
8 Error-Correcting Codes
31 March 2022

Sebastian Wild

COMP526 (Spring 2022)
University of Liverpool

version 2022-01-31 22:42 H

Learning Outcomes
1. Understand the context of error-prone

communication.

2. Understand concepts of error-detecting
codes and error-correcting codes.

3. Know and understand the terminology of
block codes.

4. Know and understand Hamming codes, in
particular 4+3 Hamming code.

5. Reason about the suitability of a code for
an application.

Unit 8: Error-Correcting Codes

1

Outline

8 Error-Correcting Codes
8.1 Introduction
8.2 Lower Bounds
8.3 Hamming Codes

8.1 Introduction

Noisy Communication
I most forms of communication are “noisy”

I humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

I How do humans cope with that?
I slow down and/or speak up
I ask to repeat if necessary

I But how is it possible (for us)
to decode a message in the presence of noise & errors?

Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!

 We can
1. detect errors “This sentence has aao pi dgsdho gioasghds.”
2. correct (some) errors “Tiny errs ar corrrected automaticly.”

(sometimes too eagerly as in the Chinese Whispers / Telephone)

2

Noisy Channels
I computers: copper cables &

electromagnetic interference

I transmit a binary string

I but occasionally bits can “flip”

 want a robust code

I We can aim at

1. error detection can request a re-transmit
2. error correction avoid re-transmit for common types of errors

I This will require redundancy: sending more

that’s the opposite of compression!

bits than plain message
 goal: robust code with lowest redundancy

3

8.2 Lower Bounds

Block codes
I model:

I want to send message (∈ {0, 1}★ (bitstream) across a (communication) channel
I any bit transmitted through the channel might flip (0→ 1 resp. 1→ 0)

no other errors occur (no bits lost, duplicated, inserted, etc.)

I instead of (, we send encoded bitstream � ∈ {0, 1}★
sender encodes (to �, receiver decodes � to ((hopefully)

 what errors can be detected and/or corrected?

I all codes discussed here are block codes
I divide (into messages < ∈ {0, 1}: of : bits each (: = message length)
I encode each message (separately) as �(<) ∈ {0, 1}= (= = block length, = ≥ :)

 can analyze everything block-wise

I between 0 and = bits might be flipped
I how many flipped bits can we definitely detect

invalid code

?
I how many flipped bits can we correct

i. e. decoding < still possible

without retransmit?

4

Code distance
I each block code is an injective

< ≠ <′ =⇒ �(<) ≠ �(<′)

function � : {0, 1}: → {0, 1}=

I define C = set of all codewords = �({0, 1}:)

 C ⊆ {0, 1}= |C| = 2: out of 2= =-bit strings are valid codewords

I decoding = finding closest valid codeword

I distance of code:
3 = minimal Hamming distance of any two codewords = min

G,H∈C
3�(G, H)

Implications for codes

1. Need distance 3 to detect all errors flipping up to 3 − 1 bits.

2. Need distance 3 to correct all errors flipping up to
⌊
3−1

2
⌋
bits.

5

Lower Bounds
I Main advantage of concept of code distance:

can prove lower bounds on block length

I Singleton bound: 2: ≤ 2=−(3−1) = ≥ : + 3 − 1
I proof sketch: We have 2: codeswords with distance 3

after deleting the first 3 − 1 bits, all are still distinct
but there are only 2=−(3−1) such shorter bitstrings.

I Hamming bound: 2: ≤ 2=∑b(3−1)/2c
5=0

(
=
5

)
I proof idea: consider “balls” of bitstrings around codewords

count bitstrings with Hamming-distance ≤ C = b(3 − 1)/2c
correcting C errors means all these balls are disjoint
so 2: · ball size ≤ 2=

 We will come back to these.

6

8.3 Hamming Codes

Parity Bit
I simplest possible error-detecting code: add a parity bit

0 1 1 0 1 1 1 1 0⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = 0

0 1 1 0 1 1 1 1 0 0

XOR

=

{
0 if number of ones is even
1 if number of ones is odd

 code distance 2

I can detect any single-bit error (actually, any odd number of flipped bits)

I used in many hardware (communication) protocols
I PCI buses, serial buses
I caches
I early forms of main memory

very simple and cheap

cannot correct any errors
7

Error-correcting codes
I typical application: heavy-duty server

any downtime is expensive!

