Text Indexing Searching whole genomes

7 March 2022
Sebastian Wild

Learning Outcomes

1. Know and understand methods for text indexing: inverted indices, suffix trees, (enhanced) suffix arrays
2. Know and understand generalized suffix trees
3. Know properties, in particular performance characteristics, and limitations of the above data structures.
4. Design (simple) algorithms based on suffix trees.
5. Understand construction algorithms for suffix arrays and LCP arrays.

Unit 6: Text Indexing

Outline

6 Text Indexing

6.1 Motivation
6.2 Suffix Trees
6.3 Applications
6.4 Longest Common Extensions
6.5 Suffix Arrays
6.6 Linear-Time Suffix Sorting: Overview
6.7 Linear-Time Suffix Sorting: The DC3 Algorithm
6.8 The LCP Array
6.9 LCP Array Construction

6.1 Motivation

Text indexing

- Text indexing (also: offline text search):
- case of string matching: find $P[0 . . m)$ in $T[0 . . n)$
- but with fixed text \rightsquigarrow preprocess T (instead of P)
\leadsto expect many queries P, answer them without looking at all of T
\rightsquigarrow essentially a data structuring problem: "building an index of T "
Latin: "one who points out"
- application areas
- web search engines
- online dictionaries
- online encyclopedia
- DNA/RNA data bases
- ... searching in any collection of text documents (that grows only moderately)

Inverted indices

same as "indexes"

- original indices in books: list of (key) words \mapsto page numbers where they occur
- assumption: searches are only for whole (key) words
\rightsquigarrow often reasonable for natural language text

Inverted indices

same as "indexes"

- original indices in books: list of (key) words \mapsto page numbers where they occur
- assumption: searches are only for whole (key) words
\rightsquigarrow often reasonable for natural language text

Inverted index:

- collect all words in T
- can be as simple as splitting T at whitespace
- actual implementations typically support stemming of words goes \rightarrow go, cats \rightarrow cat
could use
- store mapping from words to a list of occurrences \rightsquigarrow how?

$$
B S T
$$

$$
L_{>} \Omega(\log n)
$$

$$
\text { dictionary keys }=\text { words }
$$

too slow!

$$
\text { values }=\text { list of starting indices of ocsevrrence }
$$

Clicker Question

Do you know what a trie is?
(A) A what? No!

B I have heard the term, but don't quite remember.
(C) I remember hearing about it in a module.
(D) Sure.
sli.do/comp526

Tries

- efficient dictionary data structure for strings
- name from retrieval, but pronounced "try"
- tree based on symbol comparisons
- Assumption: stored strings are prefix-free (no string is a prefix of another)
- strings of same length some character $\notin \Sigma$
- strings have "end-of-string" marker \$
- Example: $\sum=\{a, b\}$ \{aa\$, aaab\$, abaab\$, abb\$, abbab\$, bba\$, bbab\$, bbb\$\}

$$
\begin{gathered}
\text { insert } S=b b \$ a b a \$ \& S T \\
\text { delete } a . a \$
\end{gathered}
$$

Clicker Question

Suppose we have a trie that stores n strings over $\Sigma=\{A, \ldots, Z\}$. Each stored string consists of m characters.
We now search for a query string Q with $|Q|=q$ (with $q \leq m$).
How many nodes in the trie are visited during this query?
A $\Theta(\log n)$
B $\Theta(\log (n m))$
C $\Theta(m \cdot \log n)$
(D) $\Theta(m+\log n)$
(E) $\Theta(m)$
(F) $\Theta(\log m)$
(G) $\Theta(q)$
。
sli.do/comp526

Clicker Question

Suppose we have a trie that stores n strings over $\Sigma=\{A, \ldots, Z\}$. Each stored string consists of m characters.
We now search for a query string Q with $|Q|=q$ (with $q \leq m$).
How many nodes in the trie are visited during this query?

sli.do/comp526

Clicker Question

Suppose we have a trie that stores n, strings over $\Sigma=\{A, \ldots, Z\}$. Each stored string consists of m characters.
How many nodes does the trie have in total in the worst case?
(A) $\Theta(n)$
(D) $\Theta(n \log m)$
(B) $\Theta(n+m)$
(E) $\Theta(m)$
(C) $\Theta(n \cdot m)$
F $\Theta(m \log n)$
sli.do/comp526

Clicker Question

$n \cdot\left(m-\log _{26}(c)\right.$

Suppose we have a brie that stores n strings over $\Sigma=\{A, \ldots, Z\}$. Each stored string consists of m characters.
How many nodes does the erie have in total in the worst case?

(D) © (alexin)

F) P (melon
sli.do/comp526

Compact tries

$$
=1 \text { child }
$$

- compress paths of unary nodes into single edge

$$
b a b \$
$$

- nodes store index of next character to check

\rightsquigarrow searching slightly trickier, but same time complexity as in trie
- all nodes ≥ 2 children \leadsto \#nodes \leq \#leaves $=$ \#strings \leadsto linear space $O(n)$

Tries as inverted index

0 simple
0 fast lookup
q
cannot handle more general queries:

- search part of a word
- search phrase (sequence of words)

Tries as inverted index

simple
0 fast lookup
cannot handle more general queries:

- search part of a word
- search phrase (sequence of words)
what if the 'text' does not even have words to begin with?!
- biological sequences

ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCCCCTGGAGGGTGGCCCCACCGGC CGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGCCTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGC CAGTGCCGGGCCCCTCATAGGAGAGGAAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAA TGCCCTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAGTTTAATTACAGACCTGAA

- binary streams

$$
\begin{aligned}
& 00000010101001111010111000001111100011111011111001101101000011100010011011110000010001101010 \\
& 01101100001101011010000000100000000111010110000010000111101011101100100011001011011101111111 \\
& 1100010100010110010100000011101010100110000000011011000011001111100001010101011101111000011 \\
& 10101110010010101010100000111110100110000001111001101010000000100100100000101100011000110111
\end{aligned}
$$

$\rightsquigarrow \quad$ need new ideas

6.2 Suffix Trees

Suffix trees - A 'magic' data structure

Appetizer: Longest common substring problem

- Given: strings $S_{1}, \ldots, S_{k} \quad$ Example: $S_{1}=$ superiorcalifornialives, $S_{2}=$ sealiver
- Goal: find the longest substring that occurs in all k strings

Suffix trees - A 'magic' data structure

Appetizer: Longest common substring problem

- Given: strings $S_{1}, \ldots, S_{k} \quad$ Example: $S_{1}=$ superiorcalifornialives, $S_{2}=$ sealiver
- Goal: find the longest substring that occurs in all k strings
\rightsquigarrow alive
? ?
Can we do this in time $O\left(\left|S_{1}\right|+\cdots+\left|S_{k}\right|\right)$? How??

Suffix trees - A 'magic' data structure

Appetizer: Longest common substring problem

- Given: strings S_{1}, \ldots, S_{k}

Example: $S_{1}=$ superiorcalifornialives, $S_{2}=$ sealiver

- Goal: find the longest substring that occurs in all k strings
\rightsquigarrow alive
$? ?$
Can we do this in time $O\left(\left|S_{1}\right|+\cdots+\left|S_{k}\right|\right)$? How??

Enter: suffix trees

- versatile data structure for index with full-text search
- linear time (for construction) and linear space
- allows efficient solutions for many advanced string problems

[^0]
Suffix trees - Definition

- suffix tree \mathcal{T} for text $T=T[0 . . n)=$ compact trie of all suffixes of $T \$ \quad(\operatorname{set} T[n]:=\$)$
$T=b \operatorname{anana} \$$
anana \$

Suffix trees - Definition

suffix tree \mathcal{T} for text $T=T[0 . . n)=$ compact trie of all suffixes of $T \$ \quad(\operatorname{set} T[n]:=\$)$

Example:

T = bananaban\$
suffixes: \{bananaban\$, ananaban\$, nanaban\$, anaban\$, naban\$, aban\$, ban\$, an\$, n\$, \$\}

$T=$| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{b} | a | n | a | n | a | b | a | n | $\$$ |

Suffix trees - Definition

suffix tree \mathcal{T} for text $T=T[0 . . n)=$ compact trie of all suffixes of $T \$ \quad(\operatorname{set} T[n]:=\$)$

- except: in leaves, store start index (instead of copy of actual string)

Example:

T = bananaban\$
suffixes: \{bananaban\$, ananaban\$, nanaban\$, anaban\$, naban\$, aban\$, ban\$, an\$, n\$, \$\}

$T=$| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b | a | n | a | n | a | b | a | n | $\mathbf{\$}$ |

Suffix trees - Definition

suffix tree \mathcal{T} for text $T=T[0 . . n)=$ compact trie of all suffixes of $T \$ \quad(\operatorname{set} T[n]:=\$)$

- except: in leaves, store start index (instead of copy of actual string)

Example:

T = bananaban\$
suffixes: \{bananaban\$, ananaban\$, nanaban\$, anaban\$, naban\$, aban\$, ban\$, an\$, n\$, \$\}

$T=$| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{b} | a | n | a | n | a | b | a | n | $\$$ |

- also: edge labels like in compact trie
- (more readable form on slides to explain algorithms)

Suffix trees - Construction

- $T[0 . . n]$ has $n+1$ suffixes (starting at character $i \in[0 . . n]$)
- We can build the suffix tree by inserting each suffix of T into a compressed trie.

