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Learning Outcomes

1. Know principles and implementation of mergesort and quicksort.

2. Know properties and performance characteristics of
mergesort and quicksort.

3. Know the comparison model and understand the . . .
corresponding lower bound. Unit 3: Efficient Sorting

4. Understand counting sort and how it circumvents the
comparison lower bound.

5. Know ways how to exploit presorted inputs.

6. Understand and use the parallel random-access-machine
model in its different variants.

7. Be able to analyze and compare simple

shared-memory parallel algorithms by determining
parallel time and work.

8. Understand efficient parallel prefix sum algorithms.

9. Be able to devise high-level description of parallel
quicksort and mergesort methods.




Outline

3 Efficient Sorting

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Mergesort

Quicksort

Comparison-Based Lower Bound
Integer Sorting

Adaptive Sorting

Python’s list sort

Parallel computation

Parallel primitives

Parallel sorting



Why study sorting?
» fundamental problem of computer science that is still not solved

Algorithm with optimal #comparisons in worst case?

» building brick of many more advanced algorithms

» for preprocessing

» as subroutine

» playground of manageable complexity
to practice algorithmic techniques

Here:
> “classic” fast sorting method
> exploit partially sorted inputs

» parallel sorting



Part 1

The Basics



Rules of the game

> Given:
» array A[0..n) = A[0..n — 1] of n objects
» a total order relation < among A[0],..., A[n —1]
(a comparison function)
Python: elements support <= operator (_ le_ ())
Java: Comparable class (x.compareTo(y) <= 0)

> Goal: rearrange (i. e., permute) elements within A,
so that A is sorted,i.e., A[0] < A[l] <--- < A[n —1]

> for now: A stored in main memory (internal sorting)
single processor (sequential sorting)



Clicker Question

What is the complexity of sorting? Type you answer, e. g., as
“Theta(sqrt(n))”

o
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3.1 Mergesort



Clicker Question

Ve

How does mergesort work?

= G

=

Split elements around median, then recurse on small / large
elements.

Recurse on left / right half, then combine sorted halves.

Grow sorted part on left, repeatedly add next element to
sorted range.

Repeatedly choose 2 elements and swap them if they are out
of order.

Don’t know.

~
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Clicker Question

Ve

How does mergesort work?
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Merging sorted lists

1] ~ ]
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Merging sorted lists

runl run2 result



Merging sorted lists

runl run2 result



Merging sorted lists

runl

run2

1)

J

result



Merging sorted lists

runl

run2

1)

result



Merging sorted lists

runl

run2

1)

result



Merging sorted lists
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Merging sorted lists
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Merging sorted lists
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Merging sorted lists

{1 andd!

runl bnz result j
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Merging sorted lists
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Merging sorted lists

1] ~ ]
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runl run2 result




Clicker Question

( What is the worst-case running time of mergesort?
(a) e (G) erlogn)
©(log 1) (H) ©(nlog?n)
©(loglog 1) (1) ewm™)
0O [@ew Q) ew
(E) em) (k) ew?
L ®(n loglog n) e@")
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Clicker Question

( What is the worst-case running time of mergesort?
J=VZNN O(nlogn)
e (H) Stsesle
e (1) ey
o) (D) e 0) e
(E) & (1) &e
L e —
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Mergesort

1 procedure mergesort(A[l..r))

2

3

n:=r-—1
if n < 1 return
m:= 1+ L%J

mergesort(A[l..1m))
mergesort(A[m..r))
merge(A[l..m), A[m..r), buf)
copy buf to A[l..r)

» recursive procedure; divide & conquer

> merging needs
> temporary storage for result
of same size as merged runs

> to read and write each element twice
(once for merging, once for copying back)



Mergesort

1 procedure mergesort(A[l..r))

2 n:i=r-1
3 if n < 1 return
4 m ::l+[%J

mergesort(A[l..1m))
mergesort(A[m..r))
merge(A[l..m), A[m..r), buf)
copy buf to A[l..r)

® N o O

» recursive procedure; divide & conquer

> merging needs
> temporary storage for result
of same size as merged runs

> to read and write each element twice
(once for merging, once for copying back)

Analysis: count “element visits” (read and/or write)

0
Cln) = {C(Ln/ZJ)+C([n/ZD+2n

Simplification

o - 0 k<0
o l2-cebYy 4228 k>1

C(n) = 2nlg(n) = ©(nlogn)

e
n<1l W =2
same for best and worst case!

n>2 c= OS(M\

lk =+ wmeAS

= 2.2k 4220k 14 23.0k=2 4 .. 4ok 0l = k. 2K

U



Mergesort — Discussion

[C] optimal time complexity of (1 log 1) in the worst case
lﬁ stable sorting method i.e., retains relative order of equal-key items

[b memory access is sequential (scans over arrays)

I@ requires © (1) extra space

there are in-place merging methods,
but they are substantially more complicated
and not (widely) used



3.2 Quicksort



Clicker Question

Ve

How does quicksort work?

split elements around median, then recurse on small / large
elements.

recurse on left / right half, then combine sorted halves.

() (=)

grow sorted part on left, repeatedly add next element to
sorted range.

repeatedly choose 2 elements and swap them if they are out
of order.

Don’t know.

=

~
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Clicker Question

Ve

How does quicksort work?

split elements around median, then recurse on small / large
elements.

~
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Partitioning around a pivot
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Partitioning around a pivot
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Partitioning around a pivot
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Partitioning around a pivot
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Partitioning around a pivot
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Partitioning around a pivot

L0
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Partitioning around a pivot

I

PSP S KPP

P

>p >p

> no extra space needed
> visits each element once

» returns rank/position of pivot



Partitioning — Detailed code

[ Beware: details easy to get wrong; use this code! ] (if you ever have to)

1 procedure partition(A, b)

// input: array A[0..n), position of pivot b € [0..n)

swap(A[0], A[b])

i:=0, j:=mn

while true do
doi:=i+1whilei <nand A[i] < A[0]
doj := j—1whilej>1and A[j] > A[0]
if i > j then break (goto11)
else swap(A[i], A[f])

end while

swap(A[0], ALj])

return j

Loop invariant (5-10): A | P | <p ?




Quicksort

1 procedure quicksort(A[l..r)) » recursive procedure; divide & conquer
2 if r — ¢ <1 then return

3 b := choosePivot(A[l..r)) > choice of pivot can be

4 j := partition(A[l..r), b) > fixed position ~ dangerous!

