ALGORITHMICS\$APPLIED

APPLIEDALGORITHMICS\$

CS\$APPLIEDALGORITHMI

DALGORITHMICS\$APPLIE

EDALGORITHMICS\$APPLIE

GORITHMICS\$APPLIEDAL

HMICS\$APPLIEDALGORIT

ICS\$APPLIEDALGORITHM

5

Parallel String Matching

7 March 2022

Sebastian Wild

Learning Outcomes

- **1.** Know and apply *parallelization strategies* for embarrassingly parallel problems.
- 2. Identify limits of parallel speedups.
- **3.** Understand *string matching by duels*, both sequential and parallel (excluding preprocessing).

Unit 5: Parallel String Matching

Outline

5 Parallel String Matching

- 5.1 Elementary Tricks
- 5.2 Periodicity
- 5.3 String Matching by Duels

Parallelizing string matching

- ▶ We have seen a plethora of string matching methods
- But all efficient methods seem inherently sequential Indeed, they became efficient only after building on knowledge from previous steps!

Sounds like the *opposite* of parallel!

- → This unit:
 - ► How well can we parallelize string matching?
 - ► What new ideas can help?

```
Here: string matching = find all occurrences of P in T (more natural problem for parallel) always assume m \le n
```


Embarrassingly Parallel

- ► A problem is called "embarrassingly parallel" if it can immediately be split into many, small subtasks that can be solved completely independently of each other
- ► Typical example: sum of two large matrices (all entries independent)
- → best case for parallel computation (simply assign each processor one subtask)
- Sorting is not embarrassingly parallel
 - ▶ no obvious way to define many *small* (=efficiently solvable) subproblems
 - but: some subtasks of our algorithms are, e.g., comparing all elements with pivot

Clicker Question

Is the string-matching problem "embarrassingly parallel"?

- A) Yes
- B No
- C Only for $n \gg m$
- **D** Only for $n \approx m$

sli.do/comp526

Elementary parallel string matching

Subproblems in string matching:

- ▶ string matching = check all guesses i = 0, ..., n m 1
- ▶ checking one guess is a subtask!

Elementary parallel string matching

Subproblems in string matching:

- ▶ string matching = check all guesses i = 0, ..., n m 1
- checking one guess is a subtask!

Approach 1:

Check all guesses in parallel

```
→ Time: Θ(m) using sequential checks Θ(\log m) on CREW-PRAM (\leadsto see tutorials) Θ(1) on CRCW-PRAM (\leadsto see tutorials) \leadsto Work: Θ((n-m)m) \leadsto not great . . .
```

Elementary parallel string matching

Subproblems in string matching:

- ▶ string matching = check all guesses i = 0, ..., n m 1
- checking one guess is a subtask!

Approach 1:

- ► Check all guesses in parallel
- \rightsquigarrow **Time**: $\Theta(m)$ using sequential checks
 - $\Theta(\log m)$ on CREW-PRAM (\leadsto see tutorials)
 - $\Theta(1)$ on CRCW-PRAM (\rightsquigarrow see tutorials)
- \rightsquigarrow **Work**: $\Theta((n-m)m) \rightsquigarrow$ not great . . .

Approach 2:

- ▶ Divide T into **overlapping** blocks of 2m characters: T[0..2m), T[m..3m), T[2m..4m), T[3m..5m)...
- ▶ Find matches inside blocks in parallel, using efficient sequential method
 - \rightarrow $\Theta(2m+m) = \Theta(m)$ each

- O(n+m) = O(n)
- \rightsquigarrow **Time**: $\Theta(m)$ **Work**: $\Theta(\frac{n}{m} \cdot m) = \Theta(n)$

Clicker Question

Is the string-matching problem "embarrassingly parallel"?

- A) Yes
- B No
- C Only for $n \gg m$
- **D** Only for $n \approx m$

sli.do/comp526

Clicker Question

Is the string-matching problem "embarrassingly parallel"?

