ALGORITHMICS\$APPLIED APPLIEDALGORITHMICS CS SAPPLIEDALGORITHMI DALGORITHMICS C APPRIE EDALGORITHMICS\$APPLI GORITHMICS\$APPLIEDAL HMICS CAPPLIEDALGORIT

Efficient Sorting

17 February 2022
Sebastian Wild

Learning Outcomes

1. Know principles and implementation of mergesort and quicksort.
2. Know properties and performance characteristics of mergesort and quicksort.
3. Know the comparison model and understand the corresponding lower bound.

Unit 3: Efficient Sorting
4. Understand counting sort and how it circumvents the comparison lower bound.
5. Know ways how to exploit presorted inputs.
6. Understand and use the parallel random-access-machine model in its different variants.
7. Be able to analyze and compare simple shared-memory parallel algorithms by determining
 parallel time and work.
8. Understand efficient parallel prefix sum algorithms.
9. Be able to devise high-level description of parallel quicksort and mergesort methods.

Outline

3 Efficient Sorting

3.1 Mergesort
3.2 Quicksort
3.3 Comparison-Based Lower Bound
3.4 Integer Sorting
3.5 Adaptive Sorting
3.6 Python's list sort
3.7 Parallel computation
3.8 Parallel primitives
3.9 Parallel sorting

Why study sorting?

- fundamental problem of computer science that is still not solved
- building brick of many more advanced algorithms
- for preprocessing
- as subroutine
- playground of manageable complexity to practice algorithmic techniques

Here:

- "classic" fast sorting method
- exploit partially sorted inputs
- parallel sorting

Part I
The Basics

Rules of the game

- Given:
- array $A[0 . . n)=A[0 . . n-1]$ of n objects
- a total order relation \leq among $A[0], \ldots, A[n-1]$
(a comparison function)
Python: elements support <= operator (_ le__())
Java: Comparable class (x.compareTo(y) <= 0)
- Goal: rearrange (i.e., permute) elements within A, so that A is sorted, i. e., $A[0] \leq A[1] \leq \cdots \leq A[n-1]$
- for now: A stored in main memory (internal sorting) single processor (sequential sorting)

Clicker Question

What is the complexity of sorting? Type you answer, e.g., as
"Theta(sqrt(n))"
sli.do/comp526

3.1 Mergesort

Clicker Question

How does mergesort work?
(A) Split elements around median, then recurse on small / large elements.
(B) Recurse on left / right half, then combine sorted halves.
(C) Grow sorted part on left, repeatedly add next element to sorted range.
(D) Repeatedly choose 2 elements and swap them if they are out of order.
(E) Don't know.
sli.do/comp526

Clicker Question

How does mergesort work?
(A) Splitelements areund median, then reurce on omall/ large elements.
(B) Recurse on left / right half, then combine sorted halves.
(C) Grow sorted parton left, repeatedly add nextelement to serted range.
(D) Pepeatedly choose 2 elements and swap them if they areout eforder.
(E) Pen't
sli.do/comp526

Merging sorted lists

Merging sorted lists

run2

Merging sorted lists

Merging sorted lists

\}un1
run2
γ

Merging sorted lists

Merging sorted lists

result

Merging sorted lists

Merging sorted lists

Merging sorted lists

Clicker Question

What is the worst-case running time of mergesort?
(A) $\Theta(1)$
(G) $\Theta(n \log n)$
(B) $\Theta(\log n)$
(H) $\Theta\left(n \log ^{2} n\right)$
(C) $\Theta(\log \log n)$
(I) $\Theta\left(n^{1+\epsilon}\right)$
(D) $\Theta(\sqrt{n})$
J $\Theta\left(n^{2}\right)$
(E) $\Theta(n)$
(K) $\Theta\left(n^{3}\right)$
(F) $\Theta(n \log \log n)$
(L) $\Theta\left(2^{n}\right)$
sli.do/comp526

Clicker Question

What is the worst-case running time of mergesort?

sli.do/comp526

Mergesort

${ }^{1}$ procedure mergesort($(A[l . . r)$)
$2 \quad n:=r-l$
if $n \leq 1$ return
$m:=l+\left\lfloor\frac{n}{2}\right\rfloor$
mergesort($A[$ l...m))
mergesort($A[m . . r)$)
$\operatorname{merge}(A[l . . m), A[m . . r), b u f)$
copy buf to $A[l . . r)$

- recursive procedure; divide \mathcal{E} conquer
- merging needs
- temporary storage for result of same size as merged runs
- to read and write each element twice (once for merging, once for copying back)

Mergesort

```
procedure mergesort( \(A[l . . r)\) )
    \(n:=r-l\)
    if \(n \leq 1\) return
    \(m:=l+\left\lfloor\frac{n}{2}\right\rfloor\)
    mergesort( \(A[\) l...m))
    mergesort( \(A[m . . r)\) )
    merge ( \(A[\) l..m), \(A[m . . r)\), buf)
    copy buf to \(A[l . . r)\)
```

Analysis: count "element visits" (read and/or write)
$C(n)= \begin{cases}0 & n \leq 1 \\ C(\lfloor n / 2\rfloor)+C(\lceil n / 2\rceil)+2 n & n \geq 2\end{cases}$

- recursive procedure; divide \mathcal{E} conquer
- merging needs
- temporary storage for result of same size as merged runs
- to read and write each element twice (once for merging, once for copying back)

Simplification $n=2^{k}$
$C\left(2^{k}\right)=\left\{\begin{array}{ll}0 & k \leq 0 \\ 2 \cdot C\left(2^{k-1}\right)+2 \cdot 2^{k} & k \geq 1\end{array}=2 \cdot 2^{k}+2_{k=1}^{2} \cdot 2^{k-1}+2^{3} \cdot 2^{k-2}+\cdots+2^{k} \cdot 2^{1}=2 k \cdot 2^{k}\right.$
$C(n)=2 n \lg (n)=\Theta(n \log n)$

$$
\begin{aligned}
& n=2^{k} \\
& k_{s}=O_{s}(n)
\end{aligned}
$$

Mergesort - Discussion

$₫$ optimal time complexity of $\Theta(n \log n)$ in the worst case

0
stable sorting method i.e., retains relative order of equal-key items

0memory access is sequential (scans over arrays)
requires $\Theta(n)$ extra space
there are in-place merging methods,
but they are substantially more complicated and not (widely) used
3.2 Quicksort

Clicker Question

How does quicksort work?
(A) split elements around median, then recurse on small / large elements.
(B) recurse on left / right half, then combine sorted halves.
(C) grow sorted part on left, repeatedly add next element to sorted range.
(D) repeatedly choose 2 elements and swap them if they are out of order.

E Don't know.
sli.do/comp526

Clicker Question

How does quicksort work?
(A) split elements around median, then recurse on small / large elements.
(B) on left / right half, thembineorsed halvec.
(C) frow sorted parton-left, repentedly add nextelement to serted range.
(D) repeatedy choese 2 elements and wif them if they are eforer.
(E) Pen't

> sli.do/comp526

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

\uparrow

Partitioning around a pivot

\uparrow

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

no extra space needed

- visits each element once
- returns rank/ position of pivot

Partitioning - Detailed code

```
procedure partition \((A, b)\)
    // input: array \(A[0 . . n)\), position of pivot \(b \in[0 . . n)\)
    \(\operatorname{swap}(A[0], A[b])\)
    \(i:=0, \quad j:=n\)
    while true do
        do \(i:=i+1\) while \(i<n\) and \(A[i]<A[0]\)
        do \(j:=j-1\) while \(j \geq 1\) and \(A[j]>A[0]\)
        if \(i \geq j\) then break (goto 11)
        else \(\operatorname{swap}(A[i], A[j])\)
    end while
    \(\operatorname{swap}(A[0], A[j])\)
    return \(j\)
```

Loop invariant (5-10):

Quicksort

procedure quicksort($A[l . . r)$)
if $r-\ell \leq 1$ then return
$b:=\operatorname{choosePivot}(A[l . . r))$
$j:=\operatorname{partition}(A[l . . r), b)$
quicksort($(A[l . . j))$
quicksort $(A[j+1 . . r))$

- recursive procedure; divide \mathcal{E} conquer
- choice of pivot can be
- fixed position \rightsquigarrow dangerous!
- random
- more sophisticated, e. g., median of 3

Clicker Question

What is the worst-case running time of quicksort?
(A) $\Theta(1)$
(G) $\Theta(n \log n)$
(B) $\Theta(\log n)$
(H) $\Theta\left(n \log ^{2} n\right)$
(C) $\Theta(\log \log n)$
(I) $\Theta\left(n^{1+\epsilon}\right)$
(D) $\Theta(\sqrt{n})$
(J) $\Theta\left(n^{2}\right)$
(E) $\Theta(n)$
(K) $\Theta\left(n^{3}\right)$
(F) $\Theta(n \log \log n)$
(L) $\Theta\left(2^{n}\right)$
sli.do/comp526

Clicker Question

What is the worst-case running time of quicksort?
(A)
(G)
(B)
(H)
(C)
(1) $(4+\epsilon)$
(D)
(J) $\Theta\left(n^{2}\right) \checkmark$
(E)
(K)
(F) Alegin
(L)
sli.do/comp526