5 quicksort(A[l..f)) > mndem

6 quicksort(A[j + 1..r))

» more sophisticated, e. g., median of 3




Clicker Question

( What is the worst-case running time of quicksort?
(a) e (G) erlogn)
©(log 1) (H) ©(nlog?n)
©(loglog 1) (1) ewm™)
0O [@ew Q) ew
(E) em) (k) ew?
L ®(n loglog n) e@")
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Clicker Question

( What is the worst-case running time of quicksort?
- e
e (H) Semtest
e (1) epts
o (D) ek () e v
(£) &4 (k) @6
L e —
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Quicksort & Binary Search Trees

Quicksort
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Quicksort & Binary Search Trees

Quicksort
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Quicksort & Binary Search Trees
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Quicksort & Binary Search Trees
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Quicksort & Binary Search Trees

Quicksort
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Quicksort & Binary Search Trees

Quicksort Binary Search Tree (BST)

[7]4]2]9]1]3]8]5]6] 74291385

l4]2]1]3]5]6]7]9]8] @)
|213[156| 9 (4)
/

z@s qf Q @
% T O ©

» recursion tree of quicksort = binary search tree from successive insertion

» comparisons in quicksort = comparisons to built BST

» comparisons in quicksort ~ comparisons to search each element in BST

6

10



Quicksort — Worst Case

» Problem: BSTs can degenerate
» Cost to search for kis k — 1
n
_ n(n-1) 1,
~ Total cost kz;(k -1) = — "~ "

~ quicksort worst-case running time is in ©(1?)
terribly slow!
But, we can fix this:
Randomized quicksort:
» choose a random pivot in each step

~~ same as randomly shuffling input before sorting

11



Randomized Quicksort — Analysis

» C(n) = element visits (as for mergesort)

~» quicksort needs ~ 2In(2) - nlgn ~ 1.39n1g n in expectation

» also: very unlikely to be much worse:
e.g., one can prove: Pr[cost > 10nlgn] = O(n=2°)

distribution of costs is “concentrated around mean”

» intuition: have to be constantly unlucky with pivot choice

12



Quicksort — Discussion

[C] fastest general-purpose method

@ O(n log n) average case

[b works in-place (no extra space required)

|ﬁ memory access is sequential (scans over arrays)
@ ©(n?) worst case (although extremely unlikely)

E@ not a stable sorting method

Open problem: Simple algorithm that is fast, stable and in-place.

13



3.3 Comparison-Based Lower Bound



Lower Bounds

» Lower bound: mathematical proof that no algorithm can do better.

» very powerful concept: bulletproof impossibility result
~ conservation of energy in physics

> (unique?) feature of computer science:
for many problems, solutions are known that (asymptotically) achieve the lower bound

~ can speak of “optimal algorithms”

14



Lower Bounds

» Lower bound: mathematical proof that no algorithm can do better.

» very powerful concept: bulletproof impossibility result
~ conservation of energy in physics

> (unique?) feature of computer science:
for many problems, solutions are known that (asymptotically) achieve the lower bound

~ can speak of “optimal algorithms”

» To prove a statement about all algorithms, we must precisely define what that is!

» already know one option: the word-RAM model

» Here: use a simpler, more restricted model.

14



The Comparison Model

» In the comparison model data can only be accessed in two ways:

»> comparing two elements

»> moving elements around (e. g. copying, swapping)

» Cost: number of these operations.

15



The Comparison Model

» In the comparison model data can only be accessed in two ways:
»> comparing two elements

»> moving elements around (e. g. copying, swapping)

» Cost: number of these operations. That's good!
Keeps algorithms general!

» This makes very few assumptions on the kind of objects we are sorting.

» Mergesort and Quicksort work in the comparison model.

15



The Comparison Model

» In the comparison model data can only be accessed in two ways:

>
>

2

comparing two elements

moving elements around (e. g. copying, swapping)

Cost: number of these operations. That's good!
Keeps algorithms general!

» This makes very few assumptions on the kind of objects we are sorting.

» Mergesort and Quicksort work in the comparison model.

~+ Every comparison-based sorting algorithm corresponds to a decision tree.

>

>
>
>
>

only model comparisons ~+ ignore data movement

nodes = comparisons the algorithm does

next comparisons can depend on outcomes ~- different subtrees
child links = outcomes of comparison

leaf = unique initial input permutation compatible with comparison outcomes

15



Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:

| 132 | | 2,31 | | 2,13 | | 3,12 |

16



Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:

» Execution = follow a path in
comparison tree.

~+ height of comparison tree =
worst-case # comparisons

» comparison trees are binary trees
~ lleaves ~» height > [Ig(¢)]

» comparison trees for sorting
£ = = = method must have > n! leaves

~ height > Ig(n!) ~nlgn

| 132 | | 2,31 | | 2,13 | | 3,12 |

more precisely: Ig(n!) = nlgn —Ig(e)n + O(logn)

16



Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:

» Execution = follow a path in
comparison tree.

213
312
321

123
132
231

~+ height of comparison tree =
worst-case # comparisons

All]: A[2]

» comparison trees are binary trees
~ lleaves ~» height > [Ig(¢)]

» comparison trees for sorting

£ = = = method must have > n! leaves

~ height > Ig(n!) ~nlgn

| 132 | | 2,31 | | 2,13 | | 3,12 |

more precisely: Ig(n!) = nlgn —Ig(e)n + O(logn)
» Mergesort achieves ~ 1 lg n comparisons ~» asymptotically comparison-optimal!

> Open (theory) problem: Sorting algorithm with n1gn —1lg(e)n + o(n) comparisons?

~ 1.4427
16



Clicker Question

Does the comparison-tree from the previous slide correspond to a
worst-case optimal sorting method?

A Yes No
o
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Clicker Question

Does the comparison-tree from the previous slide correspond to a
worst-case optimal sorting method?

o Yes\/ Ne
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3.4 Integer Sorting



How to beat a lower bound

» Does the above lower bound mean, sorting always takes time Q(n log 11)?

17



How to beat a lower bound

» Does the above lower bound mean, sorting always takes time Q(n log 11)?

> Not necessarily; only in the comparison model!
~+ Lower bounds show where to change the model!
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How to beat a lower bound

» Does the above lower bound mean, sorting always takes time Q(n log 11)?

> Not necessarily; only in the comparison model!
~+ Lower bounds show where to change the model!

» Here: sortn integers
» can do a lot with integers: add them up, compute averages, . .. (full power of word-RAM)

~» we are not working in the comparison model

~~ above lower bound does not apply!
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How to beat a lower bound
» Does the above lower bound mean, sorting always takes time Q(n log 11)?

> Not necessarily; only in the comparison model!
~+ Lower bounds show where to change the model!

» Here: sortn integers

» can do a lot with integers: add them up, compute averages, . .. (full power of word-RAM)

~» we are not working in the comparison model

~~ above lower bound does not apply!

» but: a priori unclear how much arithmetic helps for sorting . ..

17



Counting sort

» Important parameter: size/range of numbers
» numbers in range [0..U) = {0,..., U -1} typically U = 26 s p-bit binary numbers

18



Counting sort

» Important parameter: size/range of numbers
» numbers in range [0..U) = {0,..., U -1} typically U = 26 s p-bit binary numbers

» We can sort 1 integers inf @ (n + U) fime and ®(U) space when

Counting sort word size

1 procedure countingSort(A[0..7))

2 // A contains integers in range [0..UI). > count how often each possible

3 C[0..U) := new integer array, initialized to 0 vallie Caaums

4 // Count occurrences > .

. (bi7e5 it O o — 1 produce sorted result directly
. CIAL] := CIA[i] + 1 from counts

’ ; - 0./_/ Produce sorted list » circumvents lower bound by

8 ork :=0,...U-1 .. .

, o il O] using integers as array index /
10 Alil =k i=i+1 einteio et

~ | Can sort n integers in range [0..U) with U = O(n) in time and space ©(n).

