$$
\begin{aligned}
& \text { ALGORITHMICS } \mathrm{C} \text { APPLIED } \\
& \text { APPLIEDALGORITHMICS\$ } \\
& \text { CS \$ APPLIEDALGORITHMI } \\
& \text { D A L G ORITHMICS \$ APPLIE } \\
& \text { EDALGORITHMICS \$ APPLI } \\
& \text { GORITHMICS\$APPLIEDAL } \\
& \text { HMICS \$ APPLIEDALGORIT }
\end{aligned}
$$

Range-Minimum
 Queries

25 April 2022
Sebastian Wild

Learning Outcomes

1. Know the RMQ problem and its connection

Unit 9: Range-Minimum Queries

 to longest common extensions in strings.2. Know and understand trivial RMQ solutions and sparse tables.
3. Know and understand the Cartesian trees data structure.
4. Know and understand the exhaustive-tabulation technique for RMQ with linear-time preprocessing.

Outline

9 Range-Minimum Queries

9.1 Introduction
9.2 RMQ, LCP, LCE, LCA - WTF?
9.3 Sparse Tables
9.4 Cartesian Trees
9.5 Exhaustive Tabulation

9.1 Introduction

Range-minimum queries (RMQ)

- Given: Static array $A[0 . . n)$ of numbers
- Goal: Find minimum in a range;
A known in advance and can be preprocessed

- Nitpicks:
- Report index of minimum, not its value
- Report leftmost position in case of ties

Rules of the Game

- comparison-based \rightsquigarrow values don't matter, only relative order
- Two main quantities of interest:

$$
\swarrow \leadsto \text { space usage } \leq P(n)
$$

1. Preprocessing time: Running time $P(n)$ of the preprocessing step
2. Query time: Running time $Q(n)$ of one query (using precomputed data)

- Write $\langle P(n), Q(n)\rangle$ time solution for short

9.2 RMQ, LCP, LCE, LCA - WTF?

Recall Unit 6

Application 4: Longest Common Extensions

- We implicitly used a special case of a more general, versatile idea:

The longest common extension (LCE) data structure:

- Given: String T[0..n-1]
- Goal: Answer LCE queries, i.e., given positions i, j in T,
how far can we read the same text from there?
formally: $\operatorname{LCE}(i, j)=\max \{\ell: T[i . . i+\ell)=T[j . . j+\ell)\}$
\rightsquigarrow use suffix tree of T !
- In \mathcal{T} : $\operatorname{LCE}(i, j)=\stackrel{l^{\text {longest common prefix of } i \text { th and } j \text { th suffix }}}{\operatorname{LCP}\left(T_{i}, T_{j}\right)} \rightsquigarrow$ same thing, different name!
$=$ string depth of
lowest common ancester (LCA) of leaves i and j

- in short: $\operatorname{LCE}(i, j)=\operatorname{LCP}\left(T_{i}, T_{j}\right)=\operatorname{stringDepth}(\operatorname{LCA}(i, \boxed{j}))$

Recall Unit 6

Efficient LCA

How to find lowest common ancestors?

- Could walk up the tree to find LCA $\rightsquigarrow \Theta(n)$ worst case q
- Could store all LCAs in big table $\rightsquigarrow \Theta\left(n^{2}\right)$ space and preprocessing q

Amazing result: Can compute data structure in $\Theta(n)$ time and space that finds any LCA is constant(!) time.

- a bit tricky to understand
- but a theoretical breakthrough
- and useful in practice
and suffix tree construction inside
\rightsquigarrow for now, use $O(1)$ LCA as black box.

\rightsquigarrow After linear preprocessing (time \& space), we can find LCEs in $O(1)$ time.