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

| 4 | 2 | 1 | 3 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| 9 | 8 |
| :--- | :--- |

Quicksort \& Binary Search Trees

Quicksort

7 4 2 9 1 3 8 5 64 2 1 3 5 6 7 9

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6
4	2	1	3	5	6	7	9	8

Quicksort \& Binary Search Trees

Quicksort

Quicksort \& Binary Search Trees

Quicksort

Quicksort \& Binary Search Trees

Quicksort

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6
4	2	1	3	5	6	7	9	8
2	1	3	4	5	6		8	9
1	2	3		5	6		8	

Quicksort \& Binary Search Trees

Quicksort

Quicksort \& Binary Search Trees

Quicksort

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)

$$
\begin{array}{lllllllll}
7 & 4 & 2 & 9 & 1 & 3 & 8 & 5 & 6
\end{array}
$$

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)
(7)

Quicksort \& Binary Search Trees

Quicksort

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)

$$
\begin{array}{lllllllll}
7 & 4 & 2 & 9 & 1 & 3 & 8 & 5 & 6
\end{array}
$$

- recursion tree of quicksort = binary search tree from successive insertion
- comparisons in quicksort $=$ comparisons to built BST
- comparisons in quicksort \approx comparisons to search each element in BST

Quicksort - Worst Case

- Problem: BSTs can degenerate
- Cost to search for k is $k-1$
\rightsquigarrow Total cost $\sum_{k=1}^{n}(k-1)=\frac{n(n-1)}{2} \sim \frac{1}{2} n^{2}$
\rightsquigarrow quicksort worst-case running time is in $\Theta\left(n^{2}\right)$

But, we can fix this:

Randomized quicksort:

- choose a random pivot in each step
\rightsquigarrow same as randomly shuffling input before sorting

Randomized Quicksort - Analysis

- $C(n)=$ element visits (as for mergesort)
\rightsquigarrow quicksort needs $\sim 2 \ln (2) \cdot n \lg n \approx 1.39 n \lg n$ in expectation
- also: very unlikely to be much worse:
e. g., one can prove: $\operatorname{Pr}[$ cost $>10 n \lg n]=O\left(n^{-2.5}\right)$
distribution of costs is "concentrated around mean"
- intuition: have to be constantly unlucky with pivot choice

Quicksort - Discussion

\oiint fastest general-purpose method
$\Theta(n \log n)$ average case
0 works in-place (no extra space required)
0 memory access is sequential (scans over arrays)
q $\Theta\left(n^{2}\right)$ worst case (although extremely unlikely)
\uparrow not a stable sorting method

Open problem: Simple algorithm that is fast, stable and in-place.
3.3 Comparison-Based Lower Bound

Lower Bounds

- Lower bound: mathematical proof that no algorithm can do better.
- very powerful concept: bulletproof impossibility result
\approx conservation of energy in physics
- (unique?) feature of computer science:
for many problems, solutions are known that (asymptotically) achieve the lower bound
\rightsquigarrow can speak of "optimal algorithms"

Lower Bounds

- Lower bound: mathematical proof that no algorithm can do better.
- very powerful concept: bulletproof impossibility result
\approx conservation of energy in physics
- (unique?) feature of computer science:
for many problems, solutions are known that (asymptotically) achieve the lower bound
\rightsquigarrow can speak of "optimal algorithms"
- To prove a statement about all algorithms, we must precisely define what that is!
- already know one option: the word-RAM model
- Here: use a simpler, more restricted model.

The Comparison Model

- In the comparison model data can only be accessed in two ways:
- comparing two elements
- moving elements around (e.g. copying, swapping)
- Cost: number of these operations.

The Comparison Model

- In the comparison model data can only be accessed in two ways:
- comparing two elements
- moving elements around (e.g. copying, swapping)
- Cost: number of these operations.

That's good!
/Keeps algorithms general!

- This makes very few assumptions on the kind of objects we are sorting.
- Mergesort and Quicksort work in the comparison model.

The Comparison Model

- In the comparison model data can only be accessed in two ways:
- comparing two elements
- moving elements around (e.g. copying, swapping)
- Cost: number of these operations.

Keeps algorithms general!

- This makes very few assumptions on the kind of objects we are sorting.
- Mergesort and Quicksort work in the comparison model.
\rightsquigarrow Every comparison-based sorting algorithm corresponds to a decision tree.
- only model comparisons \rightsquigarrow ignore data movement
- nodes = comparisons the algorithm does
- next comparisons can depend on outcomes \rightsquigarrow different subtrees
- child links = outcomes of comparison
- leaf $=$ unique initial input permutation compatible with comparison outcomes

Comparison Lower Bound

Example: Comparison tree for a sorting method for $A[0 . .2]$:

Comparison Lower Bound

Example: Comparison tree for a sorting method for $A[0 . .2]$:

- Execution = follow a path in comparison tree.
\rightsquigarrow height of comparison tree $=$ worst-case \# comparisons
- comparison trees are binary trees
$\rightsquigarrow \ell$ leaves \rightsquigarrow height $\geq\lceil\lg (\ell)\rceil$
- comparison trees for sorting method must have $\geq n$! leaves
\rightsquigarrow height $\geq \lg (n!) \sim n \lg n$
more precisely: $\lg (n!)=n \lg n-\lg (e) n+O(\log n)$

Comparison Lower Bound

Example: Comparison tree for a sorting method for $A[0 . .2]$:

- Execution = follow a path in comparison tree.
\rightsquigarrow height of comparison tree $=$ worst-case \# comparisons
- comparison trees are binary trees
$\rightsquigarrow \ell$ leaves \rightsquigarrow height $\geq\lceil\lg (\ell)\rceil$
- comparison trees for sorting method must have $\geq n$! leaves
\rightsquigarrow height $\geq \lg (n!) \sim n \lg n$
more precisely: $\lg (n!)=n \lg n-\lg (e) n+O(\log n)$
- Mergesort achieves $\sim n \lg n$ comparisons \rightsquigarrow asymptotically comparison-optimal!
- Open (theory) problem: Sorting algorithm with $n \lg n-\lg (e) n+o(n)$ comparisons?

$$
\approx 1.4427
$$

Clicker Question

Does the comparison-tree from the previous slide correspond to a worst-case optimal sorting method?
(A) Yes
(B) No

> sli.do/comp526

Clicker Question

Does the comparison-tree from the previous slide correspond to a worst-case optimal sorting method?
(A) Yes
(B) No

> sli.do/comp526
3.4 Integer Sorting

How to beat a lower bound

- Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?

How to beat a lower bound

- Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?
- Not necessarily; only in the comparison model!
\rightsquigarrow Lower bounds show where to change the model!

How to beat a lower bound

- Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?
- Not necessarily; only in the comparison model!
\rightsquigarrow Lower bounds show where to change the model!
- Here: sort n integers
- can do a lot with integers: add them up, compute averages,...
(full power of word-RAM)
\rightsquigarrow we are not working in the comparison model
\rightsquigarrow above lower bound does not apply!

How to beat a lower bound

- Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?
- Not necessarily; only in the comparison model!
\rightsquigarrow Lower bounds show where to change the model!
- Here: sort n integers
- can do a lot with integers: add them up, compute averages, ...
(full power of word-RAM)
\rightsquigarrow we are not working in the comparison model
\rightsquigarrow above lower bound does not apply!
- but: a priori unclear how much arithmetic helps for sorting ...

Counting sort

- Important parameter: size/range of numbers
- numbers in range $[0 . . U)=\{0, \ldots, U-1\} \quad$ typically $U=2^{b} \rightsquigarrow b$-bit binary numbers

Counting sort

- Important parameter: size/range of numbers
- numbers in range $[0 . . U)=\{0, \ldots, U-1\} \quad$ typically $U=2^{b} \rightsquigarrow \quad b$-bit binary numbers

We can sort n integers in $\Theta(n+U)$ time and $\Theta(U)$ space when $\underbrace{b \leq w}_{\text {word size }}$:
Counting sort
procedure countingSort(A[0..n))
// A contains integers in range [0..U).
$C[0 . . U):=$ new integer array, initialized to 0
// Count occurrences
for $i:=0, \ldots, n-1$
$C[A[i]]:=C[A[i]]+1$
$i:=0 / /$ Produce sorted list
for $k:=0, \ldots U-1$
for $j:=1, \ldots C[k]$
$A[i]:=k ; i:=i+1$

- count how often each possible value occurs
- produce sorted result directly from counts
- circumvents lower bound by using integers as array index / pointer offset

Integer Sorting - State of the art

- $O(n)$ time sorting also possible for numbers in range $U=O\left(n^{c}\right)$ for constant c.
- radix sort with radix 2^{w}

- Algorithm theory

- suppose $U=2^{w}$, but w can be an arbitrary function of n
- how fast can we sort n such w-bit integers on a w-bit word-RAM?
- for $w=O(\log n)$: linear time (radix/counting sort)
- for $w=\Omega\left(\log ^{2+\varepsilon} n\right)$: linear time (signature sort)
- for w in between: can do $O(n \sqrt{\lg \lg n})$ (very complicated algorithm) don't know if that is best possible!

$$
\notin e x a m
$$

Integer Sorting - State of the art

- $O(n)$ time sorting also possible for numbers in range $U=O\left(n^{c}\right)$ for constant c.
- radix sort with radix 2^{w}

- Algorithm theory

- suppose $U=2^{w}$, but w can be an arbitrary function of n
- how fast can we sort n such w-bit integers on a w-bit word-RAM?
- for $w=O(\log n)$: linear time (radix/counting sort)
- for $w=\Omega\left(\log ^{2+\varepsilon} n\right)$: linear time (signature sort)
- for w in between: can do $O(n \sqrt{\lg \lg n})$ (very complicated algorithm) don't know if that is best possible!
- for the rest of this unit: back to the comparisons model!