18



Integer Sorting — State of the art

» O(n) time sorting also possible for numbers in range U = O(n°) for constant c.
» radix sort with radix 2%

> Algorithm theory
» suppose U = 2%, but w can be an arbitrary function of n

» how fast can we sort # such w-bit integers on a w-bit word-RAM?

» forw = O(logn): linear time (radix/counting sort) £ erouma
> forw = Q(logz*'é n): linear time (signature sort)
> for w in between: can do O(n+/lglgn) (very complicated algorithm)

don’t know if that is best possible!

19



Integer Sorting — State of the art

» O(n) time sorting also possible for numbers in range U = O(n°) for constant c.
» radix sort with radix 2%

> Algorithm theory
» suppose U = 2%, but w can be an arbitrary function of n
» how fast can we sort # such w-bit integers on a w-bit word-RAM?
» forw = O(logn): linear time (radix/counting sort)
> forw = Q(log2+é n): linear time (signature sort)
> for w in between: can do O(n+/lglgn) (very complicated algorithm)
don’t know if that is best possible!

» for the rest of this unit: back to the comparisons model!

19



Part 11

Exploiting presortedness



3.5 Adaptive Sorting



Adaptive sorting

» Comparison lower bound also holds for the average case ~~ |lg(n!)] cmps necessary
~ ndon
» Mergesort and Quicksort from above use ~ 1 1g 1 cmps even in best case

20



Adaptive sorting
» Comparison lower bound also holds for the average case ~~ |lg(n!)] cmps necessary

» Mergesort and Quicksort from above use ~ 1 1g n cmps even in best case

Can we do better if the input is already “almost sorted”?

Scenarios where this may arise naturally:

> Append new data as it arrives, regularly sort entire list (e. g., log files, database tables)

» Compute summary statistics of time series of measurements that change slowly over
time (e. g., weather data)

> Merging locally sorted data from different servers (e. g., map-reduce frameworks)

~~ Ideally, algorithms should adapt to input: the more sorted the input, the faster the algorithm

... but how to do that!?
20



Warmup: check for sorted inputs

» Any method could first check if input already completely in order!
[& Best case becomes © (1) with n — 1 comparisons!
@ Usually n — 1 extra comparisons and pass over data “wasted”

E@ Only catches a single, extremely special case . . .

21



Warmup: check for sorted inputs

» Any method could first check if input already completely in order!
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[ﬁ Potentially exploits partial sortedness!
l@ usually adds Q(n log ) extra comparisons

21



Warmup: check for sorted inputs

» Any method could first check if input already completely in order!
[& Best case becomes © (1) with n — 1 comparisons!
@ Usually n — 1 extra comparisons and pass over data “wasted”
E@ Only catches a single, extremely special case . . .

» For divide & conquer algorithms, could check in each recursive call!
[ﬁ Potentially exploits partial sortedness!
l@ usually adds Q(n log ) extra comparisons

procedure mergesortCheck(A[l..r))
ni:i=r-—1I

\ /
-Q- For Mergesort, can instead check
YN . . .
=  before merge with a single comparison
if n < 1 return
m =1+ [%J

1

2

3

» If last element of first run < first element .

of second run, skip merge 5 mergesortCheck(A[l..nm))

6

7

8

9

How effective is this idea?

mergesortCheck(A[m..7))
if A[m —1] > A[m]
merge(A[l..m), Alm..r), buf)

copy buf to All..r)

21



Mergesort with sorted check — Analysis

> Simplified cost measure: merge cost = size of output of merges
number of comparisons
number of memory transfers / cache misses

X

Q

» Example input: n = 64 numbers in sorted runs of 16 numbers each:

MIE\IIIIIEIIIIIEIIIEIIII\III 53 153 1 5 2 5 0 2 5 5 25 3 5 6 6 6 6 2 Y D
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Mergesort with sorted check — Analysis

» Simplified cost measure: merge cost = size of output of merges
number of comparisons
number of memory transfers / cache misses

X

Q

» Example input: n = 64 numbers in sorted runs of 16 numbers each:

FHRHREHEEDERREEEHEHEHDEEDEEEHEEHDEDEFEDEEEEEDEEDRENRDEEHEEDEOMMEEEER
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Mergesort with sorted check — Analysis

» Simplified cost measure: merge cost = size of output of merges
number of comparisons
number of memory transfers / cache misses

X

Q

» Example input: n = 64 numbers in sorted runs of 16 numbers each:

( @) ) €4
372 @ X @ )eo €6

( @) )( @) X @) )( @) ) 66

C LI OC T3 T3 C T3 HC (3 C _TT ) {1 I _TT ) g

oD aen oD Een Goh GO GOl EeN HOD EeN HOD RN EON BeN HON G e

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOC €46

I 0 305320 3 5 3 83 3 0 0 2 (9

Merge costs:

384 Standard Mergesort
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Mergesort with sorted check — Analysis
» Simplified cost measure: merge cost = size of output of merges

number of comparisons

number of memory transfers / cache misses

X

Q

» Example input: n = 64 numbers in sorted runs of 16 numbers each:

anoIooIooIooxooxooooxooxooooooxooooooooo
-'-‘-i-'-'-i-'-1r------------------------
01 5 1 0 3 55 3 | 0 50 5 5 G 3 5923 5 5 5O R 6 D D Y D O
A —————

Merge costs:

). 384 standard Mergesort
) 128 with sorted check

Sorted check can help a lot!

22



Alignment issues

» In previous example, each run of length ¢ saved us ¢Ig(f) in merge cost.

i O
= exactly the cost of creating this run in mergesort had it not already existed

~+ best savings we can hope for! f, length of ith run

~ Are overall merge costs  H(¢y,...,¢) = n lg(n) Z 7 lg(l’,) ?

A ¢ SIS
w mergesort \_.._\,_..._./

savings from runs

socted uju,\m(r;
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Alignment issues

» In previous example, each run of length ¢ saved us ¢Ig(¢) in merge cost.

= exactly the cost of creating this run in mergesort had it not already existed

~+ best savings we can hope for! é, length of ith run

~ Are overall merge costs  H(f1,...,¢) = n lg(n) Z é’, 1g(€;) ?

mergesort \...\/_...__/

Unfortunately, not quite: savings from runs

O

l_‘ﬁ
) )

|
r

[0 sl 52 5 54 5 5% 5 5 5% 0 61 6 6 5[5 % 7 3 % 0 41 £ H 4 b 4 0 8 B8 B N a0 B U 5%y BB N NP ML 23 &5 67 890D B UL

Merge costs:

). 384 standard Mergesort

ZZ77777777777777777777277777777777277772 - 127.8 3(15,15,17,17)
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Alignment issues

» In previous example, each run of length ¢ saved us ¢ Ig({) in merge cost

= exactly the cost of creating this run in mergesort had it not already existed
~ best savings we can hope for!

p é’l length of ith run
~ Are overall merge costs  H(f1,...,¢) = n lg(n) Z é’, 1g(€;) ?
mergesort \....\/......./
Unfortunately, not quite:

savings from runs

N IO R N S N R
Merge costs:

). 384 standard Mergesort
. 216 with sorted check

LSS SAIAS IS ASSSSAISS SIS SIS S SIS RIS

127.8 3(15,15,17,17)
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Natural Bottom-Up Mergesort

» Can we do better by explicitly detecting runs?