RAM
I bits can randomly flip (e. g., by cosmic rays)
I individually very unlikely,

but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

I Yes! store every bit three times!
I upon read, do majority vote
I if only one bit flipped, the other two (correct) will still win

triples the cost! You want WHAT!?!

Can do it with 11%

instead of 200% (!)

extra memory!

8

https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

How to locate errors?
I Idea: Use several parity bits

I each covers a subset of bits
I clever subsets violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

I Consider = = 7 bits �1 , . . . , �7 with the following constraints:

�1

0012

�2

0102

�3

0112

�4

1002

�5

1012

�6

1102

�7

1112

�0 = �1 ⊕ �3 ⊕ �5 ⊕ �7
!
= 0

�1 = �2 ⊕ �3 ⊕ �6 ⊕ �7
!
= 0

�2 = �4 ⊕ �5 ⊕ �6 ⊕ �7
!
= 0

Observe:
I No error (all 7 bits correct) � = �2�1�0 = 0002 = 0X
I What happens if (exactly) 1 bit, say �8 flips?

� 9 = 1 iff 9th bit in binary representation of 8 is 1 � encodes position of error!

9

4+3 Hamming Code
I How can we turn this into a code?

�1

0012
�2

0102
�3

0112
�4

1002
�5

1012
�6

1102
�7

1112

�0 = �1 ⊕ �3 ⊕ �5 ⊕ �7
!
= 0

�1 = �2 ⊕ �3 ⊕ �6 ⊕ �7
!
= 0

�2 = �4 ⊕ �5 ⊕ �6 ⊕ �7
!
= 0

�3 �2 �1 �0%2

⊕
%2 = �3 ⊕ �2 ⊕ �1

%1

⊕ %1 = �3 ⊕ �2 ⊕ �0
%0

⊕
%0 = �3 ⊕ �1 ⊕ �0

I �4, �2 and �1 occur only in one constraint each define them based on rest!

I 4 + 3 Hamming Code – Encoding
1. Given: message �3�2�1�0 of length : = 4
2. copy �3�2�1�0 to �7�6�5�3
3. compute %2%1%0 = �4�2�1 so that � = 0
4. send �3�2�1%2�0%1%0

10

4+3 Hamming Code – Decoding
I 4 + 3 Hamming Code – Decoding

1. Given: block �7�6�5�4�3�2�1 of length = = 7
2. compute � (as above)
3. if � = 0 no (detectable) error occurred

otherwise, flip �� (the �th bit was twisted)
4. return 4-bit message �7�6�5�3

11

4+3 Hamming Code – Properties
I Hamming bound:

I 24 valid 7-bit codewords (on per message)
I any of the 7 single-bit errors corrected towards valid codeword
 each codeword covers 8 of all possible 7-bit strings
I 24 · 23 = 27 exactly cover space of 7-bit strings

I distance 3 = 3

I can correct any 1-bit error

I How about 2-bit errors?
I We can detect that something went wrong.
I But: above decoder mistakes it for a (different!) 1-bit error and “corrects” that

I Variant: store one additional parity bit for entire block
 Can detect any 2-bit error, but not correct it.

12

Hamming Codes – General recipe
I construction can be generalized:

I Start with = = 2ℓ − 1 bits for ℓ ∈ ℕ (we had ℓ = 3)

I use the ℓ bits whose index is a power of 2 as parity bits
I the other = − ℓ are data bits

I Choosing ℓ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

simple and efficient coding / decoding

fairly space-efficient

13

Outlook
I Indeed: (2ℓ−ℓ−1) + ℓ Hamming Code is “perfect”

= matches Hamming lower bound cannot use fewer bits . . .

I if message length is 2ℓ − ℓ − 1 for ℓ ∈ ℕ≥2
i. e., one of 1, 4, 11, 26, 57, 120, 247, 502, 1013, . . .

I andwe want to correct 1-bit errors

I For other scenarios, finding good codes is an active research area
I information theory predicts that almost all randomly chosen codes are good(!)
I but these are inefficient to decode
 clever tricks and constructions needed

14

	Error-Correcting Codes
	 Learning Outcomes
	Introduction
	 Noisy Communication
	 Noisy Channels

	Lower Bounds
	 Block codes
	 Code distance
	 Lower Bounds

	Hamming Codes
	 Parity Bit
	 Error-correcting codes
	 How to locate errors?
	 4+3 Hamming Code
	 4+3 Hamming Code – Decoding
	 4+3 Hamming Code – Properties
	 Hamming Codes – General recipe
	 Outlook