But that takes time $\Theta\left(n^{2}\right)$. \rightsquigarrow not interesting!

Suffix trees - Construction

- $T[0 . . n]$ has $n+1$ suffixes (starting at character $i \in[0 . . n]$)
- We can build the suffix tree by inserting each suffix of T into a compressed trie. But that takes time $\Theta\left(n^{2}\right)$. \rightsquigarrow not interesting!
same order of growth as reading the text!
Amazing result: Can construct the suffix tree of T in $\Theta(n)$ time!
- algorithms are a bit tricky to understand
- but were a theoretical breakthrough
- and they are efficient in practice (and heavily used)!
\rightsquigarrow for now, take linear-time construction for granted. What can we do with them?

Clicker Question

Recap: Check all correct statements about suffix tree \mathcal{T} of $T[0 . . n)$.
(A) We require T to end with $\$$.

B The size of \mathcal{T} can be $\Omega\left(n^{2}\right)$ in the worst case.
C \mathcal{T} is a standard trie of all suffixes of $T \$$.
(D) \mathcal{T} is a compact trie of all suffixes of $T \$$.
(E) The leaves of \mathcal{T} store (a copy of) a suffix of $T \$$.

F Naive construction of \mathcal{T} takes $\Omega\left(n^{2}\right)$ (worst case).
G \mathcal{T} can be computed in $O(n)$ time (worst case).
(H) \mathcal{T} has n leaves.

> sli.do/comp526

Clicker Question

Recap: Check all correct statements about suffix tree \mathcal{T} of $T[0 . . n)$.
(A) We require T to end with $\$$. $\sqrt{ }$

(D) \mathcal{T} is a compact trie of all suffixes of $T \$$.
(E) The fef
(F) Naive construction of \mathcal{T} takes $\Omega\left(n^{2}\right)$ (worst case).

G \mathcal{T} can be computed in $O(n)$ time (worst case).
(H) Thas

> sli.do/comp526
6.3 Applications

Applications of suffix trees

- In this section, always assume suffix tree \mathcal{T} for T given.

Recall: \mathcal{T} stored like this:

but think about this:

- Moreover: assume internal nodes store pointer to leftmost leaf in subtree.
- Notation: $T_{i}=T[i . . n] \quad$ (including $\$$)

Clicker Question

Clicker Question

Application 1: Text Indexing / String Matching

- P occurs in $T \Longleftrightarrow P$ is a prefix of a suffix of T
- we have all suffixes in \mathfrak{T} !

Application 1: Text Indexing / String Matching

- P occurs in $T \Longleftrightarrow P$ is a prefix of a suffix of T
- we have all suffixes in \mathfrak{T} !
\rightsquigarrow (try to) follow path with label P, until

1. we get stuck
at internal node (no node with next character of P)
or inside edge (mismatch of next characters)
$\rightsquigarrow P$ does not occur in T
2. we run out of pattern
reach end of P at internal node v or inside edge towards v

$\rightsquigarrow P$ occurs at all leaves in subtree of v
3. we run out of tree
reach a leaf ℓ with part of P left \rightsquigarrow compare P to ℓ.

1
This cannot happen when testing edge labels since $\$ \notin \Sigma$, but needs check(s) in compact trie implementation!

- Finding first match (or NO_MATCH) takes $O(|P|)$ time!
follow leftruoxt-lect poiner

Application 1: Text Indexing / String Matching

- P occurs in $T \Longleftrightarrow P$ is a prefix of a suffix of T
- we have all suffixes in \mathfrak{T} !
\rightsquigarrow (try to) follow path with label P, until

1. we get stuck
at internal node (no node with next character of P)
or inside edge (mismatch of next characters)
$\leadsto P$ does not occur in T
2. we run out of pattern
reach end of P at internal node v or inside edge towards v $\rightsquigarrow P$ occurs at all leaves in subtree of v
3. we run out of tree
reach a leaf ℓ with part of P left \rightsquigarrow compare P to ℓ.

!
This cannot happen when testing edge labels since $\$ \notin \Sigma$, but needs check(s) in compact trie implementation!

- Finding first match (or NO_MATCH) takes $O(|P|)$ time!

Examples:

- $P=\mathrm{ann}$
- $P=$ baa 1
- $P=\mathrm{ana}$ \
- $P=\mathrm{ba}$

Application 2: Longest repeated substring

- Goal: Find longest substring $T[i . . i+\ell)$ that occurs also at $j \neq i: T[j . . j+\ell)=T[i . . i+\ell)$.

e.g. for compression \rightsquigarrow Unit 7
? How can we efficiently check all possible substrings?

Application 2: Longest repeated substring

- Goal: Find longest substring $T[i . . i+\ell)$ that occurs also at $j \neq i: T[j . . j+\ell)=T[i . . i+\ell)$.

$$
\text { e.g. for compression } \rightsquigarrow \text { Unit } 7
$$

? How can we efficiently check all possible substrings?

- Repeated substrings $=$ shared paths in suffix tree
- $T_{5}=$ aban\$ and $T_{7}=$ an\$ have longest common prefix 'a'
$\rightsquigarrow \exists$ internal node with path label 'a'
here single edge, can be longer path

Application 2: Longest repeated substring

- Goal: Find longest substring $T[i . . i+\ell)$ that occurs also at $j \neq i: T[j . . j+\ell)=T[i . . i+\ell)$.

$$
\text { e.g. for compression } \rightsquigarrow \text { Unit } 7
$$

? How can we efficiently check all possible substrings?

- Repeated substrings $=$ shared paths in suffix tree
- $T_{5}=$ aban\$ and $T_{7}=$ an\$ have longest common prefix 'a'
$\rightsquigarrow \exists$ internal node with path label 'a'

[^1]\rightsquigarrow longest repeated substring $=$ longest common prefix (LCP) of two suffixes

Application 2: Longest repeated substring

- Goal: Find longest substring $T[i . . i+\ell)$ that occurs also at $j \neq i: T[j . . j+\ell)=T[i . . i+\ell)$.

$$
\text { e.g. for compression } \rightsquigarrow \text { Unit } 7
$$

? How can we efficiently check all possible substrings?

- Repeated substrings = shared paths in suffix tree
- $T_{5}=$ aban\$ and $T_{7}=$ an\$ have longest common prefix 'a'
$\rightsquigarrow \exists$ internal node with path label 'a'
here single edge, can be longer path
\rightsquigarrow longest repeated substring $=$ longest common prefix (LCP) of two suffixes
- Algorithm:

1. Compute string depth (=length of path label) of nodes
2. Find internal nodes with maximal string depth

- Both can be done in depth-first traversal $\rightsquigarrow \Theta(n)$ time

Generalized suffix trees

- longest repeated substring (of one string) feels very similar to longest common substring of several strings $T^{(1)}, \ldots, T^{(k)} \quad$ with $T^{(j)} \in \Sigma^{n_{j}}$
- can we solve that in the same way?
- could build the suffix tree for each $T^{(j)} \ldots$ but doesn't seem to help

Generalized suffix trees

- longest repeated substring (of one string) feels very similar to longest common substring of several strings $T^{(1)}, \ldots, T^{(k)}$ with $T^{(j)} \in \Sigma^{n_{j}}$
- can we solve that in the same way?
- could build the suffix tree for each $T^{(j)} \ldots$ but doesn't seem to help
\rightsquigarrow need a single/joint suffix tree for several texts

Generalized suffix trees

- longest repeated substring (of one string) feels very similar to longest common substring of several strings $T^{(1)}, \ldots, T^{(k)} \quad$ with $T^{(j)} \in \sum^{n_{j}}$
- can we solve that in the same way?
- could build the suffix tree for each $T^{(j)} \ldots$ but doesn't seem to help
\rightsquigarrow need a single/joint suffix tree for several texts
Enter: generalized suffix tree
- Define $T:=T^{(1)} \$_{1} T^{(2)} \$_{2} \cdots T^{(k)} \$_{\mathbf{k}}$ for k new end-of-word symbols
- Construct suffix tree \mathcal{T} for T
$\rightsquigarrow \$_{j}$-edges always leads to leaves $\rightsquigarrow \exists$ leaf (j, i) for each suffix $T_{i}^{(j)}=T^{(j)}\left[i . . n_{j}\right]$

Clicker Question

What is the longest common substring of the strings
bcabcac, aabca and bcaa?
sli.do/comp526

Application 3: Longest common substring

- With that new idea, we can find longest common substrings:

1. Compute generalized suffix tree \mathcal{T}.
2. Store with each node the subset of strings that contain its path label:
2.1. Traverse \mathcal{T} bottom-up.
2.2. For a leaf (j, i), the subset is $\{j\}$.