1 procedure bottomUpMergesort(A[0..17))

2

3

4

Q := new Queue // runs to merge
// Phase 1: Enqueue singleton runs
fori=0,...,n—1do
Q.enqueue((i, 1))
// Phase 2: Merge runs level—wise
while —Q.isEmpty()
Q’ := new Queue
while Q.size() > 2
(i1, 1) := Q.dequeue()
(i2, j2) := Q.dequeue()
merge(Aliy..j1], Alia..j2], buf)
copy buf to Alij..j2]
Q' .enqueue((i1, j2))
if =Q.isEmpty()
Q' .enqueune(Q.dequeue())
Q:=0Q

&
Q

1

— =
1 O
c:((g

QLAQAQQgL\

AN

QLC&

\

Q&iL

0\\3 ed Ql: 5[/\
S

24



Natural Bottom-Up Mergesort

» Can we do better by explicitly detecting runs?

1 procedure bottomUpMergesort(A[0..17)) 1 procedure naturalMergesort(A[0..n))

2 Q := new Queue // runs to merge 2 Q := new Queue; i:=0 find _run(i,‘]')
3 // Phase 1: Enqueue singleton runs 3 fori < ndo / starting at

4 fori=0,...,n—1do 4 ji=i

5 Q.enqueue((i, 1)) 5 while A[j + 1] > A[j]doj == j+1
6 // Phase 2: Merge runs level—wise 6 Q.enqueue((i, f)); i:=j+ |

7 while —Q.isEmpty() 7 while

5 Q’ := new Queue 8 new Queue

9 while Q.size() > 2 9 while

10 (i1, 1) := Q.dequeue() 10

1 (i2, j2) := Q.dequeue() 1

12 merge(Aliy..j1], Alia..j2], buf) 12 merge( , , buf)
13 copy buf to Alij..j2] 13 copy to

14 Q' .enqueue((i1, j2)) 14

15 if = Q.isEmpty() 15 if

16 Q' .enqueune(Q.dequeue()) 16

17 Q=0 17




Natural Bottom-Up Mergesort — Analysis

» Works well runs of roughly equal size, regardless of alignment . ..

(3051 5 5 5 5 % 5 5 % 0 6l & 6 65 % ¥ B ¥ 0 4 0 b H b %y 8 B8 190U 0B uDB %y BY N RS M2 45 67890 nB bk

Merge costs:

). 384 standard mergesort
) 216 Standard mergesort with sorted check
27777777 2777 7777777777777 127.8 ((15,15,17,17)

( @) )
( @ ) @ )

c ) c )
(05 2 % 5 5 5% 5 5 % 60 61 6 6 64)(5 % 7 % % 0 4 0545 &y s o)A 0B U5 %y sy NN nH M1 2345 6789010 RB YLK

T 128 Natural bottom-up mergesort
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Natural Bottom-Up Mergesort — Analysis [2]

.. but less so for uneven run lengths

( @ )
( @ )
L X N
( @ ) @ )
ﬁ‘r R %
( @ ) T O T OC 1T O

| — pu—
3% %3 25 3 %%y %9 0400845695955 2555 %5 %5 060 66 x5 xu2s)syss ks e vl 7 s ¢ 51 2

) 246 Natural bottom-up mergesort

( @ )
X » N
( @ )
( (‘) )( (‘) )

( (

)
( () ]l()][() )X

|z72529w313233343535373339mun4344434“74“95051525354ssse575@wwm6263@425zélluzzzsllmlsmlllslswlluu14||9mulle75||345||1

) 196 Standard mergesort with sorted check
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Natural Bottom-Up Mergesort — Analysis [2]

» ...but less so for uneven run lengths

( @ )
( @ )
L X N
( @ ) @ )
ﬁ‘r R %
( @ ) T O T OC 1T O

| — pu—
3% %3 25 3 %%y %9 0400845695955 2555 %5 %5 060 66 x5 xu2s)syss ks e vl 7 s ¢ 51 2

) 246 Natural bottom-up mergesort

( @) )
X » N
( @ )
( @) )( @ )
i%
’_1[_@) D S S ) B
i%
OOy (oD men)

U35 %3 2% %5 %y 5% 0408465698585 %5%5%%7 55060623 s2s)ssass syl ol s )02

) 196 Standard mergesort with sorted check

... can’t we have both at the same time?!
2



Good merge orders

« Let’s take a step back and breathe.
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( )

( )
)7 )i 1 B|3 6 16 18 20 22

Merge cost = totalareaof ()

e (easy) /

(“automatic” in top-down mergesort)

27



Good merge orders

« Let’s take a step back and breathe.

» Conceptually, there are two tasks:
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Merge cost = totalareaof ()

total length of paths to all array entries

[3 6 16 18 20 2
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Good merge orders

« Let’s take a step back and breathe.

» Conceptually, there are two tasks:
1. Detect and use existing runs in the input ~» {1,...,¢ (easy) \/

2. Determine a favorable order of merges of runs  (“automatic” in top-down mergesort)

Merge cost = totalareaof ()

= total length of paths to all array entries
= Zweight(w) - depth(w)

w leaf
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Good merge orders

« Let’s take a step back and breathe.

» Conceptually, there are two tasks:
1. Detect and use existing runs in the input ~» {1,...,¢ (easy) \/

2. Determine a favorable order of merges of runs  (“automatic” in top-down mergesort)

ﬁ ﬁ! M TsaRpea S
2 2 3 2 6 2 6

with known algorithms

Merge cost = totalareaof () ~~ | optimal merge tree j
= total length of paths to all array entries = optimal binary search tree
= Zweight(w) - depth(w) for leaf weights ¢y, ..., ¢,
1 Tl (optimal expected search cost)




Nearly-Optimal Mergesort

Nearly-Optimal Mergesorts:
Fast, Practical Sorting Methods That
Optimally Adapt to Existing Runs

» In 2018, with Ian Munro, I combined research
on nearly-optimal BSTs with mergesort

~> 2new algorithms: Peeksort and Powersort

» both adapt provably optimal to existing runs
even in worst case:
mergecost < H(ly, ..., 0)

» both are lightweight extensions of existing
methods with negligible overhead

» both fast in practice

28



Peeksort

» based on top-down mergesort

> “peek” at middle of array W\
& find closest run boundary

~» split there and recurse

(instead of at midpoint)

[

J0dJ
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Peeksort

» based on top-down mergesort

> “peek” at middle of array W\
& find closest run boundary

~» split there and recurse

(instead of at midpoint)

1(2

) )ge=eezzzj{)[ ]

29



Peeksort

» based on top-down mergesort

> “peek” at middle of array W\
& find closest run boundary

~» split there and recurse

(instead of at midpoint)

J0dJ

29



Peeksort

» based on top-down mergesort

> “peek” at middle of array W\
& find closest run boundary

~» split there and recurse

(instead of at midpoint)

29



Peeksort

> based on top-down mergesort

> “peek” at middle of array >
& find closest run boundary

~> split there and recurse

(instead of at midpoint)

0o

29



Peeksort

> based on top-down mergesort

> “peek” at middle of array >
& find closest run boundary

~> split there and recurse

(instead of at midpoint)

1/,
— = 0o
—
—— -
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> based on top-down mergesort
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Peeksort

o

~> split there and recurse

> based on top-down mergesort

> “peek” at middle of array >
& find closest run boundary

(instead of at midpoint)

» can avoid scanning runs repeatedly:
» find full run straddling midpoint

» remember length of known runs at boundaries

| ) ( )
{ L+ r+A; r

~~ with clever recursion, scan each run only once.