Part II

Exploiting presortedness

3.5 Adaptive Sorting

Adaptive sorting

- Comparison lower bound also holds for the average case $\rightsquigarrow\lfloor\lg (n!)\rfloor \mathrm{cmps}$ necessary
- Mergesort and Quicksort from above use $\sim n \lg n \mathrm{cmps}$ even in best case

Adaptive sorting

- Comparison lower bound also holds for the average case $\rightsquigarrow\lfloor\lg (n!)\rfloor \mathrm{cmps}$ necessary
- Mergesort and Quicksort from above use $\sim n \lg n$ cmps even in best case

Can we do better if the input is already "almost sorted"?

Scenarios where this may arise naturally:

- Append new data as it arrives, regularly sort entire list (e.g., log files, database tables)
- Compute summary statistics of time series of measurements that change slowly over time (e. g., weather data)
- Merging locally sorted data from different servers (e.g., map-reduce frameworks)
\rightsquigarrow Ideally, algorithms should adapt to input: the more sorted the input, the faster the algorithm . . . but how to do that!?

Warmup: check for sorted inputs

- Any method could first check if input already completely in order!

0 Best case becomes $\Theta(n)$ with $n-1$ comparisons!
q Usually $n-1$ extra comparisons and pass over data "wasted"
Q Only catches a single, extremely special case ...

Warmup: check for sorted inputs

- Any method could first check if input already completely in order!

0 Best case becomes $\Theta(n)$ with $n-1$ comparisons!
q Usually $n-1$ extra comparisons and pass over data "wasted"
Only catches a single, extremely special case ...

- For divide \& conquer algorithms, could check in each recursive call!

0 Potentially exploits partial sortedness!
q usually adds $\Omega(n \log n)$ extra comparisons

Warmup: check for sorted inputs

- Any method could first check if input already completely in order!

0 Best case becomes $\Theta(n)$ with $n-1$ comparisons!
q Usually $n-1$ extra comparisons and pass over data "wasted"
q Only catches a single, extremely special case ...

- For divide \& conquer algorithms, could check in each recursive call!

0 Potentially exploits partial sortedness!
q usually adds $\Omega(n \log n)$ extra comparisons

For Mergesort, can instead check before merge with a single comparison

- If last element of first run \leq first element of second run, skip merge

How effective is this idea?

```
procedure mergesortCheck(A[l..r))
    n:= r-l
    if }n\leq1\mathrm{ return
    m:= l+\lfloor\frac{n}{2}\rfloor
    mergesortCheck(A[l..m))
    mergesortCheck(A[m..r))
    if A[m-1]>A[m]
        merge(A[l..m), A[m..r),buf)
        copy buf to A[l..r)
```


Mergesort with sorted check - Analysis

- Simplified cost measure: merge cost $=$ size of output of merges
\approx number of comparisons
\approx number of memory transfers / cache misses
- Example input: $n=64$ numbers in sorted runs of 16 numbers each:

Mergesort with sorted check - Analysis

- Simplified cost measure: merge cost $=$ size of output of merges
\approx number of comparisons
\approx number of memory transfers / cache misses
- Example input: $n=64$ numbers in sorted runs of 16 numbers each:

Mergesort with sorted check - Analysis

- Simplified cost measure: merge cost $=$ size of output of merges
\approx number of comparisons
\approx number of memory transfers / cache misses
- Example input: $n=64$ numbers in sorted runs of 16 numbers each:

Mergesort with sorted check - Analysis

- Simplified cost measure: merge cost $=$ size of output of merges
\approx number of comparisons
\approx number of memory transfers / cache misses
- Example input: $n=64$ numbers in sorted runs of 16 numbers each:

Sorted check can help a lot!

Alignment issues

- In previous example, each run of length ℓ saved us $\ell \lg (\ell)$ in merge cost.
$=$ exactly the cost of creating this run in mergesort had it not already existed

Alignment issues

- In previous example, each run of length ℓ saved us $\ell \lg (\ell)$ in merge cost.
$=$ exactly the cost of creating this run in mergesort had it not already existed
\rightsquigarrow best savings we can hope for!
\rightsquigarrow Are overall merge costs $\mathcal{H}\left(\ell_{1}, \ldots, \ell_{r}\right):=\underbrace{n \lg (n)}_{\text {mergesort }}-\underbrace{\sum_{i=1}^{r} \ell_{i} \lg \left(\ell_{i}\right)}_{\text {savings from runs }}$?
Unfortunately, not quite:

Alignment issues

- In previous example, each run of length ℓ saved us $\ell \lg (\ell)$ in merge cost.
$=$ exactly the cost of creating this run in mergesort had it not already existed
\rightsquigarrow best savings we can hope for!
\rightsquigarrow Are overall merge costs $\mathcal{H}\left(\ell_{1}, \ldots, \ell_{r}\right):=\underbrace{n \lg (n)}_{\text {mergesort }}-\underbrace{\sum_{i=1}^{r} \ell_{i} \lg \left(\ell_{i}\right)}_{\text {savings from runs }} ?$
Unfortunately, not quite:

Merge costs:

Natural Bottom-Up Mergesort

- Can we do better by explicitly detecting runs?
procedure bottomUpMergesort(A[0..n))
$Q:=$ new Queue // runs to merge // Phase 1: Enqueue singleton runs for $i=0, \ldots, n-1$ do
Q.enquеие(($i, i)$)
// Phase 2: Merge runs level-wise
while \neg Q.isEmpty()
$Q^{\prime}:=$ new Queue
while Q.size() ≥ 2
$\left(i_{1}, j_{1}\right):=Q$. .ееqиеие ()
$\left(i_{2}, j_{2}\right):=Q$.dеqиеие ()
$\operatorname{merge}\left(A\left[i_{1} . . j_{1}\right], A\left[i_{2} . . j_{2}\right], b u f\right)$
copy but to $A\left[i_{1} . . j_{2}\right]$
Q^{\prime}.епqиеие $\left(\left(i_{1}, j_{2}\right)\right)$
if \neg Q.isEmpty()
Q'.епqиеие(Q.dequeиe())
$Q:=Q^{\prime}$

Q abcdefsh
abd
efgh
$Q:=Q$

Natural Bottom-Up Mergesort

- Can we do better by explicitly detecting runs?

```
procedure bottomUpMergesort(A[0..n))
    Q := new Queue // runs to merge
    // Phase 1: Enqueue singleton runs
    for }i=0,\ldots,n-1 d
        Q.enqueue(( }i,i)
    // Phase 2: Merge runs level-wise
    while \negQ.isEmpty()
        Q' := new Queue
        while Q.size() \geq2
            (i, i, j) := Q.dеqиене()
        (i, i, j2) := Q.dequеие()
        merge(A[i, ..j}\mp@subsup{j}{1}{}],A[\mp@subsup{i}{2}{}..\mp@subsup{j}{2}{}],buf
        copy buf to }A[\mp@subsup{i}{1}{}...\mp@subsup{j}{2}{}
        Q'.enqueue(( }\mp@subsup{i}{1}{},\mp@subsup{j}{2}{})
        if }\negQ.isEmpty(
            Q'.епquеие(Q.dequеие())
        Q := Q'
```


Natural Bottom-Up Mergesort - Analysis

- Works well runs of roughly equal size, regardless of alignment ...