2.3. For an internal node, the subset is the union of its children.
3. In top-down traversal, compute string depths of nodes. (as above)
4. Report deepest node (by string depth) whose subset is $\{1, \ldots, k\}$.

- Each step takes time $\Theta(n)$ for $n=n_{1}+\cdots+n_{k}$ the total length of all texts.
"Although the longest common substring problem looks trivial now, given our knowledge of suffix trees,
it is very interesting to note that in 1970 Don Knuth conjectured that
a linear-time algorithm for this problem would be impossible."
[Gusfield: Algorithms on Strings, Trees, and Sequences (1997)]

Longest common substring - Example

$T^{(1)}=$ bcabcac, $\quad T^{(2)}=$ aabca, $\quad T^{(3)}=$ bcaa

6.4 Longest Common Extensions

Application 4: Longest Common Extensions

- We implicitly used a special case of a more general, versatile idea:

The longest common extension (LCE) data structure:

- Given: String $T[0 . . n)$

- Goal: Answer LCE queries, i. e., given positions i, j in T, how far can we read the same text from there?
formally: $\operatorname{LCE}(i, j)=\max \{\ell: T[i . . i+\ell)=T[j . . j+\ell)\}$

Application 4: Longest Common Extensions

- We implicitly used a special case of a more general, versatile idea:

ADT
The longest common extension (LCE) data structure:-

- Given: String T[0..n)
- Goal: Answer LCE queries, i. e., given positions i, j in T, how far can we read the same text from there?
formally: $\operatorname{LCE}(i, j)=\max \{\ell: T[i . . i+\ell)=T[j . . j+\ell)\}$
\rightsquigarrow use suffix tree of T !
(length of) longest common prefix
of i th and j th suffix
- In T: $\operatorname{LCE}(i, j)=\operatorname{LCP}\left(T_{i}, T_{j}\right) \rightsquigarrow$ same thing, different name!
$=$ string depth of
lowest common ancester (LCA) of leaves i and j

$$
\operatorname{LCP}\left(T_{5}, T_{1}\right)
$$

- in short:

$$
\operatorname{LCE}(i, j)=\operatorname{LCP}\left(T_{i}, T_{j}\right)=\operatorname{stringDepth}(\operatorname{LCA}(\bar{i}, j))
$$

Efficient LCA
How to find lowest common ancestors?

- Could walk up the tree to find LCA $\rightsquigarrow \Theta(n)$ worst case q
- Could store all LCAs in big table $\rightsquigarrow \Theta\left(n^{2}\right)$ space and preprocessing
trivial no preprocessing $\leadsto \theta(l)$ query

Efficient LCA

How to find lowest common ancestors?

- Could walk up the tree to find LCA $\rightsquigarrow \Theta(n)$ worst case q
- Could store all LCAs in big table $\rightsquigarrow \Theta\left(n^{2}\right)$ space and preprocessing

Amazing result: Can compute data structure in $\Theta(n)$ time and space that finds any LCA is constant(!) time.

- a bit tricky to understand
- but a theoretical breakthrough
- and useful in practice
\rightsquigarrow for now, use $O(1)$ LCA as black box.

\rightsquigarrow After linear preprocessing (time \& space), we can find LCEs in $O(1)$ time.

Application 5: Approximate matching

k-mismatch matching:

- Input: text $T[0 . . n)$, pattern $P[0 . . m), k \in[0 . . m)$
- Output:
"Hamming distance $\leq k$ "
- smallest i so that $T[i . . i+m)$ are P differ in at most k characters
- or NO_MATCH if there is no such i
\rightsquigarrow searching with typos

- Adapted brute-force algorithm $\rightsquigarrow O(n \cdot m)$

$$
\begin{aligned}
& \text { - compare w/ exact string } \\
& \text { matching } O(n+m)
\end{aligned}
$$

Application 5: Approximate matching

k-mismatch matching:

- Input: text $T[0 . . n)$, pattern $P[0 . . m), k \in[0 . . m)$
- Output:
"Hamming distance $\leq k$ "
\downarrow
- smallest i so that $T[i . . i+m)$ are P differ in at most k characters
- or NO_MATCH if there is no such i
\rightsquigarrow searching with typos

- Adapted brute-force algorithm $\rightsquigarrow O(n \cdot m)$

- Assume longest common extensions in $T \$_{1} P \$_{2}$ an be found in $O(1)$
\rightsquigarrow generalized suffix tree \mathcal{T} has been built
\rightsquigarrow string depths of all internal nodes have been computed
\rightsquigarrow constant-time LCA data structure for \mathcal{T} has been built

Clicker Question

What is the Hamming distance between heart and beard?
sli.do/comp526

Kangaroo Algorithm for approximate matching

```
procedure kMismatch(T[0..n - 1], \(P[0 . . m-1])\)
    // build LCE data structure
    for \(i:=0, \ldots, n-m-1\) do
        mismatches := 0; \(t:=i ; p:=0\)
        while mismatches \(\leq k \wedge p<m\) do
            \(\ell:=\operatorname{LCE}(t, p) / / j u m p\) over matching part
            \(t:=t+\ell+1 ; p:=p+\ell+1\)
            mismatches \(:=\) mismatches +1
        if \(p==m\) then
            return \(i\)
```


- Analysis: $\Theta(n+m)$ preprocessing $+O(n \cdot k)$ matching
\rightsquigarrow very efficient for small k

$$
\text { good if } k \ll m
$$

- State of the art
- $O\left(n \frac{k^{2} \log k}{m}\right)$ possible with complicated algorithms extensions for edit distance $\leq k$ possible

Application 6: Matching with wildcards

- Allow a wildcard character in pattern

$$
\begin{array}{cc}
\text { unit* } & P \\
\text { in }_{\mathbf{U}} \text { units }{ }_{\mathbf{L}}{ }_{\mathbf{L}} \text { will } & T
\end{array}
$$

stands for arbitrary (single) character

- similar algorithm as for k-mismatch $\rightsquigarrow O(n \cdot k+m)$ when P has k wildcards
you can also use suffix trees to traverse P.
$\approx G^{k}$ parks explored for k wildcards
mataleing in O ($\sigma^{b} \cdot m+$ output $)$

Application 6: Matching with wildcards

- Allow a wildcard character in pattern $\begin{array}{ccc}\text { unit* } & P \\ \text { in }_{\mathbf{U}} \text { unit5 } \mathbf{U}_{\mathbf{U}} \mathbf{w e}_{\mathbf{U}} \text { will } & T\end{array}$
stands for arbitrary (single) character
- similar algorithm as for k-mismatch $\rightsquigarrow O(n \cdot k+m)$ when P has k wildcards
* * *

Many more applications, in particular for problems on biological sequences

20+ described in Gusfield, Algorithms on strings, trees, and sequences (1999)

Suffix trees - Discussion

- Suffix trees were a threshold invention

0 linear time and space
0 suddenly many questions efficiently solvable in theory

Suffix trees - Discussion

- Suffix trees were a threshold invention

0 linear time and space
0 suddenly many questions efficiently solvable in theory

\mathcal{F} construction of suffix trees:
linear time, but significant overhead
q construction methods fairly complicated
q many pointers in tree incur large space overhead $\theta(n \cdot \sigma)$ if array of cleild points,

$\theta\left(n g_{s} \sigma\right)$ if we uso dichionaies, but the search is slower

6.5 Suffix Arrays

Putting suffix trees on a diet

- Observation: order of leaves in suffix tree

$=$ suffixes lexicographically sorted

Putting suffix trees on a diet

- Observation: order of leaves in suffix tree

$$
=\text { suffixes lexicographically sorted }
$$

- Idea: only store list of leaves $L[0 . . n]$
- Enough to do efficient string matching!

1. Use binary search for pattern P
2. check if P is prefix of suffix after position found

- Example: $P=$ ana $\$$

Putting suffix trees on a diet

- Observation: order of leaves in suffix tree $=$ suffixes lexicographically sorted
- Idea: only store list of leaves $L[0 . . n]$
- Enough to do efficient string matching!

