
5 Parallel
String Matching

3 March 2022

Sebastian Wild
COMP526 (Spring 2022)
University of Liverpool

version 2022-01-31 22:34 H

Learning Outcomes

1. Know and apply parallelization strategies
for embarrassingly parallel problems.

2. Identify limits of parallel speedups.

3. Understand string matching by duels, both
sequential and parallel (excluding
preprocessing).

Unit 5: Parallel String Matching

1

Outline

5 Parallel String Matching
5.1 Elementary Tricks
5.2 Periodicity
5.3 String Matching by Duels

Parallelizing string matching
I We have seen a plethora of string matching methods

I But all efficient methods seem inherently sequential
Indeed, they became efficient only after building on knowledge from previous

Sounds like the opposite of parallel!

steps!

 This unit:
I How well can we parallelize string matching?
I What new ideas can help?

Here: string matching = find all occurrences of % in) (more natural problem for parallel)
always assume < ≤ =

2

5.1 Elementary Tricks

Embarrassingly Parallel
I A problem is called “embarrassingly parallel”

if it can immediately be split into many, small subtasks
that can be solved completely independently of each other

I Typical example: sum of two large matrices (all entries independent)

 best case for parallel computation (simply assign each processor one subtask)

I Sorting is not embarrassingly parallel
I no obvious way to define many small (=efficiently solvable) subproblems
I but: some subtasks of our algorithms are, e. g., comparing all elements with pivot

3

Elementary parallel string matching
Subproblems in string matching:
I string matching = check all guesses 8 = 0, . . . , = − < − 1
I checking one guess is a subtask!

Approach 1:
I Check all guesses in parallel
 Time: Θ(<) using sequential checks

Θ(log<) on CREW-PRAM (see tutorials)
Θ(1) on CRCW-PRAM (see tutorials)

 Work: Θ((= − <)<) not great . . .

Approach 2:
I Divide) into overlapping blocks of 2< characters:
)[0..2<),)[<..3<),)[2<..4<),)[3<..5<). . .

I Find matches inside blocks in parallel, using efficient sequential method
 Θ(2< + <) = Θ(<) each

 Time: Θ(<) Work: Θ(=< · <) = Θ(=)
4

Elementary parallel matching – Discussion
very simple methods

could even run distributed with access to part of)

parallel speedup only for < � =

Goal:

I work-efficient methods with better parallel time? higher speedup

 must genuinely parallelize the matching process! (and the preprocessing of the pattern)

 need new ideas

5

5.2 Periodicity

Periodicity of Strings
I (= ([0..= − 1] has period ? iff ∀8 ∈ [0..= − ?) : ([8] = ([8 + ?]

I ? = 0 and any ? ≥ = are trivial periods but these are not very interesting . . .

Examples:
I (= baaababaaab has period 6:

? = 6

(b a a a b a b a a a b

(b a a a b a b a a a b
= = = = =

I (= abaabaabaaba has period 3:

? = 3

(a b a a b a a b a a b a

(a b a a b a a b a a b a

= = = = = = = = =

6

Periodicity and KMP

Lemma 5.1 (Periodicity = Longest Overlap)
? ∈ [1..=] is the shortest period in (= ([0..= − 1]
iff ([0..= − ?) is the longest prefix that is also a suffix of ([?..=). J

([0..= − 1] has minimal period ? ⇐⇒ fail[=] = = − ?

? = 3

fail[=] = 9

(a b a a b a a b a a b a

(a b a a b a a b a a b a

= = = = = = = = =

0 1 2 3 4 5 6 7 8 9 10 11

7

Periodicity Lemma

Lemma 5.2 (Periodicity Lemma)
If string (= ([0..= − 1] has periods ? and @ with ? + @ ≤ =,
then it has also period gcd

greatest common divisor

(?, @). J

Proof: see tutorials; hint: recall Euclid’s algorithm

8

Periodic strings
I What does the smallest period ? tell us about a string ([0..=)?
I Two distinct regimes:

1. (is periodic: ? ≤ =
2

More precisely: (is totally determined by a string � = �[0..?) = ([0..?)
(keeps repeating � until = characters are filled

 (is highly repetitive!