Merge costs:
384 Standard mergesort

128 Natural bottom-up mergesort

Natural Bottom-Up Mergesort - Analysis [2]

- . . . but less so for uneven run lengths

246 Natural bottom-up mergesort

196 Standard mergesort with sorted check

Natural Bottom-Up Mergesort - Analysis [2]

- . . . but less so for uneven run lengths

246 Natural bottom-up mergesort

196 Standard mergesort with sorted check
. . . can't we have both at the same time?!

Good merge orders

4. Let's take a step back and breathe.

Good merge orders

4. Let's take a step back and breathe.

- Conceptually, there are two tasks:

1. Detect and use existing runs in the input $\rightsquigarrow \ell_{1}, \ldots, \ell_{r} \quad$ (easy)
2. Determine a favorable order of merges of runs ("automatic" in top-down mergesort)

Good merge orders

4. Let's take a step back and breathe.

- Conceptually, there are two tasks:

1. Detect and use existing runs in the inpu \rightsquigarrow ℓ, \ldots, ℓ ℓ_{r}
2. Determine a favorable order of merges of runs ("automatic" in top-down mergesort)

Merge cost $=$ total area of \square

Good merge orders

4. Let's take a step back and breathe.

- Conceptually, there are two tasks:

1. Detect and use existing runs in the input $\rightsquigarrow \ell_{1}, \ldots, \ell_{r}$
2. Determine a favorable order of merges of runs ("automatic" in top-down mergesort)

Merge cost $=$ total area of
$=$ total length of paths to all array entries

Good merge orders

4. Let's take a step back and breathe.

- Conceptually, there are two tasks:

1. Detect and use existing runs in the input
\rightsquigarrow

2. Determine a favorable order of merges of runs ("automatic" in top-down mergesort)

Merge cost $=$ total area of

$$
\begin{aligned}
& =\text { total length of paths to all array entries } \\
& =\sum_{w \text { leaf }} \text { weight }(w) \cdot \operatorname{depth}(w)
\end{aligned}
$$

Good merge orders

4 Let's take a step back and breathe.

- Conceptually, there are two tasks:

1. Detect and use existing runs in the input $\rightsquigarrow \ell_{1}, \ldots, \ell_{r}$
2. Determine a favorable order of merges of runs ("automatic" in top-down mergesort)

Merge cost $=$ total area of

$$
\begin{aligned}
& =\text { total length of paths to all array entries } \\
& =\sum_{w \text { leaf }} \text { weight }(w) \cdot \operatorname{depth}(w)
\end{aligned}
$$

well-understood problem with known algorithms
optimal merge tree $=$ optimal binary search tree for leaf weights $\ell_{1}, \ldots, \ell_{r}$ (optimal expected search cost)

Nearly-Optimal Mergesort

```
Nearly-Optimal Mergesorts:
Fast, Practical Sorting Methods That
Optimally Adapt to Existing Runs
```

Mivesity of Waterho, Canad

```
```

```
Mivesity of Waterho, Canad
```

```
```

Mivesity of Waterho, Canad

```
```



```
```

Sebastian Wild

```
```

```
```

Sebastian Wild

```
```



```
```

wilduuwaterbac.an

```
```

wilduuwaterbac.an

- Abstract

```
```

- Abstract

```
```



```
```

Mod

```
```

Mod
*)
*)
Na,
Na,
O12 ACM Subicet Clasification Tloory of mmputation }->\mathrm{ Sorting mol worchims
O12 ACM Subicet Clasification Tloory of mmputation }->\mathrm{ Sorting mol worchims
Kecwords and phrases adleptive soreting, marly-pptimal himary search trow, TMinsort
Kecwords and phrases adleptive soreting, marly-pptimal himary search trow, TMinsort
Digital Object Identifier 10.423%/LMPles.ESA.2018.63
Digital Object Identifier 10.423%/LMPles.ESA.2018.63
elated Version arxiv: 1805.04154 (uxt

```
```

elated Version arxiv: 1805.04154 (uxt

```
```



```
```

1 Introduction

```
```

1 Introduction
Sorting is a findunmentul building hlock foe mumeraus tadss and ubiquitous in both the
Sorting is a findunmentul building hlock foe mumeraus tadss and ubiquitous in both the
Sheray and practice of compating. While prutioal lind thooreticaly, (closeto) opimal
Sheray and practice of compating. While prutioal lind thooreticaly, (closeto) opimal
ddopt to the actuul input and exphit spexicic structurn ppopertios if pecemt, is still an area

```
```

ddopt to the actuul input and exphit spexicic structurn ppopertios if pecemt, is still an area

```
```



```
```

OpenBSD implementation of quort from the C standurd livery. It is an unstoble sorting

```
```

```
```

OpenBSD implementation of quort from the C standurd livery. It is an unstoble sorting

```
```



```
```

Q (a)

```
```

```
Q (a)
```

```
. Ian Mumro
```

. Ian Mumro

```
. Ian Mumro
munosmumtrylooa
munosmumtrylooa
O
O
Sa
Sa
<
```

<

```




- In 2018, with Ian Munro, I combined research on nearly-optimal BSTs with mergesort
\(\rightsquigarrow 2\) new algorithms: Peeksort and Powersort
- both adapt provably optimal to existing runs even in worst case: mergecost \(\leq \mathcal{H}\left(\ell_{1}, \ldots, \ell_{r}\right)+2 n\)
- both are lightweight extensions of existing methods with negligible overhead
- both fast in practice

\section*{Peeksort}
- based on top-down mergesort

- "peek" at middle of array \& find closest run boundary N
\(\rightsquigarrow\) split there and recurse
(instead of at midpoint)

\section*{Peeksort}
- based on top-down mergesort

"peek" at middle of array
\& find closest run boundary
\(\rightsquigarrow\) split there and recurse
(instead of at midpoint)

\section*{Peeksort}
- based on top-down mergesort

- "peek" at middle of array \& find closest run boundary N
\(\rightsquigarrow\) split there and recurse
(instead of at midpoint)

\section*{Peeksort}
- based on top-down mergesort

- "peek" at middle of array \& find closest run boundary N
\(\rightsquigarrow\) split there and recurse
(instead of at midpoint)

\section*{Peeksort}
- based on top-down mergesort
"peek" at middle of array
\& find closest run boundary

\(\rightsquigarrow\) split there and recurse
(instead of at midpoint)

\section*{Peeksort}
- based on top-down mergesort

- "peek" at middle of array \& find closest run boundary N
\(\rightsquigarrow\) split there and recurse
(instead of at midpoint)

\section*{Peeksort}
- based on top-down mergesort
"peek" at middle of array
\& find closest run boundary

\(\rightsquigarrow\) split there and recurse

(instead of at midpoint)

\section*{Peeksort}
- based on top-down mergesort
"peek" at middle of array
\& find closest run boundary
"peek" at middle of array
\& find closest run boundary
\(\rightsquigarrow\) split there and recurse

(instead of at midpoint)

\section*{Peeksort}
- based on top-down mergesort
- "peek" at middle of array \& find closest run boundary
\(\rightsquigarrow\) split there and recurse

(instead of at midpoint)

\section*{Peeksort}
- based on top-down mergesort
- "peek" at middle of array \& find closest run boundary
\(\rightsquigarrow\) split there and recurse

(instead of at midpoint)

\section*{Peeksort}
- based on top-down mergesort
- "peek" at middle of array \& find closest run boundary
\(\rightsquigarrow\) split there and recurse

(instead of at midpoint)

\section*{Peeksort}
- based on top-down mergesort
- "peek" at middle of array \& find closest run boundary
\(\rightsquigarrow\) split there and recurse
(instead of at midpoint)


\section*{Peeksort}
- based on top-down mergesort
- "peek" at middle of array \& find closest run boundary
\(\rightsquigarrow\) split there and recurse
(instead of at midpoint)

can avoid scanning runs repeatedly:

- find full run straddling midpoint
- remember length of known runs at boundaries

\(\rightsquigarrow\) with clever recursion, scan each run only once.

\section*{Peeksort - Code}
```

procedure peeksort($\left.A[\ell . . r), \Delta_{\ell}, \Delta_{r}\right)$
if $r-\ell \leq 1$ then return
if $\ell+\Delta_{\ell}==r \vee \ell==r+\Delta_{r}$ then return
$m:=\ell+\lfloor(r-\ell) / 2\rfloor$
$i:= \begin{cases}\ell+\Delta_{\ell} & \text { if } \ell+\Delta_{\ell} \geq m \\ \text { extendRunLeft }(A, m) & \text { else }\end{cases}$
$j:= \begin{cases}r+\Delta_{r} \leq m & \text { if } r+\Delta_{r} \leq m \leq m \\ \operatorname{extendRunRight}(A, m) & \text { else }\end{cases}$
$g \quad:= \begin{cases}i & \text { if } m-i<j-m \\ j & \text { else }\end{cases}$
$\Delta_{g}:= \begin{cases}j-i & \text { if } m-i<j-m \\ i-j & \text { else }\end{cases}$
peeksort $\left(A[\ell . . g), \Delta_{\ell}, \Delta_{g}\right)$
peeksort $\left(A[g, r), \Delta_{g}, \Delta_{r}\right)$
merge $(A[\ell, g), A[g . . r), b u f)$
copy buf to $A[\ell . . r)$

```
- Parameters:

- initial call: peeksort \(\left(A[0 . . n), \Delta_{0}, \Delta_{n}\right)\) with \(\Delta_{0}=\operatorname{extendRunRight}(A, 0)\)
\(\Delta_{n}=n-\operatorname{extendRunLeft}(A, n)\)
- helper procedure
```

