$$
\begin{aligned}
& \text { ALGORITHMICS } \mathrm{A} \text { APPLIED } \\
& \text { APPLIEDALGORITHMICS\$ } \\
& \text { CS \$ APPLIEDALGORITHMI } \\
& \text { D A LGORITHMICS \$ APPLIE } \\
& \text { EDALGORITHMICS\$APPLI } \\
& \text { GORITHMICS\$APPLIEDAL } \\
& \text { HMICS \$ APPLIEDALGORIT }
\end{aligned}
$$

String Matching What's behind Ctrl+F?

24 February 2022
Sebastian Wild

Learning Outcomes

1. Know and use typical notions for strings

Unit 4: String Matching (substring, prefix, suffix, etc.).
2. Understand principles and implementation of the $K M P, B M$, and $R K$ algorithms.
3. Know the performance characteristics of the KMP, BM, and RK algorithms.
4. Be able to solve simple stringology problems using the KMP failure function.

Outline

4 String Matching
4.1 Introduction
4.2 Brute Force
4.3 String Matching with Finite Automata
4.4 The Knuth-Morris-Pratt algorithm
4.5 Beyond Optimal? The Boyer-Moore Algorithm
4.6 The Rabin-Karp Algorithm

4.1 Introduction

Ubiquitous strings

string $=$ sequence of characters

- universal data type for ... everything!
- natural language texts
- programs (source code)
- websites
- XML documents
- DNA sequences
- bitstrings
- ... a computer's memory \leadsto ultimately any data is a string
\rightsquigarrow many different tasks and algorithms
- This unit: finding (exact) occurrences of a pattern text.
- $\mathrm{Ctrl}+\mathrm{F}$
- grep
- computer forensics (e.g. find signature of file on disk)
- virus scanner
- basis for many advanced applications

Notations

- alphabet Σ : finite set of allowed characters; $\sigma=|\Sigma|$ "a string over alphabet Σ "
- letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, ...)
- "what you can type on a keyboard", Unicode characters
- $\{0,1\}$; nucleotides $\{A, C, G, T\} ; \ldots \quad \begin{gathered}\text { comprehensive standard character set } \\ \text { including emoji and all known symbols }\end{gathered}$
- $\Sigma^{n}=\Sigma \times \cdots \times \Sigma$: strings of length $n \in \mathbb{N}_{0}$ (n-tuples)
- $\Sigma^{\star}=\bigcup_{n \geq 0} \Sigma^{n}$: set of all (finite) strings over Σ
- $\Sigma^{+}=\bigcup_{n \geq 1} \Sigma^{n}$: set of all (finite) nonempty strings over Σ
- $\varepsilon \in \Sigma^{0}$: the empty string (same for all alphabets)

> zero-based (like arrays)!

- for $S \in \Sigma^{n}$, write $S[i]$ (other sources: S_{i}) for i th character $\quad(0 \leq i<n)$
- for $S, T \in \Sigma^{\star}$, write $S T=S \cdot T$ for concatenation of S and T
- for $S \in \Sigma^{n}$, write $S[i . . j]$ or $S_{i, j}$ for the substring $S[i] \cdot S[i+1] \cdots S[j] \quad(0 \leq i \leq j<n)$
- $S[0 . . j]$ is a prefix of $S ; S[i . . n-1]$ is a suffix of S
- $S[i . . j)=S[i . . j-1]$ (endpoint exclusive) $\rightsquigarrow S=S[0 . . n)$

String matching - Definition

Search for a string (pattern) in a large body of text

- Input:
- $T \in \Sigma^{n}$: The text (haystack) being searched within
- $P \in \Sigma^{m}$: The pattern (needle) being searched for; typically $n \gg m$
- Output:
- the first occurrence (match) of P in $T: \min \{i \in[0 . . n-m): T[i . . i+m)=P\}$
- or NO_MATCH if there is no such i (" P does not occur in T ")
- Variant: Find all occurrences of P in T.
\rightsquigarrow Can do that iteratively (update T to $T[i+1 . . n$) after match at i)
- Example:
- $T=$ "Where is he?"
- $P_{1}=$ "he" $\rightsquigarrow \quad i=1$
- $P_{2}=$ "who" \rightsquigarrow NO_MATCH
- string matching is implemented in Java in String.index0f

4.2 Brute Force

Abstract idea of algorithms

Pattern matching algorithms consist of guesses and checks:

- A guess is a position i such that P might start at $T[i]$.

