—

) AR H 1] H
)N = H < -
iHO D A A
T HBEA A RO
A ESHA<CTHD
8 Wite ol oK L7
1< O V) A <
AHUNO A O
)N M A0 H <[
T OO0 < H =€+
1HUOAQZE T 0N
(= A E IO A
I D<CHBHHA
IFAdHEX S <
i [Q@O T
1IEHAOUEW
OAd<<O IHU
U AR <
AN QO =
PO QMU T

] |

AT
5 5
© &
> =
N
2
N
Q
c
oy
=
(P
s

—

Sebastian Wild

COMP526 (Spring 2022)

ersity of Liverpool

version 2022-02-08 16:41

Univ

Learning Outcomes

i

Understand the difference between
empirical running time and algorithm
analysis.

Understand worst / best / average case
models for input data.

Know the RAM machine model.

Know the definitions of asymptotic

notation (Big-Oh classes and relatives).

Understand the reasons to make
asymptotic approximations.

Be able to analyze simple algorithms.

Unit 1: Machines & Models

Outline

1 Machines & Models

1.1 Algorithm analysis
1.2 The RAM Model
1.3 Asymptotics & Big-Oh

What is an algorithm?

An algorithm is a sequence of instructions.

think: recipe

e.g. Java program

More precisely: % S
,ﬁyfé
lllllllllll—‘\\)

3. solves a problem, i. e., a class of problem instances

;MPU(.F>\ Jep | — oo bouk

1. mechanically executable
~~ 1no “common sense” needed

2. finite description # finite computation!

X +y,notonly 17 + 4

typical example: bubblesort

not a specific program but underlying idea

What is a data structure?

A data structure is

1. arule for encoding data \
(in computer memory), plus

2. algorithms to work with it
(queries, updates, etc.)

typical example: binary search tree

L RN
-\ | Y s

1.1 Algorithm analysis

Good algorithms

Our goal: Find good (best?) algorithms and data structures for a task.

Good “usually” means

can be complicated in distributed systems

» fast running time

» moderate memory space usage

Algorithm analysis is a way to
» compare different algorithms,

» predict their performance in an application

Running time experiment

Why not simply run and time it?

» results only apply to
» single test machine
tested inputs

>

> tested implementation
> ...
#

universal truths

» instead: consider and analyze algorithms on an abstract machine

~» provable statements for model survives Pentium 4

~ testable model hypotheses

~> Need precise model of machine (costs), input data and algorithms.

Data Models

Algorithm analysis typically uses one of the following simple data models:

> worst-case performance:
consider the worst of all inputs as our cost metric

» best-case performance:
consider the best of all inputs as our cost metric

> average-case performance:
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size n.
| U G ELIG BIAE o

~» performance is only a function of 7.

1.2 The RAM Model

Clicker Question

Ve

What is the cost of adding two d-digit integers?
For example, for d = 5, what is 45 235 + 91 342?

constant time
logarithmic in 4
proportional to d

@ quadratic in d

@ no idea what you are talking about

‘sli.do/comp526

Clicker Question

Ve
What is the cost of adding two d-digit integers?

For example, for d = 5, what is 45 235 + 91 342?

constant time \/

. e

proportional to d \/

@ Leobicind

@ no idea what you are talking about \/

‘sli.do/comp526’

Machine models
The machine model decides
» what algorithms are possible b
» how they are described (= programming language)

» what an execution costs

Goal: Machine model should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

Random Access Machines

Random access machine (RAM) el 9 off Gt R g B B s
by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

» unlimited memory MEM[0], MEM[1], MEM[2], ...
» fixed number of registers Ry, ..., R, (say r = 100)

» memory cells MEM[i] and registers R; store w-bit integers, i. e., numbers in [0..2¢ — 1]
w is the word width/size; typicallyjw o« lgn| ~ 2¥=xn

» Instructions: pepochonal bo macling Qeows
> load & store: R; := MEM[R;] MEM[R;] := R; TERR VN quu{‘ ‘/
> operations on registers: Rj := R; + R j (arithmetic is modulo 21)

also R,‘ - Rj, R,‘ . Rj, R,‘ div R]', Rl‘ mod R/'
C-style operations (bitwise and/or/xor, left/right shift)

» conditional and unconditional jumps

» cost: number of executed instructions -

we will see further models later

~> The RAM is the standard model for sequential computation.

Pseudocode

Typical simplifications for convenience:

» more abstract pseudocode to specify algorithms
code that humans understand (easily)

» count dominant operations (e.g. array accesses) instead of all operations

In both cases: can go to full detail if needed.

d
Addive 8 d-digt wwleos talves Huwe Prorormmﬂ I

ty

C@V\J\“M HL(Q\

1.3 Asymptotics & Big-Oh

Why asymptotics?

Algorithm analysis focuses on (e limiting behavior for infinitely) large inputs.

> abstracts from unnecessary detail "
» simplifies analysis

» often necessary for sensible comparison

[Asymptotics = approximation around oo

Example: Consider a function f (1) given by
2n?% —3n [log, (1 +1)] +7n —3log,(n +1)] +120

0 10 20 30 40 50 60 70 80 90 100

10

Why asymptotics?

Algorithm analysis focuses on (e limiting behavior for infinitely) large inputs.