${ }_{1}$ procedure extendRunRight $(A[0 . . n), i)$
$j:=i+1$
while $j<n \wedge A[j-1] \leq A[j]$
$j:=j+1$
return j

```
(extendRunLeft similar)

\section*{Peeksort - Analysis}
- Consider tricky input from before again:

\section*{}

196 Standard mergesort with sorted check

\section*{Peeksort - Analysis}
- Consider tricky input from before again:


246 Natural bottom-up mergesort
196 Standard mergesort with sorted check
- One can prove: Mergecost always \(\leq \mathcal{H}\left(\ell_{1}, \ldots, \ell_{r}\right)+2 n\)
\(\rightsquigarrow\) We can have the best of both worlds!

\subsection*{3.6 Python's list sort}

\section*{Sorting in Python}
- CPython
- Python is only a specification of a programming language
- The Python Foundation maintains CPython as the official reference implementation of the Python programming language
- If you don't specifically install something else, python will be CPython
- part of Python are list. sort resp. sorted built-in functions
- implemented in C
- use Timsort, custom Mergesort variant by Tim Peters

\section*{Sorting in Python}
- CPython
- Python is only a specification of a programming language
- The Python Foundation maintains CPython as the official reference implementation of the Python programming language
- If you don't specifically install something else, python will be CPython
- part of Python are list. sort resp. sorted built-in functions
- implemented in C
- use Timsort, custom Mergesort variant by Tim Peters

BREAKING NEWS

Sept 2021: Python uses Powersort!
in CPython 3.11 and PyPy 7.3.6
```

msg400864 - Author: Tim Peters (timpeters)** Date:
(view)
Author: Tim Peters (tim.peters) *

I created a PR that implements the powersort merge strategy:
https://github.com/python/cpython/pull/28188
Across all the time this issue report has been open, that strategy continues to be the top contender. Enough already ;-) It's indeed a more difficult change to make to the code, but that's in relative terms. In absolute terms, it's not at all a hard change.

Laurent, if you find that some variant of ShiversSort actually runs faster than that, let us know here! I'm a big fan of Vincent's innovations too, but powersort seems to do somewhat better "on average" than even his length adaptive ShiversSort (and implementing that too would require changing code outside of merge_collapse()).

Timsort (original version)

```
procedure Timsort(A[0..n))
    \(i:=0\); runs := new Stack()
    while \(i<n\)
        \(j\) := ExtendRunRight \((A, i)\)
        runs.push( \(i, j\) ); \(i:=j\)
        while rule \(A / B / C / D\) applicable
        merge corresponding runs
    while runs.size() \(\geq 2\)
        merge topmost 2 runs
```

- above shows the core algorithm; many more algorithm engineering tricks
- Advantages:
- profits from existing runs
- locality of reference for merges
- But: not optimally adaptive! (next slide) Reason: Rules A-D (Why exactly these?!)
 $\neg \mathrm{A}$

Rule C: $\quad Y+Z \geq X \rightsquigarrow \operatorname{merge}(Y, Z)$

Timsort bad case

- On certain inputs, Timsort's merge rules don't work well:

- As n increases, Timsort's cost approach $1.5 \cdot \mathcal{H}$, i. e., 50% more merge costs than necessary

Timsort bad case

- On certain inputs, Timsort's merge rules don't work well:

- As n increases, Timsort's cost approach $1.5 \cdot \mathcal{H}$, i. e., 50% more merge costs than necessary
- intuitive problem: regularly very unbalanced merges

Powersort

\rightsquigarrow Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?

```
procedure Powersort(A[0..n))
    \(i:=0\); runs \(:=\) new \(\operatorname{Stack}()\)
    \(j:=\operatorname{ExtendRunRight}(A, i)\)
    runs.push( \(i, j\) ); \(i:=j\)
    while \(i<n\)
        \(j:=\operatorname{ExtendRunRight}(A, i)\)
        \(p:=\) power(runs.top ()\(,(i, j), n)\)
        while \(p \leq\) topmost power
            merge topmost 2 runs
        runs.push( \(i, j\) ); \(i:=j\)
    while runs.size( \() \geq 2\)
            merge topmost 2 runs
```


Powersort

\rightsquigarrow Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?

```
procedure Powersort(A[0..n))
    i := 0; runs := new Stack()
    j:= ExtendRunRight(A,i)
4 runs.push(i,j); i:= j
5 while }i<
        j:= ExtendRunRight(A,i)
7 p := power(runs.top(), (i,j),n)
        while }p\leq\mathrm{ topmost power
            merge topmost 2 runs
        runs.push(i,j); i:= j
    while runs.size() \geq2
            merge topmost 2 runs



\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
i := 0; runs := new Stack()
j:= ExtendRunRight(A,i)
runs.push(i,j); i:= j
while}i<
j:= ExtendRunRight(A,i)
p := power(runs.top(),(i,j),n)
while }p\leq\mathrm{ topmost power
merge topmost 2 runs
runs.push(i,j); i := j
while runs.size() \geq2
merge topmost 2 runs

```
\(a-3\) run stack


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
i := 0; runs := new Stack()
j:= ExtendRunRight(A,i)
runs.push(i,j); i:= j
while}i<
j:= ExtendRunRight(A,i)
p := power(runs.top(),(i,j),n)
while }p\leq\mathrm{ topmost power
merge topmost 2 runs
runs.push(i,j); i := j
while runs.size() \geq2
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
i := 0; runs := new Stack()
j:= ExtendRunRight(A,i)
runs.push(i,j); i:= j
while}i<
j:= ExtendRunRight(A,i)
p := power(runs.top(),(i,j),n)
while }p\leq\mathrm{ topmost power
merge topmost 2 runs
runs.push(i,j); i := j
while runs.size() \geq2
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
i := 0; runs := new Stack()
j:= ExtendRunRight(A,i)
runs.push(i,j); i:= j
while}i<
j:= ExtendRunRight(A,i)
p := power(runs.top(),(i,j),n)
while }p\leq\mathrm{ topmost power
merge topmost 2 runs
runs.push(i,j); i := j
while runs.size() \geq2
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
i := 0; runs := new Stack()
j:= ExtendRunRight(A,i)
runs.push(i,j); i:= j
while}i<
j:= ExtendRunRight(A,i)
p := power(runs.top(),(i,j),n)
while }p\leq\mathrm{ topmost power
merge topmost 2 runs
runs.push(i,j); i:= j
while runs.size() \geq2
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
i := 0; runs := new Stack()
j:= ExtendRunRight(A,i)
runs.push(i,j); i:= j
while}i<
j:= ExtendRunRight(A,i)
p := power(runs.top(),(i,j),n)
while }p\leq\mathrm{ topmost power
merge topmost 2 runs
runs.push(i,j); i := j
while runs.size() \geq2
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
i := 0; runs := new Stack()
j:= ExtendRunRight(A,i)
runs.push(i,j); i:= j
while}i<
j:= ExtendRunRight(A,i)
p := power(runs.top(),(i,j),n)
while }p\leq\mathrm{ topmost power
merge topmost 2 runs
runs.push(i,j); i:= j
while runs.size() \geq2
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
i := 0; runs := new Stack()
j:= ExtendRunRight(A,i)
runs.push(i,j); i:= j
while}i<
j:= ExtendRunRight(A,i)
p := power(runs.top(),(i,j),n)
while }p\leq\mathrm{ topmost power
merge topmost 2 runs
runs.push(i,j); i:= j
while runs.size() \geq2
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
$i:=0$; runs $:=$ new $\operatorname{Stack}()$
$j:=\operatorname{ExtendRunRight}(A, i)$
runs.push(i, j); $i:=j$
while $i<n$
$j:=\operatorname{ExtendRunRight}(A, i)$
$p:=\operatorname{power}(r u n s . t o p(),(i, j), n)$
while $p \leq$ topmost power
merge topmost 2 runs
runs.push(i, j); $i:=j$
while runs.size($) \geq 2$
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
i := 0; runs := new Stack()
j:= ExtendRunRight(A,i)
runs.push(i,j); i:= j
while }i<
j:= ExtendRunRight(A,i)
p := power(runs.top (), (i,j),n)
while }p\leq\mathrm{ topmost power
merge topmost }2\mathrm{ runs
runs.push(i,j); i := j
while runs.size() \geq2
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
$i:=0$; runs := new $\operatorname{Stack}()$
$j:=\operatorname{ExtendRunRight}(A, i)$
runs.push(i, j); $i:=j$
while $i<n$
$j:=\operatorname{ExtendRunRight}(A, i)$
$p:=\operatorname{power}(r u n s . t o p(),(i, j), n)$
while $p \leq$ topmost power
merge topmost 2 runs
runs.push(i, j); $i:=j$
while runs.size($) \geq 2$
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
i := 0; runs := new Stack()
j:= ExtendRunRight(A,i)
runs.push(i,j); i:= j
while}i<
j:= ExtendRunRight(A,i)
p := power(runs.top(),(i,j),n)
while }p\leq\mathrm{ topmost power
merge topmost 2 runs
runs.push(i,j); i:= j
while runs.size() \geq2
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
i := 0; runs := new Stack()
j:= ExtendRunRight(A,i)
runs.push(i,j); i:= j
while}i<
j:= ExtendRunRight(A,i)
p := power(runs.top(),(i,j),n)
while }p\leq\mathrm{ topmost power
merge topmost 2 runs
runs.push(i,j); i:= j
while runs.size() \geq2
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
i := 0; runs := new Stack()
j:= ExtendRunRight(A,i)
runs.push(i,j); i:= j
while}i<
j:= ExtendRunRight(A,i)
p := power(runs.top(),(i,j),n)
while }p\leq\mathrm{ topmost power
merge topmost 2 runs
runs.push(i,j); i:= j
while runs.size() \geq2
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
i := 0; runs := new Stack()
j:= ExtendRunRight(}A,i
runs.push(i,j); i:= j
while}i<
j:= ExtendRunRight(A,i)
p := power(runs.top (), (i,j),n)
while }p\leq\mathrm{ topmost power
merge topmost 2 runs
runs.push(i,j); i := j
while runs.size() \geq2
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
procedure Powersort \((A[0 . . n))\)
    \(i:=0\); runs := new \(\operatorname{Stack}()\)
    \(j:=\operatorname{ExtendRunRight}(A, i)\)
    runs.push( \(i, j\) ); \(i:=j\)
    while \(i<n\)
        \(j:=\operatorname{ExtendRunRight}(A, i)\)
        \(p:=\operatorname{power}(r u n s . t o p(),(i, j), n)\)
        while \(p \leq\) topmost power
            merge topmost 2 runs
        runs.push( \(i, j\) ); \(i:=j\)
    while runs.size( \() \geq 2\)
            merge topmost 2 runs