Possible guesses (initially) are $0 \leq i \leq n-m$.

- A check of a guess is a pair (i, j) where we compare $T[i+j]$ to $P[j]$.
- Note: need all m checks to verify a single correct guess i, but it may take (many) fewer checks to recognize an incorrect guess.
- Cost measure: \#character comparisons = \#checks
$\rightsquigarrow \operatorname{cost} \leq n \cdot m \quad$ (number of possible checks)

Brute-force method

```
procedure bruteForceSM(T[0..n), \(P[0 . . m)\) )
    for \(i:=0, \ldots, n-m-1\) do
        for \(j:=0, \ldots, m-1\) do
            if \(T[i+j] \neq P[j]\) then break inner loop
        if \(j==m\) then return \(i\)
    return NO_MATCH
```

- try all guesses i
- check each guess (left to right); stop early on mismatch
- essentially the implementation in Java!
- Example:
$T=$ abbbababbab
$P=a b b a$
$\rightsquigarrow 15$ char cmps (vs $n \cdot m=44$) not too bad!

a	b	b	b	a	b	a	b	b	a	b
a	b	b	a							
	a									
		a								
			a							
				a	b	b				
					a					
						a	b	b	a	

Brute-force method - Discussion

\leftrightarrow
Brute-force method can be good enough

- typically works well for natural language text
- also for random strings
p
but: can be as bad as it gets!

- Worst possible input: $P=a^{m-1} b$, $T=a^{n}$
- Worst-case performance: $(n-m+1) \cdot m$
\rightsquigarrow for $m \leq n / 2$ that is $\Theta(m n)$
- Bad input: lots of self-similarity in T ! \rightsquigarrow can we exploit that?
- brute force does 'obviously' stupid repetitive comparisons \rightsquigarrow can we avoid that?

Roadmap

- Approach 1 (this week): Use preprocessing on the pattern P to eliminate guesses (avoid 'obvious' redundant work)
- Deterministic finite automata (DFA)
- Knuth-Morris-Pratt algorithm
- Boyer-Moore algorithm
- Rabin-Karp algorithm
- Approach 2 (\rightsquigarrow Unit 6): Do preprocessing on the text T Can find matches in time independent of text size(!)
- inverted indices
- Suffix trees
- Suffix arrays
4.3 String Matching with Finite Automata

Theoretical Computer Science to the rescue!

- string matching $=$ deciding whether $T \in \Sigma^{\star} \cdot P \cdot \Sigma^{\star}$
- $\Sigma^{\star} \cdot P \cdot \Sigma^{\star}$ is regular formal language
$\rightsquigarrow \exists$ deterministic finite automaton (DFA) to recognize $\Sigma^{\star} \cdot P \cdot \Sigma^{\star}$
\rightsquigarrow can check for occurrence of P in $|T|=n$ steps!

WTF!?

We are not quite done yet.

- (Problem 0: programmer might not know automata and formal languages ...)
- Problem 1: existence alone does not give an algorithm!
- Problem 2: automaton could be very big!

String matching with DFA

- Assume first, we already have a deterministic automaton
- How does string matching work?

Example:

$T=$ aabacaababacaa
$P=$ ababaca

text:		a	a	b	a	c	a	a	b	a	b	a	c	a	a
state:	0	1	1	2	3	0	1	1	2	3	4	5	6	7	7

String matching DFA - Intuition

Why does this work?

- Main insight:

State q means:
"we have seen $P[0 . . q)$ until here (but not any longer prefix of P)"

- If the next text character c does not match, we know:
(i) text seen so far ends with $P[0 \ldots q) \cdot c$
(ii) $P[0 \ldots q) \cdot c$ is not a prefix of P
(iii) without reading $c, P[0 . . q)$ was the longest prefix of P that ends here.

