1 4
1A HME H
)HN=ZH Jd<+
1HOID A OC
T HBPA QA EC
TS HA<CHCT
I Wita sl A0 L CC S
1< OV Q <
A HUNOAC
)N A0 =< L
YOO <CH =+
I1HOAQAZ TN,
(=AM ITBEOC
YD <<HBHHC
IFAAdHM@XE -
1H O A MO T
IEHAOUECT
. Od<<UO JIHT
O <M
(AN AO:
YO AR U

_| |

Error-Correcting Codes

31 March 2022

Sebastian Wild

COMP526 (Spring 2022)

sity of Liverpool
ersion 2022-01-31 22:42H

Univer:

Learning Outcomes

1.

Understand the context of error-prone
communication.

Understand concepts of error-detecting
codes and error-correcting codes.

Know and understand the terminology of
block codes.

Know and understand Hamming codes, in
particular 4+3 Hamming code.

Reason about the suitability of a code for
an application.

Unit 8: Error-Correcting Codes

Outline

8 Error-Correcting Codes

8.1 Introduction
8.2 Lower Bounds

8.3 Hamming Codes

8.1 Introduction

Noisy Communication

» most forms of communication are “noisy”

» humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

» How do humans cope with that?
» slow down and/or speak up

> ask to repeat if necessary

» But how is it possible (for us) L

to decode a message in the presence of noise & errors?

[Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!]

~ We can

1. detect errors “This sentence has aao pi dgsdho gioasghds.”

2. correct (some) errors “Tiny errs ar corrrected automaticly.”

(sometimes too eagerly as in the Chinese Whispers / Telephone)

UGH, PEOPLE ARE MAD AT ME AGAIN
BECAUSE THEY DON'T READ CAREFULLY.

]
T™MBEING PERFECTLY CLEAR.
IT'S NOT MY FRULT IF EVERYONE.
MISINTERPRETS WHAT L SAY.

WOW, SOUNDS LIKE YOURE
GREAT AT COMMUNICATING,
AN ACTMITY THAT FAMOUSLY
INVOLVES JUST ONE. PERSON.

N

7

Noisy Channels

> computers: copper cables &
electromagnetic interference

» transmit a binary string
» but occasionally bits can “flip”

~~ want a robust code

» We can aim at
1. error detection ~+ can request a re-transmit
2. error correction ~» avoid re-transmit for common types of errors

» This will require redundancy: sending more bits than plain message

~~ goal: robust code with lowest redundancy \, . . opposite of compression!

8.2 Lower Bounds

Block codes

» model:

> want to send message S € {0, 1}* (bitstream) across a (communication) channel

» any bit transmitted through the channel might flip (6 — 1 resp.1 — 0)
no other errors occur (no bits lost, duplicated, inserted, etc.)

» instead of S, we send encoded bitstream C € {0, 1}*
sender encodes S to C, receiver decodes C to S (hopefully)

~~ what errors can be detected and/or corrected?
» all codes discussed here are block codes

> divide S into messages m € {0, 1}* of k bits each (k = message length)
» encode each message (separately) as C(m) € {0, 1}" (n = block length, n > k)

~+ can analyze everything block-wise
> between 0 and 7 bits might be flipped =~ invalid code

» how many flipped bits can we definitely detect?
» how many flipped bits can we correct without retransmit?

i.e. decoding m still possible

Code distance

m#m’ = C(m)# C(m’)

> each block code is an injective function C : {0, 1} — {0, 1}"

» define C = set of all codewords = C({0, 1}*)

~ CcC{o,1}" [l@ | = 2% out of 2" n-bit strings are valid codewords

» decoding = finding closest valid codeword

» distance of code:

d = minimal Hamming distance of any two codewords = milz du(x,y)
x,yeC

Implications for codes

1. Need distance d to detect all errors flipping up to d — 1 bits.
2. Need distance d to correct all errors flipping up to [‘iz;lJ bits.

Lower Bounds

» Main advantage of concept of code distance:
can prove lower bounds on block length

> Singleton bound: 2K <2"~@ D o p>k+d-1

» proof sketch: We have 2k codeswords with distance d
after deleting the first 4 — 1 bits, all are still distinct

(d-1)

but there are only 2"~ such shorter bitstrings.

2”
. L R
» Hamming bound: 2~ < Zw_n/zj (n)

f=0 f
» proof idea: consider “balls” of bitstrings around codewords
count bitstrings with Hamming-distance < t = [(d — 1)/2]
correcting t errors means all these balls are disjoint
s0 2K . ball size < 2"

~~ We will come back to these.