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
procedure Powersort \((A[0 . . n))\)
    \(i:=0\); runs \(:=\) new \(\operatorname{Stack}()\)
    \(j:=\operatorname{ExtendRunRight}(A, i)\)
    runs.push( \(i, j\) ); \(i:=j\)
    while \(i<n\)
        \(j:=\operatorname{ExtendRunRight}(A, i)\)
        \(p:=\operatorname{power}(r u n s . t o p(),(i, j), n)\)
        while \(p \leq\) topmost power
            merge topmost 2 runs
        runs.push( \(i, j\) ); \(i:=j\)
    while runs.size( \() \geq 2\)
            merge topmost 2 runs


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
$i:=0$; runs := new $\operatorname{Stack}()$
$j:=\operatorname{ExtendRunRight}(A, i)$
runs.push(i, j); $i:=j$
while $i<n$
$j:=\operatorname{ExtendRunRight}(A, i)$
$p:=\operatorname{power}(r u n s . t o p(),(i, j), n)$
while $p \leq$ topmost power
merge topmost 2 runs
runs.push(i, j); $i:=j$
while runs.size($) \geq 2$
merge topmost 2 runs

```
\begin{tabular}{|c|}
\hline \(\mathrm{e}-4\) \\
\hline \(\mathrm{~d}-2\) \\
\hline abc-1 \\
run stack \\
merge-down phase \\
abc \\
\(\underbrace{}_{\text {merge }}\) \\
\hline
\end{tabular}


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
procedure Powersort \((A[0 . . n))\)
    \(i:=0\); runs \(:=\) new Stack()
    \(j:=\operatorname{ExtendRunRight}(A, i)\)
    runs.push( \(i, j\) ); \(i:=j\)
    while \(i<n\)
        \(j:=\operatorname{ExtendRunRight}(A, i)\)
        \(p:=\operatorname{power}(r u n s . t o p(),(i, j), n)\)
        while \(p \leq\) topmost power
            merge topmost 2 runs
        runs.push( \(i, j)\); \(i:=j\)
    while runs.size( \() \geq 2\)
        merge topmost 2 runs


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
$i:=0$; runs := new $\operatorname{Stack}()$
$j:=\operatorname{ExtendRunRight}(A, i)$
runs.push(i, j); $i:=j$
while $i<n$
$j:=\operatorname{ExtendRunRight}(A, i)$
$p:=\operatorname{power}(r u n s . t o p(),(i, j), n)$
while $p \leq$ topmost power
merge topmost 2 runs
runs.push(i, j); $i:=j$
while runs.size($) \geq 2$
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
$i:=0$; runs := new Stack()
$j:=\operatorname{ExtendRunRight}(A, i)$
runs.push(i, j); $i:=j$
while $i<n$
$j:=\operatorname{ExtendRunRight}(A, i)$
$p:=\operatorname{power}(r u n s . t o p(),(i, j), n)$
while $p \leq$ topmost power
merge topmost 2 runs
runs.push(i, j); $i:=j$
while runs.size($) \geq 2$
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
$i:=0$; runs := new Stack()
$j:=\operatorname{ExtendRunRight}(A, i)$
runs.push(i, j); $i:=j$
while $i<n$
$j:=\operatorname{ExtendRunRight}(A, i)$
$p:=\operatorname{power}(r u n s . t o p(),(i, j), n)$
while $p \leq$ topmost power
merge topmost 2 runs
runs.push(i, j); $i:=j$
while runs.size($) \geq 2$
merge topmost 2 runs

```


\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal ... can we keep that?
```

procedure Powersort(A[0..n))
$i:=0$; runs := new $\operatorname{Stack}()$
$j:=\operatorname{ExtendRunRight}(A, i)$
runs.push(i, j); $i:=j$
while $i<n$
$j:=\operatorname{ExtendRunRight}(A, i)$
$p:=\operatorname{power}(r u n s . t o p(),(i, j), n)$
while $p \leq$ topmost power
merge topmost 2 runs
runs.push(i, j); $i:=j$
while runs.size($) \geq 2$
merge topmost 2 runs

```

\section*{Powersort - Computing powers}
- Computing the power of (the node between) two runs \(A\left[i_{1} . . j_{1}\right]\) and \(A\left[i_{2} . . j_{2}\right]\)
- \(\hookrightarrow\) = normalized midpoint interval
- power \(=\underset{\text { contains } c \cdot 2^{-\ell}}{\min \ell \text { s.t. }}\)
```

{ } _ { 1 } ^ { 1 } \operatorname { p r o c e d u r e ~ p o w e r ((~ i , ~ , ~ j }) , (i _ { 2 } , j _ { 2 }) , n)
2 n
n
a:=
b:= \frac{i\mp@subsup{i}{2}{}+\frac{1}{2}\mp@subsup{n}{2}{}-1}{n}//\mathrm{ interval (}a,b]
\ell:= 0
while }\lfloora\cdot\mp@subsup{2}{}{\ell}\rfloor==\lfloorb\cdot\mp@subsup{2}{}{\ell}
\ell:= \ell + 1
return \ell

```


\section*{Powersort - Computing powers}
- Computing the power of (the node between) two runs \(A\left[i_{1} . . j_{1}\right]\) and \(A\left[i_{2} . . j_{2}\right]\)
- \(\leftrightarrows\) = normalized midpoint interval
- power \(=\min \ell\) s.t. \(\leftarrow \underset{c o n t a i n s ~}{c} \cdot 2^{-\ell}\)
```

{ } _ { 1 } ^ { 1 } \operatorname { p r o c e d u r e ~ p o w e r ((~ i , ~ , ~ j }) , (i _ { 2 } , j _ { 2 }) , n)
2 n
n
a:=
b:= \frac{i\mp@subsup{2}{2}{}+\frac{1}{2}\mp@subsup{n}{2}{}-1}{n}//\mathrm{ interval (}a,b]
\ell:= 0
while \lfloora\cdot2` \ == \lfloorb\cdot\mp@subsup{2}{}{\ell}\rfloor
\ell:= \ell+1
return \ell

```


\section*{Powersort - Computing powers}
- Computing the power of (the node between) two runs \(A\left[i_{1} . . j_{1}\right]\) and \(A\left[i_{2} . . j_{2}\right]\)
- \(\leftrightarrows\) = normalized midpoint interval
- power \(=\min \ell\) s.t. \(\longleftarrow\) contains c. \(2^{-\ell}\)

```

{ } _ { 1 } ^ { 1 } \operatorname { p r o c e d u r e ~ p o w e r ((~ (i , ~ , ~ j } 1) , (i _ { 2 } , j _ { 2 }) , n)
2 n
n
a:=
b:= \frac{i\mp@subsup{2}{2}{}+\frac{1}{2}\mp@subsup{n}{2}{}-1}{n}//\mathrm{ interval (}a,b]
\ell:= 0
while }\lfloora\cdot\mp@subsup{2}{}{\ell}\rfloor==\lfloorb\cdot\mp@subsup{2}{}{\ell}
\ell:= \ell + 1
return \ell

```


\section*{Powersort - Discussion}
\[
35 \& 36 \& \text { exam }
\]

0
Retains all advantages of Timsort
- good locality in memory accesses
- no recursion
- all the tricks in Timsort
\(\int\) optimally adapts to existing runs merse cost \(\leqslant H+2 n\)

0 minimal overhead for finding merge order

\section*{Part III}

Sorting with of many processors

\subsection*{3.7 Parallel computation}

\section*{Clicker Question}

Have you ever written a concurrent program (explicit threads, job pools library, or using a framework for distributed computing)?
(A) Yes
(B) No
(C) Concur. . . what?

> sli.do/comp526

\section*{Types of parallel computation}
\(£ £ £\) can't buy you more time . . . but more computers!
\(\rightsquigarrow\) Challenge: Algorithms for parallel computation.

\section*{Types of parallel computation}
\(£ £ £\) can't buy you more time . . . but more computers!
\(\rightsquigarrow\) Challenge: Algorithms for parallel computation.

