

63

69

77

79

80

82

85

97

11 12 17 28 35 55 57 63 69 77 79 80 82 85 97

25

BST insert

Example: Insert 88

11

12

17

28

35

55

57

63

69

77

79

80

82

85

97

9788

88

11 12 17 28 35 55 57 63 69 77 79 80 82 85

26

BST delete
I Easy case: remove leaf, e. g., 11 replace by null
I Medium case: remove unary, e. g., 69 replace by unique child
I Hard case: remove binary, e. g., 85 swap with predecessor, recurse

11

12

17

28

35

55

57

63

69

77

79

80

82

85

97

88

11 12 17 28 35 55 57 63 69 77 79 80 72 85 88 97
27

Analysis

28

BST summary

Operation Running Time

construct(�[1..=]) $(=ℎ)
put(:,E) $(ℎ)
get(:) $(ℎ)
delete(:) $(ℎ)
contains(:) $(ℎ)
isEmpty() $(1)
size() $(1)

29

2.5 Ordered Symbol Tables

Ordered symbol tables
I min(), max()

Return the smallest resp. largest key in the ST

I floor(G), bGc = ℤ.floor(G)

Return largest key : in ST with : ≤ G.

I ceiling(G)
Return smallest key : in ST with : ≥ G.

I rank(G)
Return the number of keys : in ST : < G.

I select(8)
Return the 8th smallest key in ST (zero-based, i. e., 8 ∈ [0..=))

With select, we can simulate access as in a truly dynamic array!.
(Might not need any keys at all then!)

30

Augmented BSTs

11

12

17

28

35

55

57

63

69

77

79

80

82

85

97

88
1

9

1

4

2

1

7

1

2

16

1

3

1

6

1

2

31

Rank

11

12

17

28

35

55

57

63

69

77

79

80

82

85

97

88
1

9

1

4

2

1

7

1

2

16

1

3

1

6

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 12 17 28 35 55 57 63 69 77 79 80 82 85 88 97

32

Select

11

12

17

28

35

55

57

63

69

77

79

80

82

85

97

88
1

9

1

4

2

1

7

1

2

16

1

3

1

6

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 12 17 28 35 55 57 63 69 77 79 80 82 85 88 97

33

2.6 Balanced BSTs

Balanced BSTs
Balanced binary search trees:

I imposes shape invariant that guarantees $(log =) height

I adds rules to restore invariant after updates

I many examples known
I AVL trees (height-balanced trees)
I red-black trees
I weight-balanced trees (BB[
] trees)
I . . .

Other options:

I amortization: splay trees, scapegoat trees

I’d love to talk more about all of these . . .
(Maybe another time)

I randomization: randomized BSTs, treaps, skip lists

34

BSTs vs. Heaps

Balanced binary search tree

Operation Running Time

construct(�[1..=]) $(= log =)
put(:,E) $(log =)
get(:) $(log =)
delete(:) $(log =)
contains(:) $(log =)
isEmpty() $(1)
size() $(1)
min() / max() $(log =) $(1)
floor(G) $(log =)
ceiling(G) $(log =)
rank(G) $(log =)
select(8) $(log =)

Binary heaps Strict Fibonacci heaps

Operation Running Time

construct(�[1..=]) $(=)
insert(G,?) $(log =) $(1)
delMax() $(log =)
changeKey(G,?′) $(log =) $(1)
max() $(1)
isEmpty() $(1)
size() $(1)

I apart from faster construct,
BSTs always as good as binary heaps

I MaxPQ abstraction still helpful
I and faster heaps exist!

35

	Fundamental Data Structures
	 Learning Outcomes
	Stacks & Queues
	 Stacks
	 Linked-list implementation for Stack
	 Array-based implementation for Stack

	Resizable Arrays
	 Digression – Arrays as ADT
	 Doubling trick
	 Amortized Analysis
	 Queues
	 Bags

	Priority Queues
	 Priority Queue ADT
	 Priority Queue ADT – min-oriented version
	 PQ implementations
	 Binary heap example
	 Why heap-shaped trees?
	 Insert
	 Delete Max
	 Heap construction
	 Analysis
	 Binary heap summary

	Binary Search Trees
	 Symbol table ADT
	 Symbol tables vs mathematical functions
	 Elementary implementations
	 Binary search
	 Binary search trees
	 BST example & find
	 BST insert
	 BST delete
	 Analysis
	 BST summary

	Ordered Symbol Tables
	 Ordered symbol tables
	 Augmented BSTs
	 Rank
	 Select

	Balanced BSTs
	 Balanced BSTs
	 BSTs vs. Heaps

