Learning Outcomes

1. Understand the difference between empirical running time and algorithm analysis.
2. Understand worst / best/average case models for input data.
3. Know the RAM machine model.
4. Know the definitions of asymptotic notation (Big-Oh classes and relatives).
5. Understand the reasons to make asymptotic approximations.

Unit 1: Machines \mathcal{E} Models

6. Be able to analyze simple algorithms.

Outline

1. Machines \& Models

1.1 Algorithm analysis
1.2 The RAM Model
1.3 Asymptotics \& Big-Oh

What is an algorithm?

An algorithm is a sequence of instructions.
think: recipe

More precisely:
e.g. Java program

1. mechanically executable \rightsquigarrow no "common sense" needed

2. finite description \neq finite computation!
3. solves a problem, i. e., a class of problem instances

$$
x+y, \text { not only } 17+4
$$

typical example: bubblesort

$$
\text { input } \rightarrow \text { algo } \rightarrow \text { output }
$$ not a specific program but underlying idea

What is a data structure?

A data structure is

1. a rule for encoding data (in computer memory), plus
2. algorithms to work with it (queries, updates, etc.)
typical example: binary search tree

1.1 Algorithm analysis

Good algorithms

Our goal: Find good (best?) algorithms and data structures for a task.

Good "usually" means
can be complicated in distributed systems

- fast running time
- moderate memory space usage

Algorithm analysis is a way to

- compare different algorithms,
- predict their performance in an application

Running time experiment

Why not simply run and time it?

- results only apply to
- single test machine
- tested inputs
- tested implementation
- ...

\neq universal truths
- instead: consider and analyze algorithms on an abstract machine
\rightsquigarrow provable statements for model
survives Pentium 4
\rightsquigarrow testable model hypotheses
\rightsquigarrow Need precise model of machine (costs), input data and algorithms.

Data Models

Algorithm analysis typically uses one of the following simple data models:

- worst-case performance:
consider the worst of all inputs as our cost metric
- best-case performance:
consider the best of all inputs as our cost metric
- average-case performance:
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size n.
\rightsquigarrow performance is only a function of n.

1.2 The RAM Model

Clicker Question

What is the cost of adding two d-digit integers?
For example, for $d=5$, what is $45235+91342$?
(A) constant time
(B) logarithmic in d
(C) proportional to d
(D) quadratic in d
(E) no idea what you are talking about
sli.do/comp526

Clicker Question

What is the cost of adding two d-digit integers?
For example, for $d=5$, what is $45235+91342$?
(A) constant time
(B) legarithmicind
(C) proportional to $d \sqrt{ }$
(D) quadratic ind
(E) no idea what you are talking about
sli.do/comp526

Machine models

The machine model decides

- what algorithms are possible Q
- how they are described (= programming language)
- what an execution costs

Goal: Machine model should be
detailed and powerful enough to reflect actual machines, abstract enough to unify architectures, simple enough to analyze.

Random Access Machines

Random access machine (RAM)

- unlimited memory MEM[0], MEM[1], MEM[2], ..
- fixed number of registers $R_{1}, \ldots, R_{r} \quad(\operatorname{say} r=100)$
- memory cells MEM[i] and registers R_{i} store w-bit integers, i.e., numbers in $\left[0 . .2^{w w}-1\right]$ w is the word width/size; typically $w \propto \lg n \neq 2^{w} \approx n$
Instructions:
- Instructions:
machine grows
- load \& store: $R_{i}:=\operatorname{MEM}\left[R_{j}\right] \quad \operatorname{MEM}\left[R_{j}\right]:=R_{i}$
- operations on registers: $R_{k}:=R_{i}+R_{j} \quad$ (arithmetic is modulo 2^{w} !)
also $R_{i}-R_{j}, R_{i} \cdot R_{j}, R_{i} \operatorname{div} R_{j}, R_{i} \bmod R_{j}$
C-style operations (bitwise and/or/xor, left/right shift)
- conditional and unconditional jumps
- cost: number of executed instructions \quad,
$\rightsquigarrow \quad$ The RAM is the standard model for sequential computation.