There are two main forms of parallelism:
1. shared-memory parallel computer
\(\leftarrow\) focus of today
- p processing elements (PEs, processors) working in parallel
- single big memory, accessible from every PE
\(C++\)
Python
- communication via shared memory
- think: a big server, 128 CPU cores, terabyte of main memory
2. distributed computing MPT
- \(p\) PEs working in parallel
- each PE has private memory
- communication by sending messages via a network
- think: a cluster of individual machines

\section*{PRAM - Parallel RAM}
- extension of the RAM model (recall Unit 1)
- the \(p\) PEs are identified by ids \(0, \ldots, p-1\)
- like \(w\) (the word size), \(p\) is a parameter of the model that can grow with \(n\)
- \(p=\Theta(n)\) is not unusual maaany processors!
the same
- the PEs all independently run RAM-style program (they can use their id there)
- each PE has its own registers, but MEM is shared among all PEs
- computation runs in synchronous steps:
in each time step, every PE executes one instruction

\section*{PRAM - Conflict management}

Problem: What if several PEs simultaneously overwrite a memory cell?
- EREW-PRAM (exclusive read, exclusive write)
any parallel access to same memory cell is forbidden (crash if happens)
- CREW-PRAM (concurrent read, exclusive write) parallel write access to same memory cell is forbidden, but reading is fine
- CRCW-PRAM (concurrent read, concurrent write)
concurrent access is allowed, need a rule for write conflicts:
- common CRCW-PRAM:
all concurrent writes to same cell must write same value
- arbitrary CRCW-PRAM:
some unspecified concurrent write wins
- (more exist...)
- no single model is always adequate, but our default is CREW

\section*{PRAM - Execution costs}

Cost metrics in PRAMs
- space: total amount of accessed memory
- time: number of steps till all PEs finish
assuming sufficiently many PEs! sometimes called depth or span
- work: total \#instructions executed on all PEs

\section*{PRAM - Execution costs}

Cost metrics in PRAMs
- space: total amount of accessed memory
- time: number of steps till all PEs finish assuming sufficiently many PEs! sometimes called depth or span
- work: total \#instructions executed on all PEs

Holy grail of PRAM algorithms:
- minimal time
- work (asymptotically) no worse than running time of best sequential algorithm \(\rightsquigarrow ~ " w o r k-e f f i c i e n t " ~ a l g o r i t h m: ~ w o r k ~ i n ~ s a m e ~ \Theta-c l a s s ~ a s ~ b e s t ~ s e q u e n t i a l ~\)

\section*{Clicker Question}

Does every computational problem allow a work-efficient algorithm?
(A) Yes
(B) No
sli.do/comp526

\section*{Clicker Question}

Does every computational problem allow a work-efficient algorithm?
(A) Yes \(\sqrt{ }\)
(B)

> sli.do/comp526

\section*{The number of processors}

Hold on, my computer does not have \(\Theta(n)\) processors! Why should I care for span and work!?

\section*{Theorem 3.1 (Brent's Theorem:)}

If an algorithm has span \(T\) and work \(W\) (for an arbitrarily large number of processors), it can be run on a PRAM with \(p\) PEs in time \(O\left(T+\frac{W}{p}\right)\) (and using \(O(W)\) work).
\[
m P E
\]


\(\rightsquigarrow\) span and work give guideline for any number of processors
\[
m=\frac{\omega}{T}
\]

\subsection*{3.8 Parallel primitives}

\section*{Prefix sums}

Before we come to parallel sorting, we study some useful building blocks.

\section*{Prefix-sum problem (also: cumulative sums, running totals)}
- Given: array \(A[0 . . n)\) of numbers
- Goal: compute all prefix sums \(A[0]+\cdots+A[i]\) for \(i=0, \ldots, n-1\) may be done "in-place", i. e., by overwriting \(A\)

\section*{Example:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline input: & 3 & 0 & 0 & 5 & 7 & 0 & 0 & 2 & 0 & 0 & 0 & 4 & 0 & 8 & 0 & 1 \\
\hline & \multicolumn{16}{|c|}{\(\Sigma\)} \\
\hline output: & 3 & 3 & 3 & 8 & 15 & 15 & 15 & 17 & 17 & 17 & 17 & 21 & 21 & 29 & 29 & 30 \\
\hline
\end{tabular}

\section*{Clicker Question}

What is the sequential running time achievable for prefix sums?
(A) \(O\left(n^{3}\right)\)
(D) \(O(n)\)
(B) \(O\left(n^{2}\right)\)
(E) \(O(\sqrt{n})\)
(C) \(O(n \log n)\)
(F) \(O(\log n)\)
sli.do/comp526

\section*{Clicker Question}

What is the sequential running time achievable for prefix sums?

(A) \(\theta\left(-2 \pi^{3}\right)\)
(D) \(O(n) \sqrt{ }\)
(B) \(\Theta\left(44^{2}\right.\)
(E)
(C) थ(aleg
F) (F)
sli.do/comp526

\section*{Prefix sums - Sequential}
- sequential solution does \(n-1\) additions
- but: cannot parallelize them! 4 data dependencies!
```

procedure prefixSum(A[0..n))

```

2 for \(i:=1, \ldots, n-1\) do
\(3 \quad A[i]:=A[i-1]+A[i]\)
\(\rightsquigarrow\) need a different approach

\section*{Prefix sums - Sequential}
- sequential solution does \(n-1\) additions
- but: cannot parallelize them!
procedure prefixSum(A[0..n))
4 data dependencies!
\[
\begin{aligned}
& \text { for } i:=1, \ldots, n-1 \text { do } \\
& \quad A[i]:=A[i-1]+A[i]
\end{aligned}
\]
\(\rightsquigarrow\) need a different approach
Let's try a simpler problem first.

\section*{Excursion: Sum}
- Given: array \(A[0 . . n)\) of numbers
- Goal: compute \(A[0]+A[1]+\cdots+A[n-1]\)
(solved by prefix sums)

\section*{Prefix sums - Sequential}
- sequential solution does \(n-1\) additions
- but: cannot parallelize them!

4 data dependencies!
\[
\begin{gathered}
\text { procedure prefixSum }(A[0 . . n)) \\
\text { for } i:=1, \ldots, n-1 \text { do } \\
A[i]:=A[i-1]+A[i]
\end{gathered}
\]
\(\rightsquigarrow\) need a different approach
Let's try a simpler problem first.

\section*{Excursion: Sum}
- Given: array \(A[0 . . n)\) of numbers
- Goal: compute \(A[0]+A[1]+\cdots+A[n-1]\) (solved by prefix sums)


Any algorithm must do \(n-1\) binary additions
\(\rightsquigarrow\) Height of tree \(=\) parallel time!

\section*{Parallel prefix sums}
- Idea: Compute all prefix sums with balanced trees in parallel

Remember partial results for reuse
input:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 0 & 0 & 5 & 7 & 0 & 0 & 2 & 0 & 0 & 0 & 4 & 0 & 8 & 0 & 1 \\
\hline
\end{tabular}

\section*{Parallel prefix sums}
- Idea: Compute all prefix sums with balanced trees in parallel Remember partial results for reuse


\section*{Parallel prefix sums}
- Idea: Compute all prefix sums with balanced trees in parallel Remember partial results for reuse


\section*{Parallel prefix sums}
- Idea: Compute all prefix sums with balanced trees in parallel Remember partial results for reuse


\section*{Parallel prefix sums}
- Idea: Compute all prefix sums with balanced trees in parallel Remember partial results for reuse


\section*{Parallel prefix sums}
- Idea: Compute all prefix sums with balanced trees in parallel Remember partial results for reuse
input:
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 0 & 0 & 5 & 7 & 0 & 0 & 2 & 0 & 0 & 0 & 4 & 0 & 8 & 0 & 1 \\
\hline
\end{tabular}

round 1 :
round 2 :


\section*{Parallel prefix sums - Code}
- can be realized in-place (overwriting \(A\) )
- assumption: in each parallel step, all reads precede all writes


\section*{Parallel prefix sums - Analysis}
- Time:
- all additions of one round run in parallel
- \(\lceil\lg n\rceil\) rounds
\(\rightsquigarrow \Theta(\underline{\log n)}\) time best possible!
- Work:
- \(\geq \frac{n}{2}\) additions in all rounds (except maybe last round)
\(\rightsquigarrow \Theta(n \log n)\) work
- more than the \(\Theta(n)\) sequential algorithm!