\rightsquigarrow New longest matched prefix will be (weakly) shorter than q
\rightsquigarrow All information about the text needed to determine it is contained in $P[0 \ldots q) \cdot c$!

NFA instead of DFA?

It remains to construct the DFA.

- trivial part:

- that actually is a nondeterministic finite automaton (NFA) for $\Sigma^{\star} P \Sigma^{\star}$
\rightsquigarrow We could use the NFA directly for string matching:
- at any point in time, we are in a set of states
- accept when one of them is final state

Example:

text:		a	a	b	a	c	a	a	b	a	b	a	c	a	a
state:	0	0,1	0,1	0,2	$0,1,3$	0	0,1	0,1	0,2	$0,1,3$	$0,2,4$	$0,1,3,5$	0,6	$0,1,7$	$0,1,7$

But maintaining a whole set makes this slow ...

Computing DFA directly

You have an NFA and want a DFA?
Simply apply the power-set construction (and maybe DFA minimization)!

$$
\begin{aligned}
& \text { The powerset method has exponential state blow up! } \\
& \text { I guess I might as well use brute force ... }
\end{aligned}
$$

Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA inductively:
Suppose we add character $P[j]$ to automaton A_{j-1} for $P[0 . . j)$

- add new state and matching transition \rightsquigarrow easy
- for each $c \neq P[j]$, we need $\delta(j, c) \quad($ transition from ((j) when reading c)
- $\delta(j, c)=$ length of the longest prefix of $P[0 . . j) c$ that is a suffix of $P[1 . . j) c$
$=$ state of automaton after reading $P[1 . . j) c$
$\leq j \rightsquigarrow$ can use known automaton A_{j-1} for that!
\rightsquigarrow can directly compute A_{j} from A_{j-1} !
seems to require simulating automata $m \cdot \sigma$ times

Computing DFA efficiently

- KMP's second insight: simulations in one step differ only in last symbol
\rightsquigarrow simply maintain state x, the state after reading $P[1 . . j)$.
- copy its transitions
- update x by following transitions for $P[j]$

Demo:
Algorithms videos of Sedgewick and Wayne

https://cuvids.io/app/video/194/watch

String matching with DFA - Discussion

- Time:
- Matching: n table lookups for DFA transitions
- building DFA: $\Theta(m \sigma)$ time (constant time per transition edge).
$\rightsquigarrow \Theta(m \sigma+n)$ time for string matching.
- Space:
- $\Theta(m \sigma)$ space for transition matrix.
fast matching time actually: hard to beat!

0
total time asymptotically optimal for small alphabet $\quad($ for $\sigma=O(n / m)$)
substantial space overhead, in particular for large alphabets

4.4 The Knuth-Morris-Pratt algorithm

Failure Links

- Recall: String matching with is DFA fast,
but needs table of $m \times \sigma$ transitions.
- in fast DFA construction, we used that all simulations differ only by last symbol
\rightsquigarrow KMP's third insight: do this last step of simulation from state x during matching! ... but how?
- Answer: Use a new type of transition, the failure links
- Use this transition (only) if no other one fits.
$-\times$ does not consume a character. \rightsquigarrow might follow several failure links

\rightsquigarrow Computations are deterministic (but automaton is not a real DFA.)

Failure link automaton - Example

Example: $T=$ abababaaaca, $P=$ ababaca

$q:$| 1 | 2 | 3 | 4 | 5 | 3,4 | 5 | $3,1,0,1$ | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(after reading this character)

The Knuth-Morris-Pratt Algorithm

```
procedure \(\operatorname{KMP}(T[0 . . n-1], P[0 . . m-1])\)
    fail \([0 . . m]:=\) failureLinks \((P)\)
    \(i:=0 / /\) current position in \(T\)
    \(q:=0 / /\) current state of KMP automaton
    while \(i<n\) do
        if \(T[i]==P[q]\) then
            \(i:=i+1 ; q:=q+1\)
        if \(q==m\) then
            return \(i-q / /\) occurrence found
        else // i.e. \(T[i] \neq P[q]\)
        if \(q \geq 1\) then
            \(q:=\) fail \([q] / /\) follow one \(\times\)
        else
            \(i:=i+1\)
    end while
    return NO_MATCH
```