1. Use binary search for pattern P
2. check if P is prefix of suffix after position found

- Example: $P=$ ana
$\rightsquigarrow L[0 . . n]$ is called suffix array:
$L[r]=$ (start index of r th suffix in sorted order
- using L, can do string matching with $S M$ in
 $\log n)$ $\leq(\lg n+2) \cdot m$ character comparisons

Clicker Question

Check all correct statements about suffix array $L[0 . . n]$ and suffix tree \mathcal{T} of text $T[0 . . n)($ for $\sigma=O(1))$
(A) $L[0 . . n]$ lists the start indices of leaves of \mathcal{T} in left-to-right order.
(B) $T[L[r] . . n]$ is the path label in \mathcal{T} to the leaf storing r.
(C) $T[L[r] . . n]$ is the path label to the r th leaf in \mathcal{T}.
(D) $T_{L[r]}$ is the r th smallest suffix of T (lexicographic order).
(E) In terms of Θ-classes, \mathcal{T} needs more space than L.

F L (and T) suffice to solve the text indexing problem.
sli.do/comp526

Clicker Question

Check all correct statements about suffix array $L[0 . . n]$ and suffix tree \mathcal{T} of text $T[0 . . n)($ for $\sigma=O(1))$
(A) $L[0 . . n]$ lists the start indices of leaves of \mathcal{T} in left-to-right order. $\sqrt{ }$
(B) T[L[4] $[4]$ is the path label in τ to the leaf ctoring
(C) $T[L[r] \ldots n]$ is the path label to the r th leaf in $\mathcal{T} . \sqrt{ }$
(D) $T_{L[r]}$ is the r th smallest suffix of T (lexicographic order).
(E) In termeof B-lassec, τ needs mere pace than L.

F L (and T) suffice to solve the text indexing problem.
sli.do/comp526

Suffix arrays - Construction

How to compute $L[0 . . n]$?

- from suffix tree
- possible with traversal ...
q but we are trying to avoid constructing suffix trees!
- sorting the suffixes of T using general purpose sorting method 0 trivial to code!

$$
T=a a \ldots a \$
$$

- but: comparing two suffixes can take $\Theta(n)$ character comparisons
$\mathcal{\sim} \Theta\left(n^{2} \log n\right)$ time in worst case

Suffix arrays - Construction

How to compute $L[0 . . n]$?

- from suffix tree
- possible with traversal ...
q but we are trying to avoid constructing suffix trees!
- sorting the suffixes of T using general purpose sorting method

0 trivial to code!

- but: comparing two suffixes can take $\Theta(n)$ character comparisons
$\mathcal{\sim} \Theta\left(n^{2} \log n\right)$ time in worst case
- We can do better!

> (1) better string sorting
> (2) suffix sorting

Fat-pivot radix quicksort - Example

she
sells
seashells
by
the
sea
shore
the
shells
she
sells
are
surely
seashells

Fat-pivot radix quicksort - Example

```
she
sells
seashells
by
the
sea
shore
the
shells
she
sells
are
surely
seashells
```

Fat-pivot radix quicksort - Example

she	by
sells	are
seashells	she
by	sells
the	seashells
sea	sea
shore	shore
the	shells
shells	she
she	sells
sells	surely
are	seashells
surely	the
seashells	the

Fat-pivot radix quicksort - Example

she	by	are
sells	are	by
seashells	she	
by	sells	
the	seashells	
sea	sea	
shore	shore	
the	shells	
shells	she	
she	sells	
sells	surely	
are	seashells	
surely	the	
seashells	the	

Fat-pivot radix quicksort - Example

she	by	are
sells	are	by
seashells	he	sells
by	sells	seashells
the	seashells	sea
sea	sea	sells
shore	shore	seashells
the	shells	she
shells	she	shore
she	sells	shells
sells	surely	she
are	seashells	surely
surely	the	
seashells	the	

Fat-pivot radix quicksort - Example

she	by	are
sells	are	by
seashells	he	sells
by	sells	seashells
the	seashells	sea
sea	sea	sells
shore	shore	seashells
the	shells	she
shells	she	shore
she	sells	shells
sells	surely	she
are	seashells	surely
surely	the	the
seashells	the	the

Fat-pivot radix quicksort - Example

she	by	are	
sells	are	by	
seashells	he	ells	sells
by	sells	seashells	seashells
the	seashells	sea	sea
sea	sea	sells	sells
shore	shore	seashells	seashells
the	shells	she	
shells	she	shore	
she	sells	shells	
sells	surely	she	
are	seashells	surely	
surely	the	the	
seashells	the	the	

Fat-pivot radix quicksort - Example

she	by	are	
sells	are	by	
seashells	he	ells	sells
by	sells	seashells	seashells
the	seashells	sea	sea
sea	sea	sells	sells
shore	shore	seashells	seashells
the	shells	e	she\$
shells	she	shore	shells
she	sells	shells	she\$
sells	surely	she	shore
are	seashells	surely	
surely	the	the	
seashells	the	the	

Fat-pivot radix quicksort - Example

she	by	are	
sells	are	by	
seashells	he	ells	sells
by	sells	seashells	seashells
the	seashells	sea	sea
sea	sea	sells	sells
shore	shore	seashells	seashells
the	shells	e	she\$
shells	she	shore	shells
she	sells	shells	she\$
sells	surely	she	shore
are	seashells	surely	
surely	the	he	the
seashells	the	the	the

Fat-pivot radix quicksort - Example

she	by	are		
sells	are	by		
seashells	he	ells	Lls	seashells
by	sells	seashells	seashells	sea
the	seashells	sea	sea	seashells
sea	sea	sells	sells	sells
shore	shore	seashells	seashells	sells
the	shells	e	she\$	
shells	she	shore	shells	
she	sells	shells	she\$	
sells	surely	she	shore	
are	seashells	surely		
surely	the	he	the	
seashells	the	the	the	

Fat-pivot radix quicksort - Example

she	by	are		
sells	are	by		
seashells	he	ells	Lls	seashells
by	sells	seashells	seashells	sea
the	seashells	sea	sea	seashells
sea	sea	sells	sells	sells
shore	shore	seashells	seashells	sells
the	shells	e	\$	she
shells	she	shore	shells	she
she	sells	shells	she\$	shells
sells	surely	she	shore	
are	seashells	surely		
surely	the	he	the	
seashells	the	the	the	

Fat-pivot radix quicksort - Example

she	by	are		
sells	are	by		
seashells	he	ells	Lls	seashells
by	sells	seashells	seashells	sea
the	seashells	sea	sea	seashells
sea	sea	sells	sells	sells
shore	shore	seashells	seashells	sells
the	shells	e	\$	she
shells	she	shore	shells	she
she	sells	shells	she\$	shells
sells	surely	she	shore	
are	seashells	surely		
surely	the	he	e	the
seashells	the	the	the	the

Fat-pivot radix quicksort - Example

Fat-pivot radix quicksort - Example

Fat-pivot radix quicksort - Example

she	by	are				
sells	are	by				
seashells	he	ells	lls	ashells	shells	sea
by	sells	seashells	seashells	sea	sea\$	seashells
the	seashells	sea	sea	seashells	seashells	seashells
sea	sea	sells	sells	ls	sells	
shore	shore	seashells	seashells	sells	sells	
the	shells	e	\$	she		
shells	she	shore	shells	she		
she	sells	shells	she\$	shells		
sells	surely	she	shore			
are	seashells	surely				
surely	the	he	e	the		
seashells	the	the	the	the		

Fat-pivot radix quicksort - Example

she	by	are				
sells	are	by				
seashells	he	ells	lls	ashells	shells	sea
by	sells	seashells	seashells	sea	sea\$	seashells
the	seashells	sea	sea	seashells	seashells	seashells
sea	sea	sells	sells	ls	S	sells
shore	shore	seashells	seashells	sells	sells	sells
the	shells	e	\$	she		
shells	she	shore	shells	she		
she	sells	shells	she\$	shells		
sells	surely	she	shore			
are	seashells	surely				
surely	the	he	e	the		
seashells	the	the	the	the		

Fat-pivot radix quicksort - Example

she	by	are				
sells	are	by				
seashells	he	ells	Lls	ashells	shells	sea
by	sells	seashells	seashells	sea	sea\$	seashells
the	seashells	sea	sea	seashells	seashells	seashells
sea	sea	sells	sells	ls	5	sells
shore	shore	seashells	seashells	sells	sells	sells
the	shells	e	\$	she		
shells	she	shore	shells	she		
she	sells	shells	she\$	shells		
sells	surely	she	shore			
are	seashells	surely				
surely	the	he	e	the		
seashells	the	the	the	the		

Fat-pivot radix quicksort

- partition based on d th character only (initially $d=0$)
$\rightsquigarrow 3$ segments: smaller, equal, or larger than d th symbol of pivot
- recurse on smaller and large with same d, on equal with $d+1$
\rightsquigarrow never compare equal prefixes twice

Fat-pivot radix quicksort

- partition based on d th character only (initially $d=0$)
$\rightsquigarrow 3$ segments: smaller, equal, or larger than d th symbol of pivot
- recurse on smaller and large with same d, on equal with $d+1$
\rightsquigarrow never compare equal prefixes twice
\rightsquigarrow can show: $\sim 2 \ln (2) \cdot n \lg n \approx 1.39 n \lg n$ character comparisons on average