29



Peeksort — Code

1 procedure peeksort(A[(..r), Ay, Ay)

2

3

4

if r — ¢ <1 then return
if{+Ap==rV{==r+A, then return
m:=L+|(r—10)/2]
0+ Ay ifl+Ap>m
extendRunLeft(A, m)  else
ifr+A, <m<m

i:=

r+A, <m

extendRunRight(A, m) else
i ifm—-i<j-m
j else
j—i ifm—-i<j—m
Ag = ] J
‘ i—j else
peeksort(A[(..g), Ay, Ag)
peeksort(A[g, ), Ag, Ar)
merge(A[l, g), Alg..r), buf)
copy buf to A[l..r)

Parameters:
| ] ( ]
{ {+Ay r+A, r

initial call:

peeksort(A[0..17), Ay, A,) with
Ay = extendRunRight(A, 0)
A, = n — extendRunLeft(A, n)

helper procedure

1 procedure extendRunRight(A[0..n), 7)

2 j=i+1

3 while j < n A A[j - 1] < A[j]
4 j=j+1

5 return j

(extendRunLeft similar)

30



Peeksort — Analysis

» Consider tricky input from before again:

[T 9 % 5 25 % % %5 %% 04 9646 & 85852555 %5 856600 e eus sz ssossrs oo e+ 5o 2

7777777777707 7777777777777 144.5 3(38,3,3,3,3,3,3,3,3,2)

). 246 Natural bottom-up mergesort

). 196 Standard mergesort with sorted check
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Peeksort — Analysis

» Consider tricky input from before again:

)
-

-
(

(

( @) )
( (@) )( )X ) ) O )
= —— - =

[T 3D %3 % 5 %% %y %% 0400545469895 %5 2 5% 5%y %9600 o)y a)is s ol sz 5]

) 147 Peeksort

7777777277772 7777777777727 144.5 3(38,3,3,3,3,3,3,3,3,2)

). 246 Natural bottom-up mergesort

). 196 Standard mergesort with sorted check

» One can prove: Mergecost always < H({y,...,{) +2n

~~ We can have the best of both worlds!

31



3.6 Python’s list sort



Sorting in Python
» CPython

» Python is only a specification of a programming language
» The Python Foundation maintains CPython as the official reference implementation of the
Python programming language
» If you don't specifically install something else, python will be CPython
» part of Python are list.sort resp. sorted built-in functions

»> implemented in C

» use Timsort,
custom Mergesort variant by Tim Peters
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Sorting in Python

» CPython

» Python is only a specification of a programming language

» The Python Foundation maintains CPython as the official reference implementation of the
Python programming language

» If you don't specifically install something else, python will be CPython

» part of Python are list.sort resp. sorted built-in functions

»> implemented in C

» use Timsort,
custom Mergesort variant by Tim Peters

BREAKING

EWS

Sept 2021: Python uses Powersort!
in CPython 3.11 and PyPy 7.3.6

Date:
msg400864 - A thor: Tim Peters (tim.peters) * ® 2021-09-01
(view) 19:43

I created a PR that implements the powersort merge strategy:
https://github. con/python/cpython/pull/28168

Across all the time this issue report has been open, that strategy continues
to be the top contender. Enough already ;-) It's indeed a more difficult
change to make to the code, but that's in relative terms. In absolute terms,
it's not at all a hard change.

Laurent, if you find that some variant of ShiversSort actually runs faster
than that, let us know here! I'm a big fan of Vincent's innovations too, but
powersort seems to do somewhat better "on average" than even his length-
adaptive Shiversort (and implementing that too would require changing code
outside of merge_collapse()).
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Timsort (original version)

1

2

3

procedure Timsort(A[0..n))
i := 0; runs := new Stack()
whilei < n
j = ExtendRunRight(A4, )
runs.push(i, j); i := j
while rule A/B/C/D applicable ~ L—J
merge corresponding runs |:] “A
while runs.size() > 2
merge topmost 2 runs

runs

«—top

S[=|=[~

» above shows the core algorithm;

-A-B
many more algorithm engineering tricks
> Advantages:
» profits from existing runs
» locality of reference for merges A B,-C

» But: not optimally adaptive! (next slide)
Reason: Rules A-D (Why exactly these?!)

Rule A: Z > X ~ merge(X,Y)

iI

X+Y

Rule B: Z > Y ~ merge(Y, Z)

Wz [ ]

RuleC: Y +Z > X ~» merge(Y, Z)

Ji

I
i

N

viz | )

RuleD: X +Y > W ~ merge(Y, Z)



Timsort bad case

» On certain inputs, Timsort’s merge rules don’t work well:

@
l ( @ )
@ )( @)
3 » -
l ( @) ) ( @)
P —
@) X

(

( (@) ) (@) )

(

T
) ( (@) ) | ( (@) ) )
— X
r:%l()l D (()1@
B0 6 6 EEENG | Bl | ENETE | EOE) | EOER | ) | A | S| )| Y | )| 3 | B |

( (@) O )
0 3 )3 o)(» 73 x5 )0 s)E s w)s W e 0l )RR 30

371 Timsort

77727777777 70 7777 7 F i 7 7 e 7 e T o T T 7 7 e o T T e T s e 777e 778 316.0 5

321 Peeksort

> As n increases, Timsort’s cost approach 1.5 - 1, i. e., 50% more merge costs than
necessary
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Timsort bad case

» On certain inputs, Timsort’s merge rules don’t work well:

X a i
l ( @) )
P —
[ == l_(r)@
)

)
( (@) O ) O )
0 3 )3 o)(» 73 x5 )0 s)E s w)s W e 0l )RR 30

371 Timsort

( Q) )

) ( (@) ) (@) ) )
— X

rl:%(()l D H)]rET%

& o(e)(e)(3 3 )5 5 )3 %) 1)) (¢ s)(2 g)@ 0 9T 33 BB

77727777777 70 7777 7 F i 7 7 e 7 e T o T T 7 7 e o T T e T s e 777e 778 316.0 5

321 Peeksort

> As n increases, Timsort’s cost approach 1.5 - 1, i. e., 50% more merge costs than
necessary

» intuitive problem: regularly very unbalanced merges
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Powersort

~ Timsort’s merge rules aren’t great, but overall algorithm has appeal . . . can we keep that?