A $\frac{\text{Yes}}{\text{B}}$ B $\frac{\text{Ne}}{\text{C}}$ C Only for $n \gg m$

sli.do/comp526

Elementary parallel matching – Discussion

- very simple methods
- \triangle could even run distributed with access to part of T
- \bigcap parallel speedup only for $m \ll n$

Goal:

- work-efficient methods with better parallel time?
- → must genuinely parallelize the matching process!
- → need new ideas

→ higher speedup

(and the preprocessing of the pattern)

5.2 Periodicity

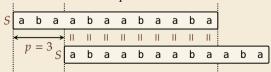
Periodicity of Strings

- ► S = S[0..n 1] has period p iff $\forall i \in [0..n p) : S[i] = S[i + p]$
- ▶ p = 0 and any $p \ge n$ are trivial periods but these are not very interesting . . .

Examples:

 \triangleright *S* = baaababaaab has period 6:

 \triangleright *S* = abaabaabaaba has period 3:



Periodicity and KMP

Lemma 5.1 (Periodicity = Longest Overlap)

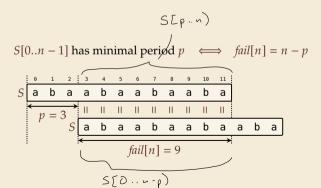
```
p \in [1..n] is the shortest period in S = S[0..n - 1] iff S[0..n - p) is the longest prefix that is also a suffix of S[p..n).
```

⋖.

f391040009648444a80ed5484188e834

Lemma 5.1 (Periodicity = Longest Overlap)

 $p \in [1..n]$ is the *shortest* period in S = S[0..n - 1] iff S[0..n - p) is the longest prefix that is also a suffix of S[p..n).



Periodicity Lemma

Lemma 5.2 (Periodicity Lemma)

If string S = S[0..n-1] has periods p and q with $p+q \le n$, then it has also period $\gcd(p,q)$.

Proof:

Periodic strings

- ▶ What does the smallest period p tell us about a string S[0..n)?
- ► Two distinct regimes:

1111/1/11

1. S is periodic: $p \leq \frac{n}{2}$

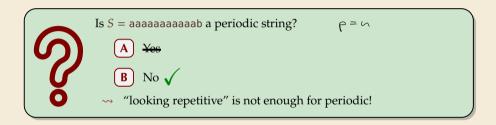
More precisely: S is totally determined by a string F = F[0..p) = S[0..p)S keeps repeating F until n characters are filled

- \rightarrow S is highly repetitive!
- 2. *S* is *aperiodic* (also *non-periodic*): $p > \frac{n}{2}$ *S* cannot be written as $S = F^k \cdot Y$ with $k \ge 2$ and Y a prefix of F

Clicker Question

- A Yes
- B No

Clicker Question



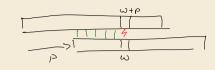
sli.do/comp526

5.3 String Matching by Duels

Periods and Matching

Witnesses for non-periodicity:

- ightharpoonup Assume, P[0..m) does **not** have period p
- \rightarrow \exists witness against periodicity: position $\omega \in [0..m p) : P[\omega] \neq P[\omega + p]$



Periods and Matching

Witnesses for non-periodicity:

- ightharpoonup Assume, P[0..m) does **not** have period p
- \rightarrow \exists witness against periodicity: position $\omega \in [0..m-p): P[\omega] \neq P[\omega+p]$

Dueling via witnesses:

▶ If P[0..m) does **not** have period p, then at most one of positions i and i + p can be (the first position of) an occurrence of P.

Proof: Cannot have
$$T[(i+p)+\omega] = P[\omega] \neq P[\omega+p] = T[i+(\omega+p)].$$

Periods and Matching

Witnesses for non-periodicity:

- ightharpoonup Assume, P[0..m) does **not** have period p
- \rightarrow \exists witness against periodicity: position $\omega \in [0..m-p): P[\omega] \neq P[\omega+p]$

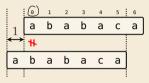
Dueling via witnesses:

▶ If P[0..m) does **not** have period p, then at most one of positions i and i + p can be (the first position of) an occurrence of P.