0 simple to code
0 efficient for sorting many lists of strings

- fat-pivot radix quicksort finds suffix array in $O(n \log n)$ expected time

Fat-pivot radix quicksort

- partition based on d th character only (initially $d=0$)
$\rightsquigarrow 3$ segments: smaller, equal, or larger than d th symbol of pivot
- recurse on smaller and large with same d, on equal with $d+1$
\rightsquigarrow never compare equal prefixes twice
for random strings
\rightsquigarrow can show: $\sim 2 \ln (2) \cdot n \lg n \approx 1.39 n \lg n$ character comparisons on average
\leftrightarrow simple to code
0 efficient for sorting many lists of strings
- fat-pivot radix quicksort finds suffix array in $O(n \log n)$ expected time

$$
\begin{aligned}
& \text { worst case } \\
& \text { for sulfur } \\
& \text { somnus } \theta\left(n^{2}\right)
\end{aligned}
$$

$$
T=a \cdot a \$
$$

but we can do $O(n)$ time worst case!
6.6 Linear-Time Suffix Sorting: Overview

Inverse suffix array: going left \& right

- to understand the fastest algorithm, it is helpful to define the inverse suffix array:
- $R[i]=r \quad \Longleftrightarrow \quad L[r]=i \quad L=$ leaf array
\Longleftrightarrow there are r suffixes that come before T_{i} in sorted order $\Longleftrightarrow T_{i}$ has (0-based) rank $r \rightsquigarrow$ call $R[0 . . n]$ the rank array

i	$R[i]$	T_{i}	right		$L[r]$	$T_{L[r]}$
0	$6^{\text {th }}$	bananaban\$	$\stackrel{\downarrow}{R[0]}$		9	\$
1	$4^{\text {th }}$	ananaban\$	R[0]		5	aban\$
2	$9^{\text {th }}$	nanaban\$			7	an\$
3	$3^{\text {th }}$	anaban\$			3	anaban\$
4	$8^{\text {th }}$	naban\$			1	ananaban\$
5	$1{ }^{\text {th }}$	aban\$			6	ban\$
6	$5^{\text {th }}$	ban\$			0	bananaban\$
7	$2^{\text {th }}$	an\$			8	n\$
8	$7^{\text {th }}$	n\$	left		4	naban\$
9	$0^{\text {th }}$	\$		9	2	nanaban\$

Clicker Question

Recap: Check all correct statements about suffix array $L[0 . . n]$, inverse suffix array $R[0 . . n]$, and suffix tree \mathcal{T} of text T.

A L lists the leaves of \mathcal{T} in left-to-right order.
B R lists the leaves of \mathcal{T} in right-to-left order.
(C) R lists starting indices of suffixes in lexciographic order.

D L lists starting indices of suffixes in lexciographic order.
(E) $L[r]=i$ iff $R[i]=r$
(F) L stands for leaf

G L stands for left
H R stands for rank
(I) R stands for right
sli.do/comp526

Clicker Question

Recap: Check all correct statements about suffix array $L[0 . . n]$, inverse suffix array $R[0 . . n]$, and suffix tree \mathcal{T} of text T.

A L lists the leaves of \mathcal{T} in left-to-right order.

D L lists starting indices of suffixes in lexciographic order.
(E) $L[r]=i$ iff $R[i]=r \sqrt{ }$
(F) L stands for leaf
(G) L stands for left

H R stands for rank $\sqrt{ }$
I R stands for right

> sli.do/comp526

Linear-time suffix sorting

\qquad

DC3 / Skew algorithm

not a multiple of 3

1. Compute rank array $R_{1,2}$ for suffixes T_{i} starting at $i \not \equiv 0(\bmod 3)$ recursively.
2. Induce rank array R_{3} for suffixes $T_{0}, T_{3}, T_{6}, T_{9}, \ldots$ from $R_{1,2}$.
3. Merge $R_{1,2}$ and R_{0} using $R_{1,2}$.
$\rightsquigarrow \quad$ rank array R for entire input

Linear-time suffix sorting

DC3 / Skew algorithm

not a multiple of 3

1. Compute rank array $R_{1,2}$ for suffixes T_{i} starting at $i \not \equiv 0^{\swarrow}(\bmod 3)$ recursively.
2. Induce rank array R_{3} for suffixes $T_{0}, T_{3}, T_{6}, T_{9}, \ldots$ from $R_{1,2}$.
3. Merge $R_{1,2}$ and R_{0} using $R_{1,2}$.
$\rightsquigarrow \quad$ rank array R for entire input

- We will show that steps 2. and 3. take $\Theta(n)$ time
\rightsquigarrow Total complexity is $\underline{n}+\underline{\frac{2}{3} n}+\left(\frac{2}{3}\right)^{2} n+\left(\frac{2}{3}\right)^{3} n+\cdots \leq n \cdot \sum_{i \geq 0}\left(\frac{2}{3}\right)^{i}=3 n=\Theta(n)$

Linear-time suffix sorting

DC3 / Skew algorithm

not a multiple of 3

1. Compute rank array $R_{1,2}$ for suffixes T_{i} starting at $i \not \equiv 0^{\swarrow}(\bmod 3)$ recursively.
2. Induce rank array R_{3} for suffixes $T_{0}, T_{3}, T_{6}, T_{9}, \ldots$ from $R_{1,2}$.
3. Merge $R_{1,2}$ and R_{0} using $R_{1,2}$.
$\rightsquigarrow \quad$ rank array R for entire input

- We will show that steps 2 . and 3. take $\Theta(n)$ time
\rightsquigarrow Total complexity is $n+\frac{2}{3} n+\left(\frac{2}{3}\right)^{2} n+\left(\frac{2}{3}\right)^{3} n+\cdots \leq n \cdot \sum_{i \geq 0}\left(\frac{2}{3}\right)^{i}=3 n=\Theta(n)$
- Note: L can easily be computed from R in one pass, and vice versa.
\rightsquigarrow Can use whichever is more convenient.

DC3 / Skew algorithm - Step 2: Inducing ranks

- Assume: rank array $R_{1,2}$ known:
- $R_{1,2}[i]= \begin{cases}\text { rank of } T_{i} \text { among } T_{1}, T_{2}, T_{4}, T_{5}, T_{7}, T_{8}, \ldots & \text { for } i=1,2,4,5,7,8, \ldots \\ \text { undefined } & \text { for } i=0,3,6,9, \ldots\end{cases}$
- Task: sort the suffixes $T_{0}, T_{3}, T_{6}, T_{9}, \ldots$ in linear time (!)

DC3 / Skew algorithm - Step 2: Inducing ranks

- Assume: rank array $R_{1,2}$ known:
$-R_{1,2}[i]= \begin{cases}\text { rank of } T_{i} \text { among } T_{1}, T_{2}, T_{4}, T_{5}, T_{7}, T_{8}, \ldots & \text { for } i=1,2,4,5,7,8, \ldots \\ \text { undefined } & \text { for } i=0,3,6,9, \ldots\end{cases}$
- Task: sort the suffixes $T_{0}, T_{3}, T_{6}, T_{9}, \ldots$ in linear time (!) T_{3}
- Suppose we want to compare T_{0} and T_{3}.

- Characterwise comparisons too expensive
- but: after removing first character, we obtain T_{1} and T_{4}
- these two can be compared in constant time by comparing $R_{1,2}[1]$ and $R_{1,2}[4]$!
$\rightsquigarrow \begin{aligned} & T_{0} \text { comes before } T_{3} \text { in lexicographic order } \\ & \text { iff pair }\left(T[0], R_{1,2}[1]\right) \text { comes before pair }\left(T[3], R_{1,2}[4]\right) \text { in lexicographic order }\end{aligned}$

DC3 / Skew algorithm - Inducing ranks example

T = hannahbansbananasman\$\$\$
(append 3 \$ markers)
T_{0} hannahbansbananasman\$\$\$
T_{3} nahbansbananasman\$\$\$
T_{6} bansbananasman\$\$\$
T9 sbananasman\$\$\$
T_{12} nanasman\$\$\$
T_{15} asman\$\$\$
T_{18} an\$\$\$
T_{21} \$\$