1 procedure Powersort(A[0..1))

2 i := 0; runs := new Stack() R 7 &)
3 j = ExtendRunRight(A4, )

4 runs.push(i, j); i := j

5 while i < n

6 j = ExtendRunRight(4, 7)

7 p = power(runs.top(), (i, j), n) ( )
8 while p < topmost power B X N

9 merge topmost 2 runs ( ) )

10 runs.push(i, j); i :== j
11 while runs.size() > 2 :) C)

12 merge topmost 2 runs

posyyunossulssrsosnnnsusspy
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Powersort

1 procedure Powersort(A[0..1))

runl  run2

~ Timsort’s merge rules aren’t great, but overall algorithm has appeal . . . can we keep that?

i := 0; runs := new Stack() [ i o )< | 7 &)
j = ExtendRunRight(A4, )
runs.push(i, j); i := j
while i < n run stack
j = ExtendRunRight(4, 7)
p := power(runs.top(), (i, j), n) ( )
while p < topmost power B X N
merge topmost 2 runs ( ) )

runs.push(i, j); i :== j

while runs.size() > 2 :)

(@)

merge topmost 2 runs

posyyunossulssrsosnnnsusspy
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5 whilei <n run stack

6 j = ExtendRunRight(4, 7)
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8 while p < topmost power ( B X N )
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~ Timsort’s merge rules aren’t great, but overall algorithm has appeal . . . can we keep that?

1 procedure Powersort(A[0..1)) 3’””12"””2
2 i := 0; runs := new Stack()

D a b C d efl_f
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Powersort

1 procedure Powersort(A[0..1))

runl run2

~ Timsort’s merge rules aren’t great, but overall algorithm has appeal . . . can we keep that?

i := 0; runs := new Stack() y e ﬁ S i ) 7 &)
j = ExtendRunRight(A4, ) A ———
runs.push(i, j); i := j merge
while i < n run stack
j = ExtendRunRight(4, 7)
p := power(runs.top(), (i, j), n) ( )
while p < topmost power B X N
merge topmost 2 runs ( ) )

runs.push(i, j); i :== j
while runs.size() > 2

(@)

merge topmost 2 runs

posyyunossulssrsosnnnsusspy
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Powersort

~ Timsort’s merge rules aren’t great, but overall algorithm has appeal . . . can we keep that?
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4 {'uns.push(i,j); i ;g]
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Powersort

~ Timsort’s merge rules aren’t great, but overall algorithm has appeal . . . can we keep that?

1

run2
procedure Powersort(A[0..1)) . r;ml
i = 0; runs := new Stack() | pyvs I S
j = ExtendRunRight(A4, )
runs.push(i, j); i := j
while i < 1 run stack
j = ExtendRunRight(4, 7)
p := power(runs.top(), (i, j), n) ( ]
while p < topmost power p
merge topmost 2 runs ( X )
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while runs.size() > 2 :)

(@)

merge topmost 2 runs
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Powersort

~» Timsort’s merge rules aren’t great, but overall algorithm has appeal . .. can we keep that?

run2
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~» Timsort’s merge rules aren’t great, but overall algorithm has appeal . .. can we keep that?

1

procedure Powersort(A[0..1))

—— 1 24

i := 0; runs := new Stack e—4
. w Stack() | g [FEa)
j = ExtendRunRight(A4, ) ——
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~ Timsort’s merge rules aren’t great, but overall algorithm has appeal . . . can we keep that?
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Powersort - Computing powers

» Computing the power of (the node between) two runs A[#1..j1] and A[i5..j>]

» (] = normalized midpoint interval

> power = min ¢ s.t. ¢
contains ¢ - 27¢

1 procedure power((i, j1), (i2, j2), 1)

2

3

© ® N o

ny = j1—ip+1
np = jz—i2+l
1

i1+ 5n1 -1
==
ip + %i’lz—l
b= T//interval (a,b]
{:=0
while |a-2¢] == |b-2¢]
{:=0+1
return (

—

103

) 1{4 3{4 )

— oo
1/g H3/s 7/g

0o

===
l./té 5./16

A

h |

11./16 ) 13./16 ) 15./]6 )

=)
=
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Powersort — Computing powers

» ] = normalized midpoint interval

> power = min ¢ s.t. ¢
contains ¢ - 27¢

1 procedure power((i1, j1), (i2, j2), 1)

2

3

© ® N o

ny = j1—ip+1
ny = jp—ip+1

i1+ 4n1 -1
S
() = w // interval (a,b]
{:=0 "
while [a-2¢] == [b-2¢]
{:=0+1
return (

» Computing the power of (the node between) two runs A[i1..j1] and Al[i5..j>]
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Powersort — Computing powers

» ] = normalized midpoint interval

> power = min ¢ s.t. ¢
contains ¢ - 27¢

1 procedure power((i1, j1), (i2, j2), 1)

2

3

© ® N o

ny = j1—ip+1
ny = jp—ip+1
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S
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while [a-2¢] == [b-2¢]
{:=0+1
return (
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Powersort — Discussion

|ﬁ) Retains all advantages of Timsort
» good locality in memory accesses
» no recursion

» all the tricks in Timsort

[ﬁ‘] optimally adapts to existing runs N 3¢

[ﬁ minimal overhead for finding merge order

g ¢ 26 &

Cob‘é

<

H +2w

QK Crasm
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Part 111

Sorting with of many processors



3.7 Parallel computation



Clicker Question

-~
Have you ever written a concurrent program (explicit threads, job
pools library, or using a framework for distributed computing)?

Yes

No

Concur. . . what?
(.
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Types of parallel computation

£££ can’t buy you more time . . . but more computers!

~» Challenge: Algorithms for paralle] computation.
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Types of parallel computation

£££ can’t buy you more time . . . but more computers!

~» Challenge: Algorithms for paralle] computation.

There are two main forms of parallelism:
1. shared-memory parallel computer « focus of today Opem Mr ¢ Dove Heeds

» p processing elements (PEs, processors) working in parallel Ce

» single big memory, accessible from every PE p/ Heoe,

» communication via shared memory

» think: a big server, 128 CPU cores, terabyte of main memory

2. distributed computing MPT
» p PEs working in parallel
» each PE has private memory
» communication by sending messages via a network

» think: a cluster of individual machines

38



PRAM - Parallel RAM

>

>

extension of the RAM model (recall Unit 1)

the p PEs are identified by ids 0,...,p — 1

» like w (the word size), p is a parameter of the model that can grow with n

> p = O(n) is not unusual maaany processors!

dha sOU—C
the PEs all independently run 2 RAM-style program

(they can use their id there)
each PE has its own registers, but MEM is shared among all PEs

computation runs in synchronous steps:
in each time step, every PE executes one instruction

39



PRAM - Conflict management Eg;l él

Problem: What if several PEs simultaneously overwrite a memory cell? g @

>

EREW-PRAM (exclusive read, exclusive write)
any parallel access to same memory cell is forbidden (crash if happens)

CREW-PRAM (concurrent read, exclusive write)
parallel write access to same memory cell is forbidden, but reading is fine

CRCW-PRAM (concurrent read, concurrent write)
concurrent access is allowed,
need a rule for write conflicts:

» common CRCW-PRAM:
all concurrent writes to same cell must write same value

» arbitrary CRCW-PRAM:
some unspecified concurrent write wins

> (more exist . ..)

no single model is always adequate, but our default is CREW
jpsiil
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PRAM - Execution costs
Cost metrics in PRAMs

> space: total amount of accessed memory

» time: number of steps till all PEs finish assuming sufficiently many PEs!

sometimes called depth or span

» work: total #instructions executed on all PEs

41



PRAM - Execution costs
Cost metrics in PRAMs
> space: total amount of accessed memory

» time: number of steps till all PEs finish assuming sufficiently many PEs!
sometimes called depth or span

» work: total #instructions executed on all PEs

Holy grail of PRAM algorithms:
» minimal time

> work (asymptotically) no worse than running time of best sequential algorithm

~ “work-efficient” algorithm: work in same ©-class as best sequential

41



Clicker Question

Does every computational problem allow a work-efficient algorithm?