8.3 Hamming Codes

Parity Bit

» simplest possible error-detecting code: add a parity bit

[G 1 106 1 111 0f6®0
—— B {0 if number of ones is even

" |1 if number of ones is odd

dleleldleldldle®d =0

XOR
~ code distance 2
» can detect any single-bit error (actually, any odd number of flipped bits)

» used in many hardware (communication) protocols
» PCI buses, serial buses
» caches

» early forms of main memory
[fb very simple and cheap

E@ cannot correct any errors

Error-correcting codes

any downtime is expensive!

» typical application: heavy-duty server RAM
» bits can randomly flip (e.g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of- the-cosmic- rays-v2

267 ?

2 Can we correct a bit error without knowing where it occurred? How?

> Yes! store every bit three times!
» upon read, do majority vote
» if only one bit flipped, the other two (correct) will still win
[@ triples the cost!

instead of 200% (!)

-:-<|>,<> /
&’O Can do it with 11% extra memory!
-]

https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

How to locate errors?

» Idea: Use several parity bits

» each covers a subset of bits

» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, . .., By with the following constraints:

- C = B4®Bs®Bs®By; = 0
!
(((C1=B2®B3@B6®B7TO
Co = Bi®Bs®Bs® By =0
((| [I [S
111, 110, 101, 100, 011, 010, 1,

B> Bg Bs By B3 B By

Observe:

> No error (all 7 bits correct) ~ C = C,C1Cp = 000, = o\/
» What happens if (exactly) 1 bit, say B; flips?

[C j =1 iff jthbitin binary representation of 7 is 1] ~> C encodes position of error!

4+3 Hamming Code

» How

can we turn this into a code?

4 4 4

I

111, 110, 101, 100, 011,

By

\ A\ A\ AN
\§ \ N

D3

» By, By and B; occur only in one constraint each

T

[
r T

1
B6 B5 B4 B3 Bz Bl

\

3
\Z
P>

5 ot

> <o

D, Dy Do

» 4+ 3 Hamming Code — Encoding

1,

2
3.
4

Given: message D3D>D1Dy of length k = 4

. copy D3D,D1Dy to B7B¢B5B3

compute PP1Py = B4B,B1 so that C = 0

. send D3D2D1P2DOP1P0

P>
Py

R

B4 @ Bs & Bg @ By
B> @ B3 & Bg @ By
B1 @ B3 @ Bs ® By

[F=1-=I1=
[eNeNo]

= D3® Dy ® D;
D3 & Dy & Dy
D3 & D1 & Dy

define them based on rest!

10

4+3 Hamming Code — Decoding

» 4+ 3 Hamming Code — Decoding
1. Given: block ByBgB5B4B3ByB1 of length n =7
2. compute C (as above)

3. if C = 0 no (detectable) error occurred
otherwise, flip B¢ (the Cth bit was twisted)

4. return 4-bit message B7BsBsB3

11

4+3 Hamming Code - Properties

» Hamming bound:

» 2% valid 7-bit codewords (on per message)
» any of the 7 single-bit errors corrected towards valid codeword
~~ each codeword covers 8 of all possible 7-bit strings

> 24.23 =27 +. exactly cover space of 7-bit strings

» distance d =3
» can correct any 1-bit error

» How about 2-bit errors?

» We can defect that something went wrong.

» But: above decoder mistakes it for a (different!) 1-bit error and “corrects” that

» Variant: store one additional parity bit for entire block

~~ Can detect any 2-bit error, but not correct it.

12

Hamming Codes — General recipe

» construction can be generalized:

» Start with n = 2! — 1 bits for £ € N (we had ¢ = 3)
» use the ¢ bits whose index is a power of 2 as parity bits
» the other n — ¢ are data bits

» Choosing ¢ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

[ﬁ simple and efficient coding / decoding
[fb fairly space-efficient

13

Outlook

» Indeed: (2—¢-1)+ ¢ Hamming Code is “perfect”

~» cannot use fewer bits . . . = matches Hamming lower bound

> if message length is 2/ — ¢ — 1 for ¢ € N,
i.e,oneofl,4,11,26,57,120,247,502,1013, ...

» and we want to correct 1-bit errors

» For other scenarios, finding good codes is an active research area
» information theory predicts that almost all randomly chosen codes are good(!)
» but these are inefficient to decode

~ clever tricks and constructions needed

14

	Error-Correcting Codes
	 Learning Outcomes
	Introduction
	 Noisy Communication
	 Noisy Channels

	Lower Bounds
	 Block codes
	 Code distance
	 Lower Bounds

	Hamming Codes
	 Parity Bit
	 Error-correcting codes
	 How to locate errors?
	 4+3 Hamming Code
	 4+3 Hamming Code – Decoding
	 4+3 Hamming Code – Properties
	 Hamming Codes – General recipe
	 Outlook