Pseudocode
Typical simplifications for convenience:

- more abstract pseudocode to specify algorithms
code that humans understand (easily)
count dominant operations (e.g. array accesses) instead of all operations

In both cases: can go to full detail if needed.
Adding 2 d-dsisit numbers takes time proportional to $\frac{d}{\omega}$
continue 11:49
1.3 Asymptotics \& Big-Oh

Why asymptotics?

Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

- abstracts from unnecessary detail
- simplifies analysis
- often necessary for sensible comparison

$$
\text { Asymptotics }=\text { approximation around } \infty
$$

Example: Consider a function $f(n)$ given by $2 n^{2}-3 n\left\lfloor\log _{2}(n+1)\right\rfloor+7 n-3\left\lfloor\log _{2}(n+1)\right\rfloor+120$

Why asymptotics?

Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

- abstracts from unnecessary detail
- simplifies analysis
- often necessary for sensible comparison

$$
\text { Asymptotics }=\text { approximation around } \infty
$$

Example: Consider a function $f(n)$ given by
$2 n^{2}-3 n\left\lfloor\log _{2}(n+1)\right\rfloor+7 n-3\left\lfloor\log _{2}(n+1)\right\rfloor+120 \simeq 2 n^{2}$

Asymptotic tools - Formal \& definitive definition

- "Tilde Notation": $\quad f(n) \sim g(n)$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$
" f and g are asymptotically equivalent"

Asymptotic tools - Formal \& definitive definition

- "Tilde Notation": $\quad f(n) \sim g(n) \quad \stackrel{\substack{\text { if, and ony if } \\ \text { iff }}}{\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1}$

$$
\text { "f and } g \text { are asymptotically equivalent" }
$$

- "Big-Oh Notation": \quad| also write's' $\mathbf{i n s t e a d}$ |
| :---: |\quad iff $\left|\frac{f(n)}{g(n)}\right|$ is bounded for $n \geq n_{0}$

$$
\begin{aligned}
& \text { need supremum since limit might not exist! } \\
& \qquad \text { iff } \lim _{n \rightarrow \infty}\left|\frac{f(n)}{g(n)}\right|<\infty
\end{aligned}
$$

Variants:

Asymptotic tools - Formal \& definitive definition

- "Tilde Notation": $\quad f(n) \sim g(n) \quad \stackrel{\substack{\text { if, and ony if } \\ \text { iff }}}{\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1}$

$$
\text { "f and } g \text { are asymptotically equivalent" }
$$

- "Big-Oh Notation": $\quad \begin{gathered}\text { also write ' }=\text { ' instead } \\ f(n) \in O\end{gathered} \quad$ iff $\left|\frac{f(n)}{g(n)}\right|$ is bounded for $n \geq n_{0}$

$$
\begin{aligned}
& \text { need supremum since limit might not exist! } \\
& \qquad \text { iff } \lim _{n \rightarrow \infty}\left|\frac{f(n)}{g(n)}\right|<\infty
\end{aligned}
$$

Variants:

$$
\begin{aligned}
& \text { iants: "Big-Omega" } \\
& \begin{array}{lll}
f(n) \in \Omega(g(n)) & \text { iff } & g(n) \in O(f(n)) \\
& f(n) \in \Theta(g(n)) & \text { iff } \\
& f(n) \in O(g(n)) \text { and } f(n) \in \Omega(g(n)) \\
& \text { "Big-Theta" }
\end{array}
\end{aligned}
$$

- "Little-Oh Notation": $\quad f(n) \in o(g(n)) \quad$ iff $\quad \lim _{n \rightarrow \infty}\left|\frac{f(n)}{g(n)}\right|=0$

$$
f(n) \in \omega(g(n)) \text { if lim }=\infty
$$

Asymptotic tools - Intuition

 " $f(n) \leqslant g(n)$- $f(n)=O(g(n)): \quad f(n)$ is at most $g(n)$ up to constant factors and for sufficiently large n

- $f(n)=\Theta(g(n))$: $f(n)$ is equal to $g(n)$ up to constant factors and for sufficiently large n

Example $\overbrace{}^{\pi}$

Clicker Question

Assume $f(n) \in O(g(n))$. What can we say about $g(n)$?
(A) $g(n)=O(f(n))$
(B) $g(n)=\Omega(f(n))$
(C) $g(n)=\Theta(f(n))$
(D) Nothing (it depends on f and g)

> sli.do/comp526

Clicker Question

Assume $f(n) \in O(g(n))$. What can we say about $g(n)$?