T_{1}	annahbansbananasman\$\$\$	$R_{1,2}[22]=0$	T_{22}	$\$$
T_{2}	nnahbansbananasman\$\$\$	$R_{1,2}[20]=1$	T_{20}	$\$ \$ \$$
T_{4}	ahbansbananasman\$\$\$	$R_{1,2}[4]=2$	T_{4}	ahbansbananasman\$\$\$
T_{5}	hbansbananasman\$\$\$	$R_{1,2}[11]=3$	T_{11}	ananasman\$\$\$
T_{7}	ansbananasman\$\$\$	$R_{1,2}[13]=4$	T_{13}	anasman\$\$\$
T_{8}	nsbananasman\$\$\$	$R_{1,2}[1]=5$	T_{1}	annahbansbananasman\$\$\$
T_{10}	bananasman\$\$\$	$R_{1,2}[7]=6$	T_{7}	ansbananasman\$\$\$
T_{11}	ananasman\$\$\$	$R_{1,2}[10]=7$	T_{10}	bananasman\$\$\$
T_{13}	anasman\$\$\$	$R_{1,2}[5]=8$	T_{5}	hbansbananasman\$\$\$
T_{14}	nasman\$\$\$	$R_{1,2}[17]=9$	T_{17}	man\$\$\$
T_{16}	sman\$\$\$\$	$R_{1,2}[19]=10$	T_{19}	n\$\$\$
T_{17}	man\$\$\$	$R_{1,2}[14]=11$	T_{14}	nasman\$\$\$
T_{19}	n\$\$\$	$R_{1,2}[2]=12$	T_{2}	nnahbansbananasman\$\$\$
T_{20}	$\$ \$ \$$	$R_{1,2}[8]=13$	T_{8}	nsbananasman\$\$\$
T_{22}	$\$$	$R_{1,2}[16]=14$	T_{16}	sman\$\$\$

DC3 / Skew algorithm - Inducing ranks example

T = hannahbansbananasman\$\$\$
(append $3 \$$ markers)

T_{0}	hannahbansbananasman\$\$\$
T_{3}	nahbansbananasman\$\$\$
T_{6}	bansbananasman\$\$\$
T9	sbananasman\$\$\$
T_{12}	nanasman\$\$\$
T_{15}	a sman\$\$\$
T_{18}	an\$\$\$ ${ }^{\text {Sman\$\$\$ }=T_{16}}$
T_{21}	\$ \$
T_{0}	h05
T_{3}	n02 $R_{1,2}[16]=14$
T_{6}	b 06
T_{9}	s07
T_{12}	n04
T_{15}	a 14
T_{18}	a 10
T_{21}	\$00

T_{1}	annahbansbananasman\$\$\$	$R_{1,2}[22]=0$	T_{22}	$\$$
T_{2}	nnahbansbananasman\$\$\$	$R_{1,2}[20]=1$	T_{20}	\$\$\$
T_{4}	ahbansbananasman\$\$\$	$R_{1,2}[4]=2$	T_{4}	ahbansbananasman\$\$\$
T_{5}	hbansbananasman\$\$\$	$R_{1,2}[11]=3$	T_{11}	ananasman\$\$\$
T_{7}	ansbananasman\$\$\$	$R_{1,2}[13]=4$	T_{13}	anasman\$\$\$
T_{8}	nsbananasman\$\$\$	$R_{1,2}[1]=5$	T_{1}	annahbansbananasman\$\$\$
T_{10}	bananasman\$\$\$	$R_{1,2}[7]=6$	T_{7}	ansbananasman\$\$\$
T_{11}	ananasman\$\$\$	$R_{1,2}[10]=7$	T_{10}	bananasman\$\$\$
T_{13}	anasman\$\$\$	$R_{1,2}[5]=8$	T_{5}	hbansbananasman\$\$\$
T_{14}	nasman\$\$\$	$R_{1,2}[17]=9$	T_{17}	man\$\$\$
T_{16}	sman\$\$\$	$R_{1,2}[19]=10$	T_{19}	n\$\$\$
T_{17}	man\$\$\$	$R_{1,2}[14]=11$	T_{14}	nasman\$\$\$
T_{19}	n\$\$\$	$R_{1,2}[2]=12$	T_{2}	nnahbansbananasman\$\$\$
T_{20}	$\$ \$ \$$	$R_{1,2}[8]=13$	T_{8}	nsbananasman\$\$\$
T_{22}	$\$$	$R_{1,2}[16]=14$	T_{16}	sman\$\$\$\$

DC3 / Skew algorithm - Inducing ranks example

T = hannahbansbananasman\$\$\$
(append $3 \$$ markers)

DC3 / Skew algorithm - Inducing ranks example

T = hannahbansbananasman\$\$\$
(append $3 \$$ markers)

DC3 / Skew algorithm - Inducing ranks example

T = hannahbansbananasman\$\$\$
(append 3 \$ markers)

- sorting of pairs doable in $O(n)$ time by 2 iterations of counting sort
\rightsquigarrow Obtain R_{0} in $O(n)$ time

DC3 / Skew algorithm - Step 3: Merging

```
\(T_{21} \quad \$ \$\)
\(T_{18}\) an\$\$\$
\(T_{15}\) asman\$\$\$
\(T_{6}\) bansbananasman\$\$\$
\(T_{0}\) hannahbansbananasman\$\$\$
\(T_{3}\) nahbansbananasman\$\$\$
\(T_{12}\) nanasman\$\$\$
\(T_{9}\) sbananasman\$\$\$
```

- Have:

$T_{22} \$$

20 \$\$
T_{4} ahbansbananasman\$\$\$
T_{11} ananasman\$\$\$
T_{13} anasman\$\$\$
T_{1} annahbansbananasman\$\$\$
T_{7} ansbananasman\$\$\$
T_{10} bananasman\$\$\$
T_{5} hbansbananasman\$\$\$
T_{17} man\$\$\$
$T_{19} \mathrm{n} \$ \$ \$$
T_{14} nasman\$\$\$
T_{2} nnahbansbananasman\$\$\$
T8 nsbananasman\$\$\$
T_{16} sman\$\$\$

- sorted 1,2-list:

$$
T_{1}, T_{2}, T_{4}, T_{5}, T_{7}, T_{8}, T_{10}, T_{11}, \ldots
$$

- sorted 0-list:

$$
T_{0}, T_{3}, T_{6}, T_{9}, \ldots
$$

- Task: Merge them!
- use standard merging method from Mergesort
- but speed up comparisons using $R_{1,2}$

DC3 / Skew algorithm - Step 3: Merging

T_{21}	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
T_{6}	bansbananasman\$\$\$
T_{0}	hannahbansbananasman\$\$\$
T_{3}	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$
T_{9}	sbananasman\$\$\$

- Have:

T_{22}	\$
T_{20}	\$\$\$
T_{4}	ahbansbananasman\$\$\$
T_{11}	ananasman\$\$\$
T_{13}	anasman\$\$\$
T_{1}	annahbansbananasman\$\$\$
T_{7}	ansbananasman\$\$\$
T_{10}	bananasman\$\$\$
T_{5}	hbansbananasman\$\$\$
T_{17}	man\$\$\$
T_{19}	n\$\$
T_{14}	nasman\$\$\$
T_{2}	nnahbansbananasman\$\$\$
T_{8}	nsbananasman\$\$\$
T_{16}	sman\$\$\$

T_{18} an\$\$\$ $T_{20} \$ \$ \$$
T_{15} asman\$\$\$
T_{6} bansbananasman\$\$\$
Tunanananan
T_{12} nanasman\$\$\$
T9 sbananasman\$\$\$

- sorted 1,2-list:

$$
T_{1}, T_{2}, T_{4}, T_{5}, T_{7}, T_{8}, T_{10}, T_{11}, \ldots
$$

- sorted 0-list:

$$
T_{0}, T_{3}, T_{6}, T_{9}, \ldots
$$

- Task: Merge them!
- use standard merging method from Mergesort
- but speed up comparisons using $R_{1,2}$

DC3 / Skew algorithm - Step 3: Merging

T_{21}	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
T_{6}	bansbananasman\$\$\$
T_{0}	hannahbansbananasman\$\$\$
T_{3}	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
T_{9}	sbananasman\$\$\$

- Have:
- sorted 1,2-list:

$$
T_{1}, T_{2}, T_{4}, T_{5}, T_{7}, T_{8}, T_{10}, T_{11}, \ldots
$$

- sorted 0-list:

$$
T_{0}, T_{3}, T_{6}, T_{9}, \ldots
$$

- Task: Merge them!
- use standard merging method from Mergesort
- but speed up comparisons using $R_{1,2}$
$T_{22} \quad \$$
T_{21} \$\$
$T_{20} \quad \$ \$$
T_{4} ahbansbananasman\$\$\$
T_{18} an\$\$\$

Compare T_{15} to T_{11}

Idea: try same trick as before

$$
\begin{aligned}
T_{15} & =\text { asman\$\$\$ } \\
& =\text { asman\$\$\$ } \\
& =a T_{16} \\
T_{11} & =\text { ananasman\$\$\$ } \\
& =\text { ananasman\$\$\$ } \\
& =a T_{12}
\end{aligned}
$$

DC3 / Skew algorithm - Step 3: Merging

T_{21}	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
T_{6}	bansbananasman\$\$\$
T_{0}	hannahbansbananasman\$\$\$
T_{3}	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
T_{9}	sbananasman\$\$\$