Yes
o No
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Clicker Question

Does every computational problem allow a work-efficient algorithm?

Yes\/
0O (=
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The number of processors

Hold on, my computer does not have ©(n) processors! Why should I care for span and work!?

Theorem 3.1 (Brent’s Theorem:)

If an algorithm has span T and work W (for an arbitrarily large number of processors), it can
be run on a PRAM with p PEs in time O(T + ) (and using O(W) work).

Proof: schedule parallel steps in round-robin fashion on the p PEs.

p=h ij AN G (ﬁj [
| R I I
T/le 2 2« H?

12 h

N |

3 A

*o&uo\(’\vu TM 7*7—

~ span and work give guideline for any number of processors

m E
PEO V22
AN
7\ (A A 12
NZ I (2
’r: g L) = 2[
LD = wa s T
W
w, = —
/

& s ¢
QQ Q)
(D ]
& 1A
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3.8 Parallel primitives



Prefix sums
Before we come to parallel sorting, we study some useful building blocks.
Prefix-sum problem (also: cumulative sums, running totals)

» Given: array A[0..1n) of numbers

» Goal: compute all prefix sums A[0] +---+ A[i]fori=0,...,n -1
may be done “in-place”, i. e., by overwriting A

Example:

input: {[3]o|o|5|7]ojo|2|o|o]o]4]o]8]0]1]

Y

output: |3 |33 |8 [15]15/15|17|17]17]17]21]21]|29|29]30]
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Clicker Question

4 )

What is the sequential running time achievable for prefix sums?

0(n%) (D) o)
O(n?) (E) o
Y o O(nlogn) O(logn) )
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Clicker Question

( What is the sequential running time achievable for prefix sums?
S0 (0) om v
— (E) exbs

L o e o
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Prefix sums — Sequential

> sequential solution does n — 1 additions

> but: cannot parallelize them!
¥ data dependencies!

~» need a different approach

1 procedure prefixSum(A[0..1))

2

3

fori:=1,...,n—1do
Ali] := Ali — 1]+ A[i]




Prefix sums — Sequential

> sequential solution does n — 1 additions

] ) | 1 procedure prefixSum(A[0..1))
> but: cannot parallelize them! ) fori=1,...,n—1do

¥ data dependencies! s Ali] == Ali — 1] + A[i]

~» need a different approach

Let’s try a simpler problem first.

Excursion: Sum
» Given: array A[0..1) of numbers

» Goal: compute A[0] + A[1] +---+ A[n —1]
(solved by prefix sums)



Prefix sums — Sequential

> sequential solution does n — 1 additions

1 procedure prefixSum(A[0..17))
2 fori:=1,...,n—1do
3 Ali] := Ali — 1] + A[]

> but: cannot parallelize them!
¥ data dependencies!

~» need a different approach

Let’s try a simpler problem first.

Excursion: Sum
» Given: array A[0..1) of numbers

» Goal: compute A[0] + A[1] +---+ A[n —1]
(solved by prefix sums)

Any algorithm must do n — 1 binary additions

~» Height of tree = parallel time!




Parallel prefix sums

» Idea: Compute all prefix sums with balanced trees in parallel
Remember partial results for reuse

input: (3|0|0(5|7(0[0|2(0|0|0|4|0|8|0]1
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Parallel prefix sums

» Idea: Compute all prefix sums with balanced trees in parallel
Remember partial results for reuse

v/
input: [3lo]o|5]|7]|ofo]2]ofo]o]4]0]8]0]1]

TN TS

roundl:[3\5’1051270220044881]




Parallel prefix sums

» Idea: Compute all prefix sums with balanced trees in parallel
Remember partial results for reuse

wput. [510J05]7 [0T0l2 0 o o4 0]s0]1]
TS
round1: (3 (3)0(B[12]7]0/2/2]0]0]4]4][8][8]1]

SN

..,
o
S
5
Q.
I\)
(€8]
@
[0¢}
—
N
—
N
—
N
\O
N
N
N
S
S
—
N
—_
N
\O
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Parallel prefix sums

» Idea: Compute all prefix sums with balanced trees in parallel
Remember partial results for reuse

input: (3 ]0]0]5

T

round1: [3]3/0[5[12]7]0/2/2]0]0]4/4][8][8]1]
%

round2: (3 3 3 8

N
o
o
N
B
o
o
-
o
B
o
=

%
%
%
%
%
%
%
%
%
%
%
%
%

Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
J

—
N
—_
N
—
N
\O
N
N
N
B~
>
—
N
—_
N
\O

k
JIA
JIA
JIA
JIA
JIA
JIA
I
JIA
é/

>

round3: 313738 15/15/15/17]14]14]14]13] 6 [ 14]14]13]
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Parallel prefix sums

» Idea: Compute all prefix sums with balanced trees in parallel
Remember partial results for reuse

5

N
o
o
N
o
o
o
-
o
B
o
=

input l3|0|0

T

round1: [3]3/0[5[12]7]0/2/2]0]0]4/4][8][8]1]

%
%
%
%
%
%
%
%
%
%
%
%
%

%

(3/3]3]8

Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
Ja
J

round 2

—
N
—_
N
—
N
\O
N
N
N
S
>
—
N
—_
N
\O

]
JIA
JIA
JIA
JIA
JIA
JIA
I
JIA
7/

round3: [3]33]8/[15/15/15/17]14]14]14]13] 6 [ 14]14]13]

I
round4: |3 ]33] 8/[15/15]15/17/17]17]17)21]21 /29 29]30]

45



Parallel prefix sums

» Idea: Compute all prefix sums with balanced trees in parallel
Remember partial results for reuse

input: (3 |o]o|5]|7]|o]o]2]o]o]o]4]0]8]0]1]
NI NS
round1: (33 0/5/12/7/0/2 2[00 4[4 8 8[1]
SSiSisiSisisissisissisim

round2: (3338 [12/12[12]9 2[2]2 4[4 12/12]9]
‘\\\\§§§§§\$

— ———

I \\\\3
round 3: [3 313 |8|15(15|15(17|14(14/14|13| 6 |14 |14 13]

———==b L [T

round4: |3 ]33] 8/15/15]15/17/17]17]17 21]2129]29]30]
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Parallel prefix sums — Code

» can be realized in-place (overwriting A)

> assumption: in each parallel step, all reads precede all writes

Bec

1 procedure parallelPrefixSums(A[0..1))
2 forr :=1,...[lgn] do

s step := 271

e fori::step,...n—ldoMel
5 x = Ali] + Ali — step]

6 A[Z] =X

7 end parallel for

5 end for
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Parallel prefix sums — Analysis

> Time:
» all additions of one round run in parallel
» [lgn] rounds
~ O(logn) time best possible!
» Work:
» > [ additions in all rounds (except maybe last round)
~»_0O(nlogn) work

» more than the ©(n) sequential algorithm!
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Parallel prefix sums — Analysis

> Time:
» all additions of one round run in parallel
» [lgn] rounds
~» O(logn) time best possible!