- only need single array fail for failure links
- (procedure failureLinks later)

Analysis: (matching part)

- always have fail $[j]<j$ for $j \geq 1$
\rightsquigarrow in each iteration
- either advance position in text ($i:=i+1$)
- or shift pattern forward (guess $i-q$)
- each can happen at most n times
$\rightsquigarrow \leq 2 n$ symbol comparisons!

Computing failure links

- failure links point to error state x (from DFA construction)
\rightsquigarrow run same algorithm, but store $\operatorname{fail}[j]:=x$ instead of copying all transitions

```
procedure failureLinks(P[0..m - 1])
    fail[0] := 0
    x := 0
    for j:= 1,\ldots,m-1 do
        fail[j] := x
        // update failure state using failure links:
        while P[x] = P[j]
            if}x==0\mathrm{ then
            x := -1; break
        else
            x := fail[x]
        end while
        x:= x+1
    end for
```


Analysis:

- m iterations of for loop
- while loop always decrements x
- x is incremented only once per iteration of for loop
$\rightsquigarrow \leq m$ iterations of while loop in total
$\rightsquigarrow \leq 2 m$ symbol comparisons

Knuth-Morris-Pratt - Discussion

- Time:
- $\leq 2 n+2 m=O(n+m)$ character comparisons
- clearly must at least read both T and P
\rightsquigarrow KMP has optimal worst-case complexity!
- Space:
- $\Theta(m)$ space for failure links

\checkmark
total time asymptotically optimal
(for any alphabet size)

0
reasonable extra space

The KMP prefix function

- It turns out that the failure links are useful beyond KMP
- a slight variation is more widely used: (for historic reasons) the (KMP) prefix function $F:[1 . . m-1] \rightarrow[0 . . m-1]$:
$F[j]$ is the length of the longest prefix of $P[0 . . j]$
that is a suffix of $P[1 . . j]$.
- Can show: fail $[j]=F[j-1]$ for $j \geq 1$, and hence

$$
\begin{aligned}
& \text { fail }[j]=\text { length of the } \\
& \text { longest prefix of } P[0 . . j) \\
& \text { that is a suffix of } P[1 . . j) \text {. }
\end{aligned}
$$

4.5 Beyond Optimal? The Boyer-Moore Algorithm

Motivation

- KMP is an optimal algorithm, isn't it? What else could we hope for?
- KMP is "only" optimal in the worst-case (and up to constant factors)
- how many comparisons do we need for the following instance? $T=$ aaaaaaaaaaaaaaaa, $P=\mathrm{xxxxx}$
- there are no matches
- we can certify the correctness of that output with only 4 comparisons:

T | a |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | x | | | | | | | | | | | |
| | | | | | | | | | x | | | | | | |
| | | | | | | | | | | | | | | x | |
| | | | | | | | | | | | | | | | x |

\rightsquigarrow We did not even read most characters!

Boyer-Moore Algorithm

- Let's check guesses from right to left!
- If we are lucky, we can eliminate several shifts in one shot!
must avoid (excessive) redundant checks, e. g., for $T=a^{n}, P=b a^{m-1}$
\rightsquigarrow New rules:
- Bad character jumps: Upon mismatch at $T[i]=c$:
- If P does not contain c, shift P entirely past i !
- Otherwise, shift P to align the last occurrence of c in P with $T[i]$.
- Good suffix jumps:

Upon a mismatch, shift so that the already matched suffix of P aligns with a previous occurrence of that suffix (or part of it) in P.
(Details follow; ideas similar to KMP failure links)
\rightsquigarrow two possible shifts (next guesses); use larger jump.