- Have:
- sorted 1,2-list:

$$
T_{1}, T_{2}, T_{4}, T_{5}, T_{7}, T_{8}, T_{10}, T_{11}, \ldots
$$

- sorted 0-list:

$$
T_{0}, T_{3}, T_{6}, T_{9}, \ldots
$$

- Task: Merge them!
- use standard merging method from Mergesort
- but speed up comparisons using $R_{1,2}$
$T_{22} \quad \$$
T_{21} \$\$
$T_{20} \quad \$ \$$
T_{4} ahbansbananasman\$\$\$
T_{18} an\$\$\$

Compare T_{15} to T_{11}

Idea: try same trick as before

$$
\begin{array}{rlr}
T_{15} & =\text { asman\$\$\$ } & \\
& =\text { asman\$\$\$ } & \text { can't compare } T_{16} \\
& =a T_{16} & \text { and } T_{12} \text { either! } \\
T_{11} & =\text { ananasman\$\$\$ } & \\
& =\text { ananasman\$\$\$ } & \\
& =a T_{12} &
\end{array}
$$

DC3 / Skew algorithm - Step 3: Merging

T_{21}	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
T_{6}	bansbananasman\$\$\$
T_{0}	hannahbansbananasman\$\$\$
T_{3}	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
T_{9}	sbananasman\$\$\$

- Have:
- sorted 1,2-list: $T_{1}, T_{2}, T_{4}, T_{5}, T_{7}, T_{8}, T_{10}, T_{11}, \ldots$
- sorted 0-list:

$$
T_{0}, T_{3}, T_{6}, T_{9}, \ldots
$$

- Task: Merge them!
- use standard merging method from Mergesort
- but speed up comparisons using $R_{1,2}$
$T_{22} \quad \$$
T_{4} ahbansbananasman\$\$\$
ananasman\$\$\$
11 anasman\$\$\$
T_{1} annahbansbananasman\$\$\$
T_{7} ansbananasman\$\$\$
T_{10} bananasman\$\$\$
T_{5} hbansbananasman\$\$\$
T_{17} man\$\$\$
$T_{19} \mathrm{n} \$ \$ \$$
T_{14} nasman\$\$\$
T_{2} nnahbansbananasman\$\$\$
T8 nsbananasman\$\$\$
T_{16} sman\$\$\$
$\begin{array}{ll}T_{22} & \$ \\ T_{21} & \$ \\end{array}
$T_{20} \quad \$ \$ \$$
T_{4} ahbansbananasman\$\$\$
T_{18} an\$\$\$

Compare T_{15} to T_{11}
Idea: try same trick as before

$$
\begin{array}{rlr}
T_{15} & =\text { asman\$\$\$ } & \\
& =\text { asman\$\$\$ } & \text { can't compare } T_{16} \\
& =a T_{16} & \text { and } T_{12} \text { either! } \\
T_{11} & =\text { ananasman\$\$\$ } & \\
& =\text { ananasman\$\$\$ } & \\
& =a T_{12} &
\end{array}
$$

\rightsquigarrow Compare T_{16} to T_{12}

$$
\begin{aligned}
T_{16} & =\operatorname{sman} \$ \$ \$ \\
& =s \operatorname{man} \$ \$ \$ \\
& =\mathrm{s} T_{17}
\end{aligned}
$$

$$
T_{12}=\text { nanasman\$\$\$ }
$$

= aanasman\$\$\$

$$
=a T_{13}
$$

DC3 / Skew algorithm - Step 3: Merging

T_{21}	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
T_{6}	bansbananasman\$\$\$
T_{0}	hannahbansbananasman\$\$\$
T_{3}	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
T_{9}	sbananasman\$\$\$

- Have:
- sorted 1,2-list:

$$
T_{1}, T_{2}, T_{4}, T_{5}, T_{7}, T_{8}, T_{10}, T_{11}, \ldots
$$

- sorted 0-list:

$$
T_{0}, T_{3}, T_{6}, T_{9}, \ldots
$$

- Task: Merge them!
- use standard merging method from Mergesort
- but speed up comparisons using $R_{1,2}$
$T_{22} \quad \$$
T_{4} ahbansbananasman\$\$\$
ananasman\$\$\$
11 anasman\$\$\$
T_{1} annahbansbananasman\$\$\$
T_{7} ansbananasman\$\$\$
T_{10} bananasman\$\$\$
T_{5} hbansbananasman\$\$\$
T_{17} man\$\$\$
$T_{19} \mathrm{n} \$ \$ \$$
T_{14} nasman\$\$\$
T_{2} nnahbansbananasman\$\$\$
T_{8} nsbananasman\$\$\$
T16 sman\$\$\$
$\begin{array}{ll}T_{22} & \$ \\ T_{21} & \$ \\end{array}
$T_{20} \quad \$ \$ \$$
T_{4} ahbansbananasman\$\$\$
T_{18} an\$\$\$

Compare T_{15} to T_{11}
Idea: try same trick as before

$$
\begin{aligned}
T_{15} & =\text { asman\$\$\$ } \\
& =\text { asman\$\$\$ } \\
& =a T_{16} \\
T_{11} & =\text { ananasman\$\$\$ } \\
& =\text { ananasman\$\$\$ } \\
& =a T_{12}
\end{aligned}
$$

\rightsquigarrow Compare T_{16} to T_{12}

$$
\begin{aligned}
T_{16} & =\operatorname{sman} \$ \$ \$ & & \\
& =s \operatorname{man} \$ \$ \$ & & \text { always at most } 2 \text { steps } \\
& =s T_{17} & & \text { then can use } R_{1,2}!
\end{aligned}
$$

$T_{12}=$ nanasman\$\$\$
= aanasman\$\$\$
$=a T_{13}$

DC3 / Skew algorithm - Step 3: Merging

T_{21}	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
T_{6}	bansbananasman\$\$\$
T_{0}	hannahbansbananasman\$\$\$
T_{3}	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
T_{9}	sbananasman\$\$\$

- Have:
- sorted 1,2-list:

$$
T_{1}, T_{2}, T_{4}, T_{5}, T_{7}, T_{8}, T_{10}, T_{11}, \ldots
$$

- sorted 0-list:

$$
T_{0}, T_{3}, T_{6}, T_{9}, \ldots
$$

- Task: Merge them!
- use standard merging method from Mergesort
- but speed up comparisons using $R_{1,2}$
$\rightsquigarrow O(n)$ time for merge
T_{22} \$
$T_{20} \quad \$ \$ \$$
T4 ahbansbananasman\$\$\$
ananasman\$\$\$
11 anasman\$\$s
T_{1} annahbansbananasman\$\$\$
T_{7} ansbananasman\$\$\$
T_{10} bananasman\$\$\$
T_{5} hbansbananasman\$\$\$
T_{17} man\$\$\$
$T_{19} \mathrm{n} \$ \$ \$$
T_{14} nasman\$\$\$
T_{2} nnahbansbananasman\$\$\$
I8 nsbananasman\$\$\$
T_{16} sman\$\$\$

	0 mod 3 us 2 mod	
T_{22}	$\$$	ms 1 mod
T_{21}	$\$ \$$	
T_{20}	$\$ \$ \$$	
T_{4}	ahbansbananasman\$\$\$	
T_{18} an\$\$\$		

Compare T_{15} to T_{11}
Idea: try same trick as before

$$
\begin{aligned}
T_{15} & =\text { asman\$\$\$ } \\
& =a s m a n \$ \$ \$ \\
& =a T_{16} \\
T_{11} & =\text { ananasman\$\$\$ } \\
& =\text { ananasman\$\$\$ } \\
& =a T_{12}
\end{aligned}
$$

\rightsquigarrow Compare T_{16} to T_{12}

$$
\begin{aligned}
T_{16} & =s \operatorname{man} \$ \$ \$ & & \\
& =s \operatorname{man} \$ \$ \$ & & \text { always at most } 2 \text { steps } \\
& =s T_{17} & & \text { then can use } R_{1,2}!
\end{aligned}
$$

$T_{12}=$ nanasman\$\$\$
= aanasman\$\$\$
$=a T_{13}$
6.7 Linear-Time Suffix Sorting: The DC3 Algorithm

DC3 / Skew algorithm - Fix recursive call

- both step 2. and 3. doable in $O(n)$ time!

DC3 / Skew algorithm - Fix recursive call

- both step 2. and 3. doable in $O(n)$ time!
- But: we cheated in 1 . step! "compute rank array $R_{1,2}$ recursively"
- Taking a subset of suffixes is not an instance of the same problem!

DC3 / Skew algorithm - Fix recursive call

- both step 2. and 3. doable in $O(n)$ time!
- But: we cheated in 1 . step! "compute rank array $R_{1,2}$ recursively"
- Taking a subset of suffixes is not an instance of the same problem!