> Work:

» > [ additions in all rounds (except maybe last round)
~» O(nlogn) work

» more than the ©(n) sequential algorithm!

» Typical trade-off: greater parallelism at the expense of more overall work
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Parallel prefix sums — Analysis

> Time:
» all additions of one round run in parallel
» [lgn] rounds
~» O(logn) time best possible!

> Work:
» > [ additions in all rounds (except maybe last round)
~» O(nlogn) work

» more than the ©(n) sequential algorithm!

» Typical trade-off: greater parallelism at the expense of more overall work

» For prefix sums:
» can actually get O (1) work in fwice that time!
~ algorithm is slightly more complicated

» instead here: linear work in thrice the time using “blocking trick”
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Work-efficient parallel prefix sums

standard trick to improve work: compute small blocks sequentially
1. Setb := [lgn]
2. For blocks of b consecutive indices, i.e., A[0..b), A[b..2b), ...do in parallel:
compute local prefix sums sequentially
3. Use previous work-inefficient algorithm only on rightmost elements of block,
i.e., to compute prefix sums of A[b — 1], A[2b — 1], A[3b - 1], ...

4. For blocks A[0..b), A[b..2b), ...do in parallel:
Add block-prefix sums to local prefix sums

Analysis:
» Time:
> 2. &4.: O(b) = O(ogn) time
> 3. O(log(n/b)) = O(logn) times
» Work:
> 2.&4.: O(b) perblock x [#]blocks ~ ©O(n)
> 3. @(%log(%)) =0O(n)
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Compacting subsequences

How do prefix sums help with sorting? one more step to go ...
Goal: Compact a subsequence of an array

B1 0 01 000111100100 O0
A: |3|8]9|1|15|13|14|17|2|4|6|17|12|5 |10|11|16

s: [3]1]7]2]4]6]5]
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Compacting subsequences

How do prefix sums help with sorting? one more step to go ...
Goal: Compact a subsequence of an array

B.1 0 01 000111100100 O0
A: |3|8]9|1|15|13|14|17|2|4|6|17|12|5 |10|11|16

s: [3]1]7]2]4]6]5]

1 C := B //copy B
2 parallelPrefixSums(C)
Use prefix sums on bitvector B s forj:=0,...,n —1do in parallel
~ offset of selected cells in S 4 if B[j] == 1 then S[C[]] — 1] := A[/]

s end parallel for
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Clicker Question

Ve

What is the parallel time and work achievable for compacting a
subsequence of an array of size n?

O(1) time, O(n) work
O(log n) time, O(n) work
O(log n) time, O(n log n) work

O(log2 1) time, O(n?) work

(= @ = E)

O(n) time, O(n) work

‘sli.do/comp526




Clicker Question

Ve

What is the parallel time and work achievable for compacting a
subsequence of an array of size n?

O -timeObi-work

O(log n) time, O(n) work \/
Olorssime Ottorswork
(5) nsmr i
(E) Sturtime Oprwork

‘sli.do/comp526




3.9 Parallel sorting



Parallel quicksort

Let’s try to parallelize quicksort

ol.oen

» recursive calls can run in parallel (data independent)

> our sequential partitioning algorithm seems hard to parallelize

() b
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Parallel quicksort
Let’s try to parallelize quicksort
» recursive calls can run in parallel (data independent)
> our sequential partitioning algorithm seems hard to parallelize

» but can split partitioning into rounds:
1. comparisons: compare all elements to pivot (in parallel), store result in bitvectors
2. compute prefix sums of bit vectors (in parallel as above)

3. compact subsequences of small and large elements (in parallel as above)
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Parallel quicksort — Code

1
2
3
4
5
6
7
8
9

procedure parQuicksort(A[l..r))
b := choosePivot(A[l..r))
j := parallelPartition(A[!..r), b)
in parallel { parQuicksort(A[l..j)), parQuicksort(A[j + 1..7)) }

procedure parallelPartition(A[0..7), b)
swap(A[n — 1], A[b]); p = A[n —1]
fori=0,...,n—2doin parallel

Sli] = [Alil <p| //Slilis1or0
L[i] := 1-S[i]
end parallel for
in parallel { parallelPrefixSum(S[0..n — 2]); parallelPrefixSum(L[0..n — 2]) }
j=8n-2]+1
fori=0,...,n —2doin parallel
x = Ali]
if x < p then A[S[i] - 1] := x
else A[j + L[i]] := x
end parallel for
Aljl=p
return j

ac(/\‘@u 4 I( QQ{J@CAZ
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Parallel quicksort — Analysis

> Time:
» partition: all O(1) time except prefix sums ~-» ©(logn) time
» quicksort: expected depth of recursion tree is ©(log )
~ total time O(log?(1)) in expectation

» Work:
» partition: O(n) time except prefix sums ~» ©(nlogn) work
~ quicksort O (1 log? (1)) work in expectation

> using a work-efficient prefix-sums algorithm yields (expected) work-efficient sorting!

52



Parallel mergesort

> As for quicksort, recursive calls can run in parallel \/
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Parallel mergesort

> As for quicksort, recursive calls can run in parallel \/

» how about merging sorted halves A[l..im) and A[m..r)?

> Must treat elements independently.
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Parallel mergesort

> As for quicksort, recursive calls can run in parallel \/

» how about merging sorted halves A[l..im) and A[m..r)?

> Must treat elements independently. T &

» correct position of x in sorted output = rank of x breaking ties by position in A

> #elements < x =  #elements from A[l..m) that are < x
+ # elements from A[m..r) that are < x

» Note: rank in own run is simply the index of x in that run
» find rank in other run by binary search -

~+ can move it to correct position
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Parallel mergesort — Analysis

» Time:

»> merge: O(log 1) from binary search, rest O(1)
» mergesort: depth of recursion tree is ©(log 1)
~ total time O(logz(n))

» Work:

> merge: 1 binary searches ~» ©(nlogn)

~» mergesort: O(n logz(n)) work
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Parallel mergesort — Analysis

> Time:
> merge: O(logn) from binary search, rest O(1)
» mergesort: depth of recursion tree is ©(log 1)
~ total time O(log2(n))

> Work:

» merge: 1 binary searches ~» O(nlogn)

~» mergesort: O(n logz(n)) work

» work can be reduced to ®(1) for merge

v

do full binary searches only for regularly sampled elements

» ranks of remaining elements are sandwiched between sampled ranks
> use a sequential method for small blocks, treat blocks in parallel

> (details omitted)

¢ E_Yo,u,‘
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Parallel sorting — State of the art
» more sophisticated methods can sort in O(log 1) parallel time on CREW-PRAM

» practical challenge: small units of work add overhead
» need a lot of PEs to see improvement from O(log 1) parallel time

~» implementations tend to use simpler methods above
» check the Java library sources for interesting examples!
java.util.Arrays.parallelSort(int[])
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