Boyer-Moore Algorithm - Code

```
procedure boyerMoore \((T[0 . . n), P[0 . . m))\)
    \(\lambda:=\operatorname{computeLastOccurrences}(P)\)
    \(\gamma:=\) computeGoodSuffixes \((P)\)
    \(i:=0\) // current guess
    while \(i \leq n-m\)
        \(j:=m-1 / / n e x t\) position in \(P\) to check
        while \(j \geq 0 \wedge P[j]==T[i+j]\) do
        \(j:=j-1\)
        if \(j==-1\) then
            return \(i\)
        else
        \(i:=i+\max \{j-\lambda[T[i+j]], \gamma[j]\}\)
    return NO MATCH
```

- λ and γ explained below
- shift forward is larger of two heuristics
- shift is always positive (see below)

Bad character examples

$\rightsquigarrow 6$ characters not looked at

$\rightsquigarrow 4$ characters not looked at

Last-Occurrence Function

- Preprocess pattern P and alphabet Σ
- last-occurrence function $\lambda[c]$ defined as
- the largest index i such that $P[i]=c$ or
- -1 if no such index exists
- Example: $P=$ moore

c	m	o	r	e	all others
$\lambda[c]$	0	2	3	4	-1

$$
\begin{gathered}
i=0, j=4, T[i+j]=r, \lambda[r]=3 \\
\rightsquigarrow \quad \text { shift by } j-\lambda[T[i+j]]=1
\end{gathered}
$$

- λ easily computed in $O(m+\sigma)$ time.
- store as array $\lambda[0 . . \sigma)$.

Good suffix examples

1. $P=\operatorname{sells}_{\lrcorner}$shells

2. $P=$ odetofood
i \quad l
i

	k	e	f	o	o	d	f	r	o	m	m	e	x	i	c	o		
				0	f	o	o	d										
							(0)	(d)										

matched suffix

- Crucial ingredient: longest suffix of $P[j+1 . . m)$ that occurs earlier in P.
- 2 cases (as illustrated above)

1. complete suffix occurs in $P \rightsquigarrow$ characters left of suffix are not known to match
2. part of suffix occurs at beginning of P

Good suffix jumps

- Precompute good suffix jumps $\gamma[0 . . m)$:
- For $0 \leq j<m, \gamma[j]$ stores shift if search failed at $P[j]$
- At this point, had $T[i+j+1 . . i+m)=P[j+1 . . m)$, but $T[i] \neq P[j]$
$\rightsquigarrow \gamma[j]$ is the shift $m-\ell$ for the largest ℓ such that
- $P[j+1 . . m)$ is a suffix of $P[0 . . \ell)$ and $P[j] \neq P[j-(m-\ell)]$

							h	e	l	l	s							
							\times	(e)	(l)	(l)	(s)							

-OR-

- $P[0 . . \ell)$ is a suffix of $P[j+1 . . m)$

				0	f	0	0	d										
							(0)	(d)										

- Computable (similar to KMP failure function) in $\Theta(m)$ time.
- Note: You do not need to know how to find the values $\gamma[j]$ for the exam, but you should be able to find the next guess on examples.

Boyer-Moore algorithm - Discussion

0 Worst-case running time $\in O(n+m+\sigma)$ if P does not occur in T.
(follows from not at all obvious analysis!)

As given, worst-case running time $\Theta(n m)$ if we want to report all occurrences

- To avoid that, have to keep track of implied matches. (tricky because they can be in the "middle" of P)
- Note: KMP reports all matches in $O(n+m)$ without modifications!

On typical English text, Boyer Moore probes only approx. 25\% of the characters in T!
\rightsquigarrow Faster than KMP on English text.requires moderate extra space $\Theta(m+\sigma)$

4.6 The Rabin-Karp Algorithm

Space - The final frontier

- Knuth-Morris-Pratt has great worst case and real-time guarantees
- Boyer-Moore has great typical behavior
- What else to hope for?
- All require $\Omega(m)$ extra space;
can be substantial for large patterns!
- Can we avoid that?