\section*{Parallel prefix sums - Analysis}
- Time:
- all additions of one round run in parallel
- \(\lceil\lg n\rceil\) rounds
\(\rightsquigarrow \Theta(\log n)\) time best possible!
- Work:
- \(\geq \frac{n}{2}\) additions in all rounds (except maybe last round)
\(\rightsquigarrow \Theta(n \log n)\) work
- more than the \(\Theta(n)\) sequential algorithm!
- Typical trade-off: greater parallelism at the expense of more overall work

\section*{Parallel prefix sums - Analysis}
- Time:
- all additions of one round run in parallel
- \(\lceil\lg n\rceil\) rounds
\(\rightsquigarrow \Theta(\log n)\) time best possible!
- Work:
- \(\geq \frac{n}{2}\) additions in all rounds (except maybe last round)
\(\rightsquigarrow \Theta(n \log n)\) work
- more than the \(\Theta(n)\) sequential algorithm!
- Typical trade-off: greater parallelism at the expense of more overall work
- For prefix sums:
- can actually get \(\Theta(n)\) work in twice that time!
\(\rightsquigarrow\) algorithm is slightly more complicated
- instead here: linear work in thrice the time using "blocking trick"

\section*{Work-efficient parallel prefix sums}
standard trick to improve work: compute small blocks sequentially
1. \(\operatorname{Set} b:=\lceil\lg n\rceil\)
2. For blocks of \(b\) consecutive indices, i. e., \(A[0 . . b), A[b . .2 b), \ldots\) do in parallel: compute local prefix sums sequentially
3. Use previous work-inefficient algorithm only on rightmost elements of block, i. e., to compute prefix sums of \(A[b-1], A[2 b-1], A[3 b-1], \ldots\)
4. For blocks \(A[0 . . b), A[b . .2 b), \ldots\) do in parallel: Add block-prefix sums to local prefix sums

Analysis:
- Time:
- 2. \& 4.: \(\Theta(b)=\Theta(\log n)\) time
- 3. \(\Theta(\log (n / b))=\Theta(\log n)\) times
- Work:
- 2. \& 4.: \(\Theta(b)\) per block \(\times\left\lceil\frac{n}{b}\right\rceil\) blocks \(\rightsquigarrow \Theta(n)\)
- 3. \(\Theta\left(\frac{n}{b} \log \left(\frac{n}{b}\right)\right)=\Theta(n)\)
\[
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline C 1 & 4 & 4 \\
\hline
\end{array} \\
& \text { span } O\left(\log n^{\prime}\right)=O(\log u) \\
& \text { work } O\left(n^{\prime} \operatorname{leg} n^{\prime}\right)=O(n) \\
& \operatorname{span} O(b) \quad \frac{n}{b} O(b)=O(n) \\
& \begin{array}{llll|llll|llll|}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 1 & 1
\end{array}
\end{aligned}
\]

\section*{Compacting subsequences}

How do prefix sums help with sorting? one more step to go ...
Goal: Compact a subsequence of an array


\section*{Compacting subsequences}

How do prefix sums help with sorting? one more step to go ...
Goal: Compact a subsequence of an array


Use prefix sums on bitvector \(B\)
\(\rightsquigarrow\) offset of selected cells in \(S\)
```

${ }_{1} C$:= B // copy B

```
\({ }_{1} C\) := B // copy B
\({ }_{2}\) parallelPrefixSums( \(C\) )
\({ }_{2}\) parallelPrefixSums( \(C\) )
\({ }_{3}\) for \(j:=0, \ldots, n-1\) do in parallel
\({ }_{3}\) for \(j:=0, \ldots, n-1\) do in parallel
        if \(B[j]==1\) then \(S[C[j]-1]:=A[j]\)
        if \(B[j]==1\) then \(S[C[j]-1]:=A[j]\)
    end parallel for
```

 end parallel for
    ```

\section*{Clicker Question}

What is the parallel time and work achievable for compacting a subsequence of an array of size \(n\) ?
(A) \(O(1)\) time, \(O(n)\) work
(B) \(O(\log n)\) time, \(O(n)\) work
(C) \(O(\log n)\) time, \(O(n \log n)\) work
(D) \(O\left(\log ^{2} n\right)\) time, \(O\left(n^{2}\right)\) work
(E) \(O(n)\) time, \(O(n)\) work

> sli.do/comp526

\section*{Clicker Question}

What is the parallel time and work achievable for compacting a subsequence of an array of size \(n\) ?
(A) O(1) time, © (a) work
(B) \(O(\log n)\) time, \(O(n)\) work \(\sqrt{ }\)
(C) \(\theta(\operatorname{leg} \mathrm{g})\) time, \(\theta(n-\operatorname{leg} \mathrm{n})\) work
(D) \(\because\left(\right.\) legr \(\left.^{2} 4\right)\) time, \(Q\left(n^{2}\right)\) work
(E) थ(n) time, \(\sigma(n)\) work
sli.do/comp526
3.9 Parallel sorting

\section*{Parallel quicksort}

Let's try to parallelize quicksort
- recursive calls can run in parallel (data independent)
\[
\text { alone } \Omega(n) \text { time }
\]
- our sequential partitioning algorithm seems hard to parallelize

\section*{Parallel quicksort}

Let's try to parallelize quicksort
- recursive calls can run in parallel (data independent)
- our sequential partitioning algorithm seems hard to parallelize
- but can split partitioning into rounds:
1. comparisons: compare all elements to pivot (in parallel), store result in bitvectors
2. compute prefix sums of bit vectors (in parallel as above)
3. compact subsequences of small and large elements (in parallel as above)

\section*{Parallel quicksort - Code}
```

procedure parQuicksort(A[l..r))
$b:=\operatorname{choosePivot}(A[l . . r))$
$j:=$ parallelPartition(A[l..r), b)
in parallel $\{$ parQuicksort $(A[l . . j)$), parQuicksort $(A[j+1 . . r))\}$
achou 1 Il achou 2
procedure parallelPartition $(A[0 . . n), b)$
$\operatorname{swap}(A[n-1], A[b]) ; p:=A[n-1]$
for $i=0, \ldots, n-2$ do in parallel
$S[i]:=[A[i] \leq p] \quad / / S[i]$ is 1 or 0
$L[i]:=1-S[i]$
end parallel for
in parallel $\{$ parallelPrefixSum(S[0..n - 2]); parallelPrefixSum(L[0..n-2]) \}
$j:=S[n-2]+1$
for $i=0, \ldots, n-2$ do in parallel
$x:=A[i]$
if $x \leq p$ then $A[S[i]-1]:=x$
else $A[j+L[i]]:=x$
end parallel for
$A[j]:=p$
return j

```

\section*{Parallel quicksort - Analysis}
- Time:
- partition: all \(O(1)\) time except prefix sums \(\rightsquigarrow \Theta(\log n)\) time
- quicksort: expected depth of recursion tree is \(\Theta(\log n)\)
\(\rightsquigarrow\) total time \(O\left(\log ^{2}(n)\right)\) in expectation
- Work:
- partition: \(O(n)\) time except prefix sums \(\rightsquigarrow \Theta(n \log n)\) work
\(\rightsquigarrow\) quicksort \(O\left(n \log ^{2}(n)\right)\) work in expectation
- using a work-efficient prefix-sums algorithm yields (expected) work-efficient sorting!

\section*{Parallel mergesort}
- As for quicksort, recursive calls can run in parallel

\section*{Parallel mergesort}
- As for quicksort, recursive calls can run in parallel
- how about merging sorted halves \(A[l . . m)\) and \(A[m . . r)\) ?
- Must treat elements independently.

\section*{Parallel mergesort}
- As for quicksort, recursive calls can run in parallel
- how about merging sorted halves \(A[l . . m)\) and \(A[m . . r)\) ?
- Must treat elements independently.

- correct position of \(x\) in sorted output \(=\) rank of \(x\) breaking ties by position in \(A\)
- \# elements \(\leq x=\) \# elements from \(A[l . . m)\) that are \(\leq \frac{\swarrow}{x}\)
+ \# elements from \(A[m . . r)\) that are \(\leq x\)
- Note: rank in own run is simply the index of \(x\) in that run
- find rank in other run by binary search .
\(\rightsquigarrow\) can move it to correct position

\section*{Parallel mergesort - Analysis}
- Time:
- merge: \(\Theta(\log n)\) from binary search, rest \(O(1)\)
- mergesort: depth of recursion tree is \(\Theta(\log n)\)
\(\rightsquigarrow\) total time \(O\left(\log ^{2}(n)\right)\)
- Work:
- merge: \(n\) binary searches \(\rightsquigarrow \Theta(n \log n)\)
\(\rightsquigarrow\) mergesort: \(O\left(n \log ^{2}(n)\right)\) work

\section*{Parallel mergesort - Analysis}
- Time:
- merge: \(\Theta(\log n)\) from binary search, rest \(O(1)\)
- mergesort: depth of recursion tree is \(\Theta(\log n)\)
\(\rightsquigarrow\) total time \(O\left(\log ^{2}(n)\right)\)
- Work:
- merge: \(n\) binary searches \(\rightsquigarrow \Theta(n \log n)\)
\(\rightsquigarrow\) mergesort: \(O\left(n \log ^{2}(n)\right)\) work
- work can be reduced to \(\Theta(n)\) for merge
- do full binary searches only for regularly sampled elements
- ranks of remaining elements are sandwiched between sampled ranks
- use a sequential method for small blocks, treat blocks in parallel
- (details omitted)


\section*{Parallel sorting - State of the art}
- more sophisticated methods can sort in \(O(\log n)\) parallel time on CREW-PRAM
- practical challenge: small units of work add overhead
- need a lot of PEs to see improvement from \(O(\log n)\) parallel time
\(\rightsquigarrow\) implementations tend to use simpler methods above
- check the Java library sources for interesting examples! java.util.Arrays.parallelSort(int[])```

