

Proof Techniques

3 February 2022

Sebastian Wild

Learning Outcomes

- 1. Know logical *proof strategies* for proving implications, set inclusions, set equalities, and quantified statements.
- **2.** Be able to use *mathematical induction* in simple proofs.
- **3.** Know techniques for *proving termination* and *correctness* of procedures.

Unit 0: Proof Techniques



Outline

Proof Techniques

- 0.1 Proof Templates
- 0.2 Mathematical Induction
- 0.3 Correctness Proofs

What is a *formal* proof?

A formal proof (in a logical system) is a **sequence of statements** such that each statement

- 1. is an axiom (of the logical system), or
- **2.** follows from previous statements using the *inference rules* (of the logical system).

Among experts: Suffices to *convince a human* that a formal proof *exists*.

But: Use formal logic as guidance against faulty reasoning. $\begin{tabular}{l} \leadsto \end{tabular}$ bulletproof

What is a *formal* proof?

A formal proof (in a logical system) is a **sequence of statements** such that each statement

- 1. is an axiom (of the logical system), Or
- 2. follows from previous statements using the *inference rules* (of the logical system).

Among experts: Suffices to *convince a human* that a formal proof *exists*.

But: Use formal logic as guidance against faulty reasoning. --> bulletproof

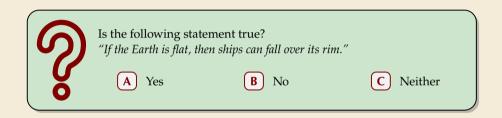
Notation:

▶ Statements: $A \equiv$ "it rains", $B \equiv$ "the street is wet".

- either A or B
- A XOD B

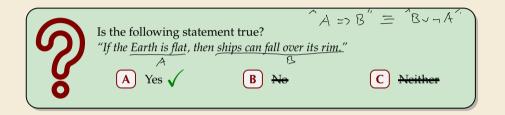
- ▶ Negation: $\neg A$ "Not A"
- ▶ And/Or: $A \land B$ "A and B"; $A \lor B$ "A or B or both"
- ▶ Implication: $A \Rightarrow B$ "If A, then B"; $(\neg A \lor B)$
- ▶ Equivalence: $A \Leftrightarrow B$ "A holds true if and only if ('iff') B holds true."; $(A \Rightarrow B) \land (B \Rightarrow A)$

Clicker Question



sli.do/comp526

Clicker Question



sli.do/comp526

0.1 Proof Templates

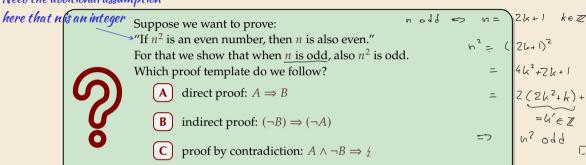
Implications

To prove $A \Rightarrow B$, we can

- ► directly derive *B* from *A* direct proof
- ▶ prove $(\neg B) \Rightarrow (\neg A)$ indirect proof, proof by contraposition
- ▶ assume $A \land \neg B$ and derive a contradiction proof by contradiction, reductio ad absurdum
- ▶ distinguish cases, i. e., separately prove $(\underline{A \land C}) \Rightarrow B$ and $(A \land \neg C) \Rightarrow B$. proof by exhaustive case distinction

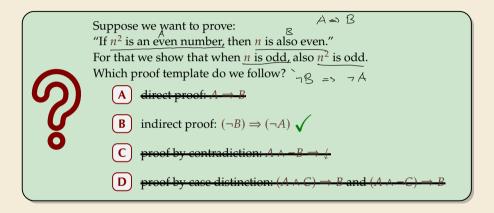
Clicker Ouestion

Need the additional assumption



proof by case distinction: $(A \land C) \Rightarrow B$ and $(A \land \neg C) \Rightarrow B$

Clicker Question



sli.do/comp526

Equivalences

To prove $A \Leftrightarrow B$, we prove both implications $A \Rightarrow B$ and $B \Rightarrow A$ separately. (Often, one direction is much easier than the other.)

Set Inclusion and Equality

To prove that a set *S* contains a set *R*, i. e., $R \subseteq S$, we prove the implication $x \in R \Rightarrow x \in S$.

To prove that two sets \underline{S} and R are equal, $\underline{S} = R$, we prove both inclusions, $S \subseteq R$ and $R \subseteq S$ separately.

0.2 Mathematical Induction

Quantified Statements

Notation

- Statements with parameters: $A(x) \equiv (x)$ is an even number."
- ► Existential quantifiers: $\exists x : A(x)$ "There exists some x, so that A(x)."
- ► Universal quantifiers: $\forall x : A(x)$ "For all x it holds that A(x)." Note: $\forall x : A(x)$ is equivalent to $\neg \exists x : \neg A(x)$

Quantifiers can be nested, e. g., ε - δ -criterion for limits:

$$\lim_{x \to \xi} f(x) = a \quad :\Leftrightarrow \quad \forall \varepsilon > 0 \; \exists \delta > 0 \; : \; \left(|x - \xi| < \delta \right) \Rightarrow \left| f(x) - a \right| < \varepsilon.$$

To prove $\exists x : A(x)$, we simply list an example ξ such that $A(\xi)$ is true.