Proof: Cannot have
$$T[(i+p) + \omega] = P[\omega] \neq P[\omega + p] = T[i + (\omega + p)].$$

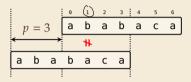
▶ **Duel** between guess i and i + p: compare text character overlapped with witness ω

Paperiodic

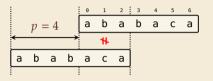


p	1	
$\omega[p]$	0	

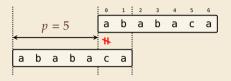
р	1	2	
$\omega[p]$	0	3	



1	2	3	
0	3	1	
			1 2 3 0 3 1



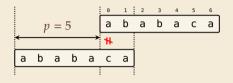
p	1	2	3	4	
$\omega[p]$	0	3	1	1	



_	р	1	2	3	4	5
	$\omega[p]$	0	3	1	1	0

1. Compute witnesses against periodicity for P = ababaca

p=6 smallest period



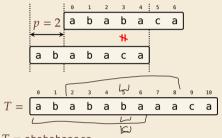
p	1	2	3	4	5
$\omega[p]$	0	3	1	1	0

2. Duel! T = abababaaaca

p	1	2	3	4	5
$\omega[p]$	0	3	1	1	0

$$T = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ a & b & a & b & a & b & a & a & a & c & a \end{bmatrix}$$

- **2.** Duel! T = abababaaaca
 - ▶ **0 vs. 1** p = 1, $\omega = 0$ \longrightarrow $T[1] = b \neq P[\omega]$ \longrightarrow No occurrence at 1!



- **2.** Duel! T = abababaaaca
 - ▶ **0 vs. 1** $p = 1, \omega = 0 \implies T[1] = b \neq P[\omega] \implies \text{No occurrence at } 1!$
 - ▶ 0 vs. 2 p = 2, $\omega = 3 \rightarrow T[5] = b \neq c = P[\omega + p] \rightarrow No$ occurrence at 0!

p	,	1	2	3	4	5
ω[<i>p</i>]	0	3	1	1	0

$$T = \begin{bmatrix} a & b & a & b & a & b & a & a & a & c & a \\ a & b & a & b & a & b & a & a & a & c & a \end{bmatrix}$$

- **2.** Duel! T = abababaaaca
 - ▶ 0 vs. 1 $p = 1, \omega = 0 \implies T[1] = b \neq P[\omega] \implies \text{No occurrence at } 1!$
 - ▶ 0 vs. 2 p = 2, $\omega = 3 \implies T[5] = b \neq c = P[\omega + p] \implies$ No occurrence at 0!
 - ▶ 2 vs. 3 p = 1, $\omega = 0 \implies T[3] = b \neq a = P[\omega] \implies$ No occurrence at 3!

String Matching by Duels – Sequential

Assume that pattern P is *aperiodic*.

(can deal with periodic case separately; details omitted)

Algorithm:

- **1.** Set $\mu := \lfloor \frac{m}{2} \rfloor$
- **2.** Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.
- 3. For each block of μ consecutive indices $[0..\mu)$, $[\mu..2\mu)$, $[2\mu..3\mu)$, . . . run $\mu-1$ duels to eliminate all but one guess in the block
- **4.** check remaining $\lceil \frac{n}{\mu} \rceil = O(n/m)$ guesses naively

String Matching by Duels – Sequential

Assume that pattern *P* is *aperiodic*.

(can deal with periodic case separately; details omitted)

Algorithm:

- **1.** Set $\mu := \lfloor \frac{m}{2} \rfloor$
- **2.** Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.
- 3. For each block of μ consecutive indices $[0..\mu)$, $[\mu..2\mu)$, $[2\mu..3\mu)$, ... run $\mu-1$ duels to eliminate all but one guess in the block
- **4.** check remaining $\lceil \frac{n}{\mu} \rceil = O(n/m)$ guesses naively

 \rightarrow another worst-case O(n + m) string matching method!