(B) $g(n) \stackrel{\in}{=} \Omega(f(n)) \sqrt{ }$
(C) $\frac{E}{f}(n)=\Omega(f(n))$
(D) Nothing (itdependsenfand-os)
sli.do/comp526

Clicker Question

Assume $f(n) \in O(g(n))$. What can we say about $g(n)$?

(A) $\frac{g(n)-Q(f(n))}{O}$
(B) $g(n)=\Omega(f(n)) \sqrt{ } \quad$ (if $f(n) \neq 0$)
(C) $\frac{g(n)-B(f(n))}{f(n)}$
(D) Nothing (it depends on f and g) $\sqrt{ }$

> sli.do/comp526

$$
\begin{aligned}
& \text { Asymptotic - Example } 1 \\
& l_{g}=\log _{2}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{3 \lg \left(n^{2}\right)+\lg (\lg (n))}{10^{100}=O(1)}=\Theta\left(\log _{2} n\right), \underbrace{20}_{n \rightarrow \infty}+\lim _{1} \frac{10 n \ln n+5}{20 n^{3}} \\
& \lim _{n \rightarrow \infty} \frac{3 \cdot 2 \lg n+\lg ^{l} \operatorname{sn}}{\ln n}=6+0 \\
& \text { also proves } f(u)=O(g(n)) \\
& \text { taring reciprocals } \rightarrow f(u)=\Omega(g(u))
\end{aligned}
$$

Use wolframalpha to compute/check limits.

Clicker Question

Is $(\sin (n)+2) n^{2}=\Theta\left(n^{2}\right)$?
(A) Yes
(B) No
sli.do/comp526

Clicker Question
()
(A) Yes $\sqrt{ }$
(B)
sli.do/comp526

Asymptotics - Frequently used facts

- Rules:
- $c \cdot f(n)=\Theta(f(n))$ for constant $c \neq 0$
- $\Theta(f+g)=\Theta(\max \{f, g\})$ largest summand determines Θ-class
- Frequently used orders of growth:
- logarithmic $\Theta(\log n) \quad$ Note: $a, b>0$ constants $\rightsquigarrow \Theta\left(\log _{a}(n)\right)=\Theta\left(\log _{b}(n)\right)$
- linear $\Theta(n)$
- linearithmic $\Theta(n \log n)$
- quadratic $\Theta\left(n^{2}\right)$
- polynomial $O\left(n^{c}\right)$ for constant c
- exponential $O\left(c^{n}\right)$ for constant c

Note: $a>b>0$ constants $\rightsquigarrow b^{n}=o\left(a^{n}\right)$

Asymptotics - Example 2

Square-and-multiply algorithm
for computing x^{m} with $m \in \mathbb{N}$
Inputs:

```
double pow(double base, boolean[] exponentBits) {
    double res = 1;
    for (boolean bit : exponentBits) {
        res *= res; 1/ n
        if (bit) res *= base;
    |
    return res;
8 }
```

- Cost: $C=\#$ multiplications
- C $=n$ (line 4) + \#one-bits binary representation of m (line 5)
$\rightsquigarrow n \leq C \leq 2 n$

Clicker Question

We showed $n \leq C(n) \leq 2 n$; what is the most precise asymptotic approximation for $C(n)$ that we can make?

Write e.g. $0\left(n^{\wedge} 2\right)$ for $O\left(n^{2}\right)$ or Theta $(\operatorname{sqrt}(n))$ for $\Theta(\sqrt{n})$.
sli.do/comp526

Asymptotics - Example 2

Syuare-und-multiply ulgorithm for computing x^{m} with $m \in \mathbb{N}$

Inputs:

- m as binary number (array of bits)
- $n=\#$ bits in m
- x a floating-point number
- Cost: $\mathrm{C}=$ \# multiplications

- $C=n$ (line 4) + \#one-bits binary representation of m (line 5)
$\rightsquigarrow n \leq C \leq 2 n$
\leadsto \square
$C=\Theta(n)=\Theta(\log m)$

Note: Often, you can pretend Θ is "like \sim with an unknown constant" but in this case, no such constant exists!