Finally: Longest common extensions

- In Unit 6: Left question open how to compute LCA in suffix trees
- But: Enhanced Suffix Array makes life easier!

$$
\operatorname{LCE}(i, j)=\operatorname{LCP}\left[\operatorname{RMQ}_{\mathrm{LCP}}(\min \{R[i], R[j]\}+1, \max \{R[i], R[j]\})\right]
$$

Inverse suffix array: going left \& right

- to understand the fastest algorithm, it is helpful to define the inverse suffix array:
- $R[i]=r \Longleftrightarrow L[r]=i$
$L=$ leaf array
$\Longleftrightarrow \quad$ there are r suffixes that come before T_{i} in sorted order
$\Longleftrightarrow T_{i}$ has (0-based) rank $r \leadsto$ call $R[0 \ldots n]$ the rank array

RMQ Implications for LCE

- Recall: Can compute (inverse) suffix array and LCP array in $O(n)$ time
$\rightsquigarrow \mathrm{A}\langle P(n), Q(n)\rangle$ time RMQ data structure implies a $\langle P(n), Q(n)\rangle$ time solution for longest-common extensions

9.3 Sparse Tables

Trivial Solutions

- Two easy solutions show extreme ends of scale:

1. Scan on demand

- no preprocessing at all
- answer $\mathrm{RMQ}(i, j)$ by scanning through $A[i . . j]$, keeping track of min
$\rightsquigarrow\langle O(1), O(n)\rangle$

2. Precompute all

- Precompute all answers in a big 2D array $M[0 . . n)[0 . . n)$
- queries simple: $\operatorname{RMQ}(i, j)=M[i][j]$
$\rightsquigarrow\left\langle O\left(n^{3}\right), O(1)\right\rangle$
- Preprocessing can reuse partial results $\rightsquigarrow\left\langle O\left(n^{2}\right), O(1)\right\rangle$

Sparse Table

- Idea: Like "precompute-all", but keep only some entries
- store $M[i][j]$ iff $\ell=j-i+1$ is 2^{k}.
$\rightsquigarrow \leq n \cdot \lg n$ entries
\rightsquigarrow Can be stored as $M^{\prime}[i][k]$
- How to answer queries?

- Preprocessing can be done in $O(n \log n)$ times
$\rightsquigarrow\langle O(n \log n), O(1)\rangle$ time solution!

1. Find k with $\ell / 2 \leq 2^{k} \leq \ell$
2. Cover range $[i . . j]$ by 2^{k} positions right from i and 2^{k} positions left from j
3. $\mathrm{RMQ}(i, j)=$ $\arg \min \left\{A\left[r m q_{1}\right], A\left[r m q_{2}\right]\right\}$
with $r m q_{1}=\operatorname{RMQ}\left(i, i+2^{k}-1\right)$

$$
r m q_{2}=\operatorname{RMQ}\left(j-2^{k}+1, j\right)
$$

9.4 Cartesian Trees

RMQ \& LCA

- Range- $\underline{\text { max }}$ queries on array A :

$$
\begin{aligned}
\mathrm{rmq}_{A}(i, j) & =\underset{i \leq k \leq j}{\arg \max } A[k] \\
& =\text { index of max }
\end{aligned}
$$

- Task: Preprocess A, then answer RMQs fast ideally constant time!

RMQ \& LCA

- Range-max queries on array A :

$$
\begin{aligned}
\mathrm{rmq}_{A}(i, j) & =\underset{i \leq k \leq j}{\arg \max } A[k] \\
& =\text { index of max }
\end{aligned}
$$

- Task: Preprocess A, then answer RMQs fast ideally constant time!
- Cartesian tree: (cf. treap) construct binary tree by sweeping line down
- $\operatorname{rmq}(i, j)=$ inorder of lowest common ancestor (LCA) of i th and j th node in inorder

Cartesian Tree - Larger Example

Counting binary trees

- Given the Cartesian tree, all RMQ answers are determined
and vice versa!
- How many different Cartesian trees are there for arrays of length n ?
- known result: Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$
- easy to see: $\leq 2^{2 n}$
\rightsquigarrow many arrays will give rise to the same Cartesian tree
Can we exploit that?