Clicker Question

Have you seen proofs by mathematical induction before?

- A Yes, could do it
- **B** Yes, but only vaguely remember
- (C) I've heard this term before, but ...
- D I have not heard "mathematical induction" before

sli.do/comp526

For-all statements

To prove $\forall x : A(x)$, we can

- derive A(x) for an "arbitrary but fixed value of x", or,
- ▶ for $x \in \mathbb{N}_0$, use *induction*, i. e.,
 - ▶ prove A(0), induction basis, and
 - ▶ prove $\forall n \in \mathbb{N}_0 : A(n) \Rightarrow A(n+1)$ inductive step A(?) A(?)

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

More general variants of induction:

- ► complete/strong induction inductive step shows $(A(0) \land \cdots \land A(n)) \Rightarrow A(n+1)$
- ▶ structural/transfinite induction works on any *well-ordered* set, e. g., binary trees, graphs, Boolean formulas, strings, . . .

no infinite strictly decreasing chains

continue 13:52

0.3 Correctness Proofs

Formal verification

- verification: prove that a program computes the correct result
- → **not** our focus in COMP 526 but some techniques are useful for reasoning about algorithms

Here:

- 1. Prove that loop or recursive call eventually *terminates*.

Proving termination

To prove that a recursive procedure $proc(x_1, ..., x_m)$ eventually terminates, we

- ▶ define a <u>potential</u> $\Phi(x_1, ... x_m) \in \mathbb{N}_0$ of the parameters $\mathbb{N}_0 = \{0, 1, ... \}$ (Note: $\Phi(x_1, ... x_m) \ge 0$ by definition!)
- ▶ prove that every recursive call decreases the potential, i. e., any recursive call $proc(y_1, ..., y_m)$ inside $proc(x_1, ..., x_m)$ satisfies

$$\Phi(y_1, \dots, y_m) < \Phi(x_1, \dots, x_m)$$
 which means $\Phi(y_1, \dots, y_m) \leq \Phi(x_1, \dots, x_m) - \mathbf{1}$

- \rightarrow proc $(x_1, ..., x_m)$ terminates because we can only strictly *decrease* the (integral) potential a *finite* number of times from its initial value
- ► Can use same idea for a <u>loop</u>: show that potential decreases in each iteration.
 - → see tutorials for an example.

Droc (V. ... / 1)

Loop invariants

Goal: Prove that a *post condition* holds after execution of a (terminating) loop.

```
For that, we

while cond do

| Mathematical Mathematical
```

Note: *I* holds before, during, and after the loop execution, hence the name.

Loop invariant – Example

- ▶ loop condition: $cond \equiv i < n$
- ▶ post condition (in line 13): $curMax = \max_{k \in [0..n-1]} A[k]$
- ▶ loop invariant:

$$I \equiv curMax = \max_{k \in [0..i-1]} A[k] \land i \le n$$

We have to proof:

- (i) I holds at (A) /
- (ii) $I \wedge cond$ at (B) $\Rightarrow I$ at (C)
- (iii) $I \land \neg cond \Rightarrow post condition$

```
procedure arrayMax(A,n) / ♥
     // input: array of n elements, n \ge 1
    // output: the maximum element in A[0..n-1] = post-condition
     curMax := A[0]; i = 1
    //(A)
     while i < n do
        // (B)
    if A[i] > curMax
      curMax := A[i]
      i := i + 1
    // (C)
     end while
    //(D)
     return curMax
```

precondition = given A an array of n > 1 munbers

```
(ii) have In (could)
   Distincuish cares
   (1) (max A[6] < A[i))
     [ LELO.. 2-1]
   I => co. Max = max A[k]
                 ke [0., i-1]
     => cor Max < A[:]
      => enter live 9 and
       update
       cer Max:= A[i]
     then update it= i+1
   I = max Alk3 = cur Max' 1 ish
       keco.. i-1)
   > max A{k} = A{i}
                           => i' < n
       k = [0. i]
```

```
(2) (max A(k) > A(i)) "
(2) (set 0...i)
  => by I car Max = max A(s)
                       ke(0..:-1)
  => cur Mar > AS:1
   = cur Max = cur Max
   then i' = i+1
    max Aris = max Aris)
   ke[0..:'-1) ke[0..:-1)
```

same as in case (1)

= our Mex' V

(iii) $cun Max = max A[k] \wedge i \leq n \wedge i > n$ $k \in \{0, ...; -1\}$ i = n

=> cerMax = max Ash}

7