Analysis:

- **1.** O(1)
- 2. $O(m) \rightsquigarrow later$
- 3. $O(\frac{n}{m})$ blocks O(m) duels each
- 4. $O(\frac{n}{m})$, $\leq m$ cmps each

String Matching by Duels – Parallel

Assume that pattern P is *aperiodic*.

(can deal with periodic case separately; details omitted)

Algorithm:

- **1.** Set $\mu := \lfloor \frac{m}{2} \rfloor$
- **2.** Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.
- 3. For each block of μ consecutive indices $[0..\mu)$, $[\mu..2\mu)$, $[2\mu..3\mu)$, . . . run $\mu-1$ duels to eliminate all but one guesses in the block
- **4.** check remaining $\lceil \frac{n}{u} \rceil = O(n/m)$ guesses naively

String Matching by Duels – Parallel

Assume that pattern *P* is *aperiodic*.

(can deal with periodic case separately; details omitted)

Algorithm:

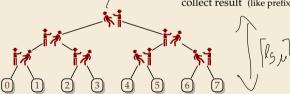
- **1.** Set $\mu := \lfloor \frac{m}{2} \rfloor$
- **2.** Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.
- **3.** For each block of μ consecutive indices $[0..\mu)$, $[\mu..2\mu)$, $[2\mu..3\mu)$, . . . run $\mu-1$ duels to eliminate all but one guesses in the block
- **4.** check remaining $\lceil \frac{n}{n} \rceil = O(n/m)$ guesses naively

How to parallelize:

- 1. —
- 2. $O(\log^2(m)) \rightsquigarrow \text{later}$
- 3. blocks in parallel (indep.), tournament of $\lceil \lg \mu \rceil$ rounds
- **4.** check in parallel collect result (like prefix sum)

Tournament of duals:

- each dual eliminates one guess
- → declare other guess winner
- conceptually like (prefix) sum!



String Matching by Duels – Parallel

Assume that pattern *P* is *aperiodic*.

(can deal with periodic case separately; details omitted)

Algorithm:

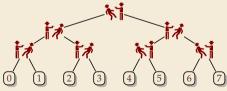
- **1.** Set $\mu := \lfloor \frac{m}{2} \rfloor$
- **2.** Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.
- **3.** For each block of μ consecutive indices $[0..\mu)$, $[\mu..2\mu)$, $[2\mu..3\mu)$, . . . run $\mu-1$ duels to eliminate all but one guesses in the block
- **4.** check remaining $\lceil \frac{n}{u} \rceil = O(n/m)$ guesses naively

How to parallelize:

- 1. —
- 2. $O(\log^2(m)) \rightsquigarrow \text{later}$
- 3. blocks in parallel (indep.), tournament of $\lceil \lg \mu \rceil$ rounds
- **4.** check in parallel collect result (like prefix sum)

Tournament of duals:

- each dual eliminates one guess
- → declare other guess winner
- conceptually like (prefix) sum!



 \longrightarrow Matching part can be done in $O(\log m)$ parallel time and O(n) work!

Computing witnesses

It remains to find the witnesses $\omega[1..\mu]$.

sequentially:

- ▶ an elementary procedure is similar in spirit to KMP failure array
- ightharpoonup can be computed in $\Theta(m)$ time

parallel:

- ► much more complicated → beyond scope of the module
 - first $O(\log^2(m))$ time on CREW-RAM
 - ▶ later $O(\log m)$ time and O(m) work using *pseudoperiod method*

Parallel Matching – State of the art

- $ightharpoonup O(\log m)$ time & work-efficient parallel string matching
- ▶ this is optimal for CKEW-1 RGM.

 on CRCW-PRAM: matching part even in O(1) time (\leadsto tutorials)

 but preprocessing requires $\Theta(\log\log m)$ time