9.5 Exhaustive Tabulation

Four Russians?

The exhaustive-tabulation technique to follow is often called "Four Russians trick" . . .

- The algorithmic technique was published 1970 by
V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. Faradžev
- all worked in Moscow at that time . . . but not clear if all are Russians!
(Arlazarov and Kronrod are Russian)
- American authors coined the slightly derogatory "Method of Four Russians" . . . name now in wide use

Bootstrapping

- We know a $\langle O(n \log n), O(1)\rangle$ time solution
- If we use that for $m=\Theta(n / \log n)$ elements, $O(m \log m)=O(n)$!
- Break A into blocks of $b=\left\lceil\frac{1}{4} \lg n\right\rceil$ numbers
- Create array of block minima $B[0 . . m)$ for $m=\lceil n / b\rceil=O(n / \log n)$

\rightsquigarrow Use sparse tables for B.
\rightsquigarrow Can solve RMQs in $B[0 . . m$) in $\langle O(n), O(1)\rangle$ time

Query decomposition

- Query $\operatorname{RMQ}_{A}(i, j)$ covers
- suffix of block $\ell=\lfloor i / m\rfloor$
- prefix of block $r=\lfloor j / m\rfloor$
- blocks $\ell+1, \ldots, r-1$ entirely

$\rightarrow \mathrm{RMQ}_{\mathrm{A}}(i, j)=\underset{k \in K}{\arg \min } A[k] \quad$ with $K=\left\{\begin{array}{c}\mathrm{RMQ}_{\text {block } \ell}(i-\ell b,(\ell+1) b-1), \\ b \cdot \operatorname{RMQ}_{B}(\ell+1, r-1)+ \\ B\left[\operatorname{RMQ}_{B}(\ell+1, r-1)\right], \\ \operatorname{RMQ}_{\text {block } r}(r b, j-r b)\end{array}\right\}$ if intrablock and interblock queries known

Intrablock queries [1]

\rightsquigarrow It remains to solve the intrablock queries!

- Want $\langle O(n), O(1)\rangle$ time overall
must include preprocessing for all $m=\left\lceil\frac{n}{b}\right\rceil=\Theta\left(\frac{n}{\log n}\right)$ blocks!
- many blocks, but just $b=\left\lceil\frac{1}{4} \lg n\right\rceil$ numbers long
\rightsquigarrow Cartesian tree of b elements can be encoded using $2 b=\frac{1}{2} \lg n$ bits
\rightsquigarrow \# different Cartesian trees is $\leq 2^{2 b}=2^{\frac{1}{2} \lg n}=\left(2^{\lg n}\right)^{1 / 2}=\sqrt{n}$
\rightsquigarrow many equivalent blocks!
\rightsquigarrow Exhaustive Tabulation Technique:

1. represent each subproblem by storing its type (here: encoding of Cartesian tree)
2. enumerate all possible subproblems types and their solutions
3. use type as index in a large lookup table

Intrablock queries [2]

1. For each block, compute $2 b$ bit representation of Cartesian tree

- can be done in linear time

2. Compute large lookup table

Block type	i	j	$\operatorname{RMQ}(i, j)$

- $\leq \sqrt{n}$ block types
- $\leq b^{2}$ combinations for i and j
$\rightsquigarrow \Theta\left(\sqrt{n} \cdot \log ^{2} n\right)$ rows
- each row can be computed in $O(\log n)$ time
\rightsquigarrow overall preprocessing: $O(n)$ time!

Discussion

- $\langle O(n), O(1)\rangle$ time solution for RMQ
$\rightsquigarrow\langle O(n), O(1)\rangle$ time solution for LCE in strings!

0 optimal preprocessing and query time!
a bit complicated

Research questions:

- Reduce the space usage
- Avoid access to A at query time