> abstracts from unnecessary detail "
» simplifies analysis

» often necessary for sensible comparison

[Asymptotics = approximation around oo

Example: Consider a function f (1) given by
2n% —3n|log,(n + 1)] + 7n — 3|log,(n + 1)] + 120 _~ 2n*
—

0 10 20 30 40 50 60 70 80 90 100

10

Asymptotic tools — Formal & definitive definition

if, and only if
s - 3 _fn)

» “Tilde Notation”: f(n) ~g(n) iff lim ——= =

n—o0 g(n)

»f and g are asymptotically equivalent”

1

11

Asymptotic tools — Formal & definitive definition

if, and only if
s - 3 . f(n)
» “Tilde Notation”: f(n) ~g(n) iff lim —
woeo g(n)

,f and g are asymptotically equivalent”

=1

also write ‘=" instead

> “Big-Oh Notation”: f(n) € O(g(n)) iff f(m) is bounded for 1 > 19
— g(n) —
need supremum since limit might not exlst‘ f
iff hm sup |—| < o
n—oo ()

Variants: g Omega”

> f(n)e Q(g(n) iff g(n) € O(f(n))
> f(n)e ®(g(n)) iff f(n)e O(g(n)) and f(n) € Q(g(n))

“Big- Theta

11

Asymptotic tools — Formal & definitive definition

if, and only if
s - 3 . f(n)
» “Tilde Notation”: f(n) ~g(n) iff lim —
woeo g(n)

,f and g are asymptotically equivalent”

=1

also write ‘=" instead

> “Big-Oh Notation”: f(n) € O(g(n)) iff ;% is bounded for 1 > 19
need supremum since limit might not exlst‘ f
iff hm sup |—| < o
n—oo ()

Variants: g Omega”

> f(n)eQ(g(n) iff g(n) € O(f(n))
= eSOl md i) s Qg
Blg”[‘heta
> “Little-Oh Notation”: f(n)€o(g(n) iff lim Q:;

n—oo

f(n) € w(g(n)) if im = oo

11

Asymptotic tools — Intuition
”S:(V\} 5 CJ((/\3

» f(n)=0(g(n)): f(n)isatmost g(n)
= up to constant factors and
for sufficiently large n

> f(n) =©(g(n): f(n)isequalto g(n)
up to constant factors and
for sufficiently large n

A [Plots can be misleading!] (Example L?']

cg(n) 8[’/‘)
i L)

V< cg(m)

fln

1o

no

12

Clicker Question

(Assume f(n) € O(g(n)). What can we say about g(1)?
g(n) = O(f(n))
g(n) = Q(f ()
0o g(n) = O(f(n))
L (D) Nothing (it depends on f and g)

‘sli.do/comp526

Clicker Question

(Assume f(n) € O(g(n)). What can we say about g(1)?
ERCHT
&
g(n) = Q(f(n)
4
o e
o
L (D) MNothingtitdependsontand-s)

sli.do/comp526

Clicker Question

(Assume f(n) € O(g(n)). What can we say about g(1)?
e
gm) =Q(fm) " Gf f(n) #0)
0o e
L (D) Nothing (it depends on f and g) v/

‘sli.do/comp526

Asymptotics — Example 1 loy = los,

Basic examples':C{M\ ol () 2002 4 10 ulupy +S
> 2003 +10nIn(m) +5 ~ 20n° = ©%) diw ——— &
- TV nseo ”
2 _
> 3lg(n°) +1g(lg(n)) = @(l_o:gﬁ)/ 2D 5 (Ow Puv +S
> 1010 = O(1) = 4 + Hw 3
N0 2O n j
3205 + 0, 7¢,c, =0
G L é + O OQSO F’O\N’B *F(u\:@(s(u>>
T OC\V\ '}G\LV{LAS Hd@rog«QS ~> &(u\\ = Q<S(“>)

Use wolframalpha to compute/check limits.
13

Clicker Question

Is (sin(n) + 2)n? = O(n?)?

Yes No

sli.do/comp526

Clicker Question

(eém(u\ +1>y/‘ .
Is (sin(n) + 2)n? = O(n?)? & s N 3
Yes \/ Ne

sli.do/comp526

Asymptotics — Frequently used facts

» Rules:

>
| 4

¢ f(n) = O(f(n)) for constant ¢ # 0
O(f +g) = O(max{f,g}) largest summand determines ®-class

» Frequently used orders of growth:

|

vVvyVvyyypy

logarithmic ©(logn) Note: a,b > 0 constants ~ ©(log, (1)) = ©(log, (1))
linear ©(n)

linearithmic ©(n logn)

quadratic O(n?)

polynomial O(n°) for constant ¢

exponential O(c") for constant ¢ Note: a > b > 0 constants ~ b" = o(a")

14

Asymptotics — Example 2
Square-and-multiply algorithm
for computing x™ with m € N

Inputs:
» m as binary number (array of bits)
> 1 = #bitsin m

> x a floating-point number

> Cost: C = #multiplications

X A
b “

1 double pow(double base, boolean[] exponentBits) {

2 double res = 1;

3 for (boolean bit : exponentBits) {

4 res *=res; 1 n

5 if (bit) res *= base;

6 }

7 return res;

s}

» C = n (line 4) + #one-bits binary representation of 1 (line 5)

~»n<C<2n

15

Clicker Question

We showed 1 < C(n) < 2n; what is the most precise
asymptotic approximation for C(n) that we can make?

Write e. g. 0(n"2) for O(n?) or Theta(sqrt(n)) for ©(v/i).

sli.do/comp526

Asymptotics — Example 2 T shtant-mutpl-opmentaton
Square-and-multiply algorithm 4
for computing x™ with m € N
Inputs:

» m as binary number (array of bits)

» n =#bitsin m

» x afloating-point number

(U= i i i i L
» Cost: C =#multiplications 0 0 400 600 800 10|

» C = n (line 4) + #one-bits binary representation of 1 (line 5)
~n<C<2n
~ | C =0O(n) = O(logm)

Note: Often, you can pretend © is “like ~ with an unknown constant”
but in this case, no such constant exists!

