

COMP526 (Spring 2022) University of Liverpool version 2022-02-08 16:41

Learning Outcomes

- 1. Understand the difference between empirical *running time* and algorithm *analysis*.
- 2. Understand *worst/best/average case* models for input data.
- 3. Know the *RAM machine* model.
- **4.** Know the definitions of *asymptotic notation* (Big-Oh classes and relatives).
- 5. Understand the reasons to make *asymptotic approximations*.
- 6. Be able to *analyze* simple *algorithms*.

Unit 1: Machines & Models

Outline

1 Machines & Models

- 1.1 Algorithm analysis
- 1.2 The RAM Model
- 1.3 Asymptotics & Big-Oh

What is an algorithm?

An algorithm is a sequence of instructions. \uparrow think: recipe

More precisely:

e.g. Java program

- **1**. mechanically executable
 - → no "common sense" needed
- **2.** finite description ≠ finite computation!
- 3. solves a problem, i. e., a class of problem instances x + y, not only 17 + 4

typical example: bubblesort

not a specific program but underlying idea

What is a data structure?

A data structure is

- 1. a rule for encoding data (in computer memory), plus
- 2. algorithms to work with it (queries, updates, etc.)

typical example: binary search tree

1.1 Algorithm analysis

Good algorithms

Our goal: Find good (best?) algorithms and data structures for a task.

Good "usually" means can be complicated in distributed systems

- fast running time
- moderate memory *space* usage

Algorithm analysis is a way to

- compare different algorithms,
- predict their performance in an application

Running time experiment

Why not simply run and time it?

- results only apply to
 - ▶ single *test* machine
 - tested inputs
 - tested implementation
 - ▶ ...
 - *≠* universal truths

 \rightsquigarrow provable statements for model

 \rightsquigarrow testable model hypotheses

survives Pentium 4

→ Need precise model of machine (costs), input data and algorithms.

Data Models

Algorithm analysis typically uses one of the following simple data models:

worst-case performance: consider the *worst* of all inputs as our cost metric

best-case performance:

consider the best of all inputs as our cost metric

average-case performance:

consider the average/expectation of a random input as our cost metric

Usually, we apply the above for *inputs of same size n*.

 \rightsquigarrow performance is only a **function of** *n*.

1.2 The RAM Model

Machine models

The machine model decides

- \blacktriangleright what algorithms are possible $\$
- how they are described (= programming language)

what an execution *costs*

Goal: Machine model should be detailed and powerful enough to reflect actual machines, abstract enough to unify architectures, simple enough to analyze.

Random Access Machines

Random access machine (RAM)

more detail in \$2.2 of Sequential and Parallel Algorithms and Data Structures by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

with imput !

- unlimited memory MEM[0], MEM[1], MEM[2], ...
- fixed number of *registers* R_1, \ldots, R_r (say r = 100)
- memory cells MEM[i] and registers R_i store w-bit integers, i. e., numbers in $[0..2^w 1]$ w is the word width/size; typically $w \propto \lg n \longrightarrow 2^w \approx n$ proportional to machine grows
- Instructions:
 - load & store: $R_i := MEM[R_i] MEM[R_i] := R_i$

• operations on registers: $R_k := R_i + R_i$ (arithmetic is modulo 2^w !) also $R_i - R_i$, $R_i \cdot R_i$, R_i div R_i , R_i mod R_i

C-style operations (bitwise and/or/xor, left/right shift)

- conditional and unconditional jumps
- cost: number of executed instructions ->

we will see further models later

The RAM is the standard model for sequential computation.

Pseudocode

Typical simplifications for convenience:

- more abstract *pseudocode* to specify algorithms code that humans understand (easily)
- ▶ count *dominant operations* (e.g. array accesses) instead of all operations

In both cases: can go to full detail if needed.

continue 11:49

1.3 Asymptotics & Big-Oh

Why asymptotics?

Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

- abstracts from unnecessary detail
- simplifies analysis
- often necessary for sensible comparison

Asymptotics = approximation around ∞

Example: Consider a function f(n) given by $2n^2 - 3n\lfloor \log_2(n+1) \rfloor + 7n - 3\lfloor \log_2(n+1) \rfloor + 120$

Why asymptotics?

Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

- abstracts from unnecessary detail
- simplifies analysis
- often necessary for sensible comparison

Asymptotics = approximation around ∞

Example: Consider a function f(n) given by $2n^2 - 3n \lfloor \log_2(n+1) \rfloor + 7n - 3 \lfloor \log_2(n+1) \rfloor + 120 \sim 2n^2$

Asymptotic tools – Formal & definitive definition

► "Tilde Notation": $f(n) \sim g(n)$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$ "f and g are asymptotically equivalent" Asymptotic tools – Formal & definitive definition if, and only if ▶ "Tilde Notation": $f(n) \sim g(n)$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$ ", f and g are asymptotically equivalent" "Big-Oh Notation": $f(n) \in O(g(n))$ iff $\left| \frac{f(n)}{g(n)} \right|$ is bounded for $n \ge n_0$ need supremum since limit might not exist! $\inf \lim_{n \to \infty} \sup \left| \frac{f(n)}{g(n)} \right| < \infty$ **ariants:** "Big-Omega" • $f(n) \in \Omega(g(n))$ iff $g(n) \in O(f(n))$ • $f(n) \in \Theta(g(n))$ iff $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$ "Big-Theta" Variants:

Asymptotic tools – Formal & definitive definition ▶ "Tilde Notation": $f(n) \sim g(n)$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$ ", f and g are asymptotically equivalent" **"Big-Oh Notation":** $f(n) \in O(g(n))$ iff $\left| \frac{f(n)}{g(n)} \right|$ is bounded for $n \ge n_0$ need supremum since limit might not exist! iff $\lim_{n \to \infty} \sup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| < \infty$ **Variants:** "Big-Omega" $f(n) \in \Omega(g(n))$ iff $g(n) \in O(f(n))$ ► $f(n) \in \Theta(g(n))$ iff $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$ "Big-Theta" "Little-Oh Notation": $f(n) \in o(g(n))$ iff $\lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = 0$ $f(n) \in \omega(g(n))$ if $\lim = \infty$

Asymptotic tools – Intuition, " $f(n) \leq q(n)$

• f(n) = O(g(n)): f(n) is at most g(n)

up to constant factors and for sufficiently large *n*

► $f(n) = \Theta(g(n))$: f(n) is equal to g(n)up to constant factors and for sufficiently large n

Asymptotics – Example 1 $l_{2} = l_{2}$

Basic examples:

$$f(n) = g(n) = g(n) = g(n)$$

$$\frac{3 \lg(n^2) + \lg(\lg(n))}{10^{100}} = g(1)$$

$$\frac{3 \lg(n^2) + \lg(\lg(n))}{10^{100}} = g(1)$$

$$\frac{3 \lg(n^2) + \lg(\lg(n))}{10^{100}} = g(1)$$

$$\frac{20 n^3 + 10 h \ln n + 5}{20 n^3}$$

$$\frac{20 n^3}{10 h \ln n + 5}$$

$$\frac{20 n^3}{10 h \ln n + 5}$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= g(1)$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= g(1)$$

$$\frac{3 \cdot 2 \lg n + \lg \lg n}{\lg n} = 6 + 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

$$\frac{10 h \ln n + 5}{20 n^3}$$

$$= 0$$

Use *wolframalpha* to compute/check limits.

lin ND

Asymptotics – Frequently used facts

► Rules:

- $c \cdot f(n) = \Theta(f(n))$ for constant $c \neq 0$
- $\Theta(f + g) = \Theta(\max\{f, g\})$ largest summand determines Θ -class
- Frequently used orders of growth:
 - ► logarithmic $\Theta(\log n)$ Note: a, b > 0 constants $\rightsquigarrow \Theta(\log_a(n)) = \Theta(\log_b(n))$
 - ▶ linear $\Theta(n)$
 - linearithmic $\Theta(n \log n)$
 - quadratic $\Theta(n^2)$
 - polynomial $O(n^c)$ for constant c
 - exponential $O(c^n)$ for constant c Note: a > b > 0 constants $\rightsquigarrow b^n = o(a^n)$

Asymptotics – Example 2

Square-and-multiply algorithm for computing x^m with $m \in \mathbb{N}$

Inputs:

- *m* as binary number (array of bits)
- n =#bits in m
- ► *x* a floating-point number

Cost: C = # multiplications

• C = n (line 4) + #one-bits binary representation of *m* (line 5)

 $\rightsquigarrow n \leq C \leq 2n$

We showed $n \le C(n) \le 2n$; what is the most precise asymptotic approximation for C(n) that we can make?

Write e.g. $0(n^2)$ for $O(n^2)$ or Theta(sqrt(n)) for $\Theta(\sqrt{n})$.

Asymptotics – Example 2

Square-and-multiply algorithm for computing x^m with $m \in \mathbb{N}$

Inputs:

- *m* as binary number (array of bits)
- \blacktriangleright *n* = #bits in *m*
- x a floating-point number

$$\rightsquigarrow n \le C \le 2n$$

 $\rightsquigarrow \quad C = \Theta(n) = \Theta(\log m)$

Note: Often, you can pretend Θ is "like ~ with an unknown constant" *but in this case, no such constant exists*!