2. (is aperiodic (also non-periodic): ? > =
2

(cannot be written as (= �: · . with : ≥ 2 and . a prefix of �

9

5.3 String Matching by Duels

Periods and Matching
Witnesses for non-periodicity:

I Assume, %[0..< − 1] does not have period ?

 ∃ witness against periodicity: position $ ∈ [0..< − ?) : %[$] ≠ %[$ + ?]

Dueling via witnesses:

I If %[0..< − 1] does not have period ?, then
at most one of positions 8 and 8 + ? can be (the first position of) an occurrence of %.

Proof: Cannot have)[(8 + ?) + $] = %[$] ≠ %[$ + ?] =)[8 + ($ + ?)].

I Duel between guess 8 and 8 + ?:
compare text character overlapped with witness $

10

Dueling example
1. Compute witnesses against periodicity for % = ababaca

1 a b a b a c a

a b a b a c a

≠

0 1 2 3 4 5 6

) = a b a b a b a a a c a
0 1 2 3 4 5 6 7 8 9 10

? 1 2 3 4 5

$[?] 0 3 1 1 0

2. Duel!) = abababaaaca
I 0 vs. 1

? = 1, $ = 0)[1] = b ≠ %[$] No occurrence at 1!
I 0 vs. 2

? = 2, $ = 3)[5] = b ≠ c = %[$ + ?] No occurrence at 0!
I 2 vs. 3

? = 1, $ = 0)[3] = b ≠ a = %[$] No occurrence at 3!

11

String Matching by Duels – Sequential
Assume that pattern % is aperiodic. (can deal with periodic case separately; details omitted)

Algorithm:

1. Set � := b<2 c

2. Compute witnesses $[1..�] against periodicity for all ? ≤ <
2 .

3. For each block of � consecutive indices [0..�), [�..2�), [2�..3�), . . .
run � − 1 duels to eliminate all but one guesses in the block

4. check remaining d =� e = $(=/<) guesses naively

Analysis:

1. $(1)

2. $(<) later

3. $(=<) blocks
$(<) duels each

4. $(=<),
≤ < cmps each

 another worst-case $(= + <) string matching method!

12

String Matching by Duels – Parallel
Assume that pattern % is aperiodic. (can deal with periodic case separately; details omitted)

Algorithm:

1. Set � := b<2 c

2. Compute witnesses $[1..�] against periodicity for all ? ≤ <
2 .

3. For each block of � consecutive indices [0..�), [�..2�), [2�..3�), . . .
run � − 1 duels to eliminate all but one guesses in the block

4. check remaining d =� e = $(=/<) guesses naively

How to parallelize:

1. —

2. $(log2(<)) later

3. blocks in parallel (indep.),
tournament of dlg�e rounds

4. check in parallel
collect result (like prefix sum)

Tournament of duals:
I each dual eliminates one guess

 declare other guess winner
I conceptually like (prefix) sum! 0 1 2 3 4 5 6 7

 Matching part can be done in $(log<) parallel time and $(=)work!
13

Computing witnesses
It remains to find the witnesses $[1..�].

sequentially:

I an elementary procedure is similar in spirit to KMP failure array

I can be computed in Θ(<) time

parallel:
I much more complicated beyond scope of the module

I first $(log2(<)) time on CREW-RAM
I later $(log<) time and $(<)work using pseudoperiod method

14

Parallel Matching – State of the art
I $(log<) time & work-efficient parallel string matching

I this is optimal for CREW-PRAM

I on CRCW-PRAM: matching part even in $(1) time (tutorials)
but preprocessing requires Θ(log log<) time

15

	Parallel String Matching
	 Learning Outcomes
	 Parallelizing string matching
	Elementary Tricks
	 Embarrassingly Parallel
	 Elementary parallel string matching
	 Elementary parallel matching – Discussion

	Periodicity
	 Periodicity of Strings
	 Periodicity and KMP
	 Periodicity Lemma
	 Periodic strings

	String Matching by Duels
	 Periods and Matching
	 Dueling example
	 String Matching by Duels – Sequential
	 String Matching by Duels – Parallel
	 Computing witnesses
	 Parallel Matching – State of the art