Rabin-Karp Fingerprint Algorithm - Idea

Idea: use hashing (but without explicit hash tables)

- Precompute \& store only hash of pattern
- Compute hash for each guess

$$
\begin{aligned}
& \\
& h(14159)=94 \\
& h(41592)=76 \\
& h(15926)=18 \\
& h(59262)=95
\end{aligned}
$$

$T=3141592653589793238$
Hash function: $h(x)=x \bmod 97$
$\rightsquigarrow h(P)=95$.
Example: (treat (sub)strings as decimal numbers)

$$
P=59265
$$

-

Rabin-Karp Fingerprint Algorithm - First Attempt

${ }^{1}$ procedure rabinKarpSimplistic($T[0 . . n-1], P[0 . . m-1]$)
2 $\quad M$:= suitable prime number
$\left.3 \quad h_{P}:=\operatorname{computeHash}(P[0 . . m-1)], M\right)$
$4 \quad$ for $i:=0, \ldots, n-m$ do $h_{T}:=\operatorname{computeHash}(T[i . . i+m-1], M)$ if $h_{T}==h_{P}$ then
if $T[i . . i+m-1]==P / / m$ comparisons
then return i
return NO MATCH

- never misses a match since $h\left(S_{1}\right) \neq h\left(S_{2}\right)$ implies $S_{1} \neq S_{2}$
- $h(T[k . . k+m-1])$ depends on m characters \rightsquigarrow naive computation takes $\Theta(m)$ time
\rightsquigarrow Running time is $\Theta(m n)$ for search miss ... can we improve this?

Rabin-Karp Fingerprint Algorithm - Fast Rehash

- Crucial insight: We can update hashes in constant time.
- Use previous hash to compute next hash
- O(1) time per hash, except first one

Example:

- Pre-compute: $10000 \bmod 97=9$
- Previous hash: $41592 \bmod 97=76$
- Next hash: $15926 \bmod 97=? ?$

Observation:

$$
\begin{aligned}
15926 \bmod 97 & =(41592-(4 \cdot 10000)) \cdot 10+6 \\
& =(76-(4 \cdot 9)) \cdot 10+6 \\
& =406 \bmod 97 \\
& \bmod 97 \\
& =18
\end{aligned}
$$

Rabin-Karp Fingerprint Algorithm - Code

- use a convenient radix $R \geq \sigma \quad\left(R=10\right.$ in our examples; $R=2^{k}$ is faster)
- Choose modulus M at random to be huge prime (randomization against worst-case inputs)
- all numbers remain $\leq 2 R^{2} \rightsquigarrow O(1)$ time arithmetic on word-RAM

```
procedure rabinKarp \((T[0 . . n-1], P[0 . . m-1], R)\)
    \(M\) := suitable prime number
    \(\left.h_{P}:=\operatorname{computeHash}(P[0 . . m-1)], M\right)\)
    \(h_{T}:=\operatorname{computeHash}(T[0 . . m-1], M)\)
    \(s:=R^{m-1} \bmod M\)
    for \(i:=0, \ldots, n-m\) do
        if \(h_{T}==h_{P}\) then
            if \(T[i . . i+m-1]=P\)
                    return \(i\)
        if \(i<n-m\) then
            \(h_{T}:=\left(\left(h_{T}-T[i] \cdot s\right) \cdot R+T[i+m]\right) \bmod M\)
    return NO_MATCH
```


Rabin-Karp - Discussion

0 Expected running time is $O(m+n)$
q $\Theta(m n)$ worst-case;
but this is very unlikely
0 Extends to 2D patterns and other generalizations
\mathcal{H} Only constant extra space!

String Matching Conclusion

	Brute- Force	DFA	KMP	BM	RK	Suffix trees*
Preproc. time	-	$O(m \sigma)$	$O(m)$	$O(m+\sigma)$	$O(m)$	$O(n)$
Search time	$O(n m)$	$O(n)$	$O(n)$	$O(n)$ (often better)	$O(n+m)$ $($ expected $)$	$O(m)$
Extra space	-	$O(m \sigma)$	$O(m)$	$O(m+\sigma)$	$O(1)$	$O(n)$
						*(see Unit 6)