\rightsquigarrow Need a single string T^{\prime} to recurse on, from which we can deduce $R_{1,2}$.
? ? 层?
How can we make T^{\prime} "skip" some suffixes?

DC3 / Skew algorithm - Fix recursive call

- both step 2. and 3. doable in $O(n)$ time!
- But: we cheated in 1 . step! "compute rank array $R_{1,2}$ recursively" - Taking a subset of suffixes is not an instance of the same problem!

\rightsquigarrow Need a single string T^{\prime} to recurse on, from which we can deduce $R_{1,2}$.
? ? ? ?
How can we make T^{\prime} "skip" some suffixes?
-' redefine alphabet to be triples of characters abc

$$
\begin{aligned}
& T=\text { bananaban } \$ \$ \$ \\
& \rightsquigarrow \quad T^{\square}=\text { bananabban } \$ \$ \$ \\
& \text { anab ban } \$ \$ \$ \\
& \text { ban } \$ \$ \$ \\
& \\
&
\end{aligned}
$$

\rightsquigarrow suffixes of $T^{\square} \leadsto T_{0}, T_{3}, T_{6}, T_{9}, \ldots$

- $T^{\prime}=T[1 . . n)^{\square}{ }^{\$ \$ \$} T[2 . . n)^{\square}{ }^{\$ \$ \$} \leadsto T_{i}$ with $i \neq 0(\bmod 3)$.
\rightsquigarrow Can call suffix sorting recursively on T^{\prime} and map result to $R_{1,2}$

DC3 / Skew algorithm - Fix alphabet explosion

- Still does not quite work!

DC3 / Skew algorithm - Fix alphabet explosion

- Still does not quite work!
- Each recursive step cubes σ by using triples!
\rightsquigarrow (Eventually) cannot use linear-time sorting anymore!

DC3 / Skew algorithm - Fix alphabet explosion

- Still does not quite work!
- Each recursive step cubes σ by using triples!
\rightsquigarrow (Eventually) cannot use linear-time sorting anymore!
- But: Have at most $\frac{2}{3} n$ different triples abc in T^{\prime} !
\rightsquigarrow Before recursion:

1. Sort all occurring triples. (using counting sort in $O(n)$)
2. Replace them by their rank (in Σ).
\rightsquigarrow Maintains $\sigma \leq n$ without affecting order of suffixes.

DC3 / Skew algorithm - Step 3. Example

$T^{\prime}=T[1 . . n)^{\square}{ }^{\$ \$ \$} T[2 . . n)^{\square}{ }^{\$ \$ \$}$

- T = hannahbansbananasman\$

DC3 / Skew algorithm - Step 3. Example

$$
T^{\prime}=T[1 . . n)^{\square}\left(\$ \$ \$ T[2 . . n)^{\square} \$ \$ \$\right.
$$

- $T=$ Xannahbansbananasman\$ $T_{2}=$ nnahbansbananasman\$
$T^{\prime}=$ annahbans)bananasman\$\$ $\$ \$ \$$ nna hbansbananas)man $\$ \$ \$$

DC3 / Skew algorithm - Step 3. Example

$$
T^{\prime}=T[1 . . n)^{\square}\left(\$ \$ \$ T[2 . . n)^{\square} \$ \$ \$\right.
$$

- $T=$ hannahbansbananasman $\$ T_{2}=$ nnahbansbananasman $\$$
$T^{\prime}=$ annahbans)bananasman\$\$ $\$ \$ \$$ nna hbansbananas)man $\$ \$ \$$
- Occurring triples:
annahbans bananasman\$\$ \$\$\$ nna hbansb

DC3 / Skew algorithm - Step 3. Example

$$
T^{\prime}=T[1 . . n)^{\square} \$ \$ \$ T[2 . . n)^{\square} \$ \$ \$
$$

- $T=$ hannahbansbananasman $\$ T_{2}=$ nnahbansbananasman $\$$
$T^{\prime}=$ annahbansbananasman\$\$ $\$ \$ \$$ nna hbananananas)man $\$ \$ \$$
- Occurring triples:
annahbans bananasman\$\$ \$\$\$ nnanbansb
- Sorted triples with ranks:

Rank $\begin{array}{llllllllllllll}00 & 01 & 02 & 03 & 04 & 05 & 06 & 07 & 08 & 09 & 10 & 11 & 12\end{array}$
Triple $\$ \$ \$ \$$ ahb ana ann ans ban hba man n\$\$ nas nna nsb sma

DC3 / Skew algorithm - Step 3. Example

$$
T^{\prime}=T[1 . . n)^{\square}\left(\$ \$ \$ T[2 . . n)^{\square} \$ \$ \$\right.
$$

- $T=$ hannahbansbananasman $\$ T_{2}=$ nnahbansbananasman $\$$
$T^{\prime}=$ annahbansbananasman\$\$ $\$ \$ \$$ nna hbananananas)man $\$ \$ \$$
- Occurring triples:
annahbans ban anasman n\$\$ \$\$\$ nna hbansb
nas) man
- Sorted triples with ranks:

Rank $00001020304 \quad 05 \quad 06$
Triple $\$ \$ \$$ ahb ana ann ans ban hba man n\$\$ nas nna nsb sma

- $T^{\prime}=$ annalabbans bananasman\$\$ $\$ \$ \$$ nna hbansbananasman $\$ \$ \$$

Suffix array - Discussion

0sleek data structure compared to suffix tree

Bsimple and fast $O(n \log n)$ construction (fos more involved but optimal $O(n)$ construction
supports efficient string matching

中
string matching takes $O(m \log n)$, not optimal $O(m)$
Cannot use more advanced suffix tree features
e. g., for longest repeated substrings

6.8 The LCP Array

Clicker Question

Which feature of suffix trees did we use to find the length of a longest repeated substring?
(A) order of leaves
(B) path label of internal nodes
(C) string depth of internal nodes
(D) constant-time traversal to child nodes

E constant-time traversal to parent nodes
(F) constant-time traversal to leftmost leaf in subtree
sli.do/comp526

Clicker Question

Which feature of suffix trees did we use to find the length of a longest repeated substring?
(A) order leaves
(B) path labelof internal nodec
(C) string depth of internal nodes
(D) enchat time troperal to child nodec

E eenctant time traversal to parent nodes
(F) enstant time raversal to leftmest leaf in subtree
sli.do/comp526

String depths of internal nodes

- Recall algorithm for longest repeated substring in suffix tree

1. Compute string depth of nodes
2. Find path label to node with maximal string depth

- Can we do this using suffix arrays?

String depths of internal nodes

- Recall algorithm for longest repeated substring in suffix tree

1. Compute string depth of nodes
2. Find path label to node with maximal string depth

- Can we do this using suffix arrays?
- Yes, by enhancing the suffix array with the LCP array! LCP[1..n]
 $\operatorname{LCP}[r]=\operatorname{LCP}\left(T_{L[r]}, T_{L[r-1]}\right)$
length of longest common prefix of suffixes of rank r and $r-1$
\rightsquigarrow longest repeated substring $=$ find maximum in $\mathrm{LCP}[1 . . n]$

LCP array and internal nodes

LCP array and internal nodes

	L[0..n
\$	9
aban\$	5
an\$	7
anaban\$	3
ananaban\$	1
ban\$	6
bananaban\$	0
n\$	8
naban\$	4
nanaban\$	2

LCP array and internal nodes

LCP array and internal nodes

LCP array and internal nodes

LCP array and internal nodes

LCP array and internal nodes

LCP array and internal nodes

\rightsquigarrow Leaf array $L[0 . . n]$ plus LCP array LCP[1..n] encode full tree!

6.9 LCP Array Construction

LCP array construction

- computing LCP[1..n] naively too expensive
- each value could take $\Theta(n)$ time
q $\Theta\left(n^{2}\right)$ in total

LCP array construction

- computing LCP[1..n] naively too expensive
- each value could take $\Theta(n)$ time
q $\Theta\left(n^{2}\right)$ in total
- but: seeing one large (= costly) LCP value \rightsquigarrow can find another large one!

- first few suffixes in sorted order:

$$
\begin{aligned}
& T_{L[0]}=\$ \\
& T_{L[1]}=\text { alo_buffalo\$ } \\
& T_{L[2]}=\text { alo }_{\boldsymbol{U}} \text { buffalo }{ }_{\boldsymbol{U}} \text { buffalo\$ } \\
& \text { alo_buffalo_buffalo } \rightsquigarrow \text { LCP[3] = } 19 \\
& T_{L[3]}=\text { alo }_{\mathrm{L}} \text { buffalo }{ }_{\mathrm{L}} \text { buffalo }{ }_{\mathrm{L}} \text { buffalo\$ }
\end{aligned}
$$

LCP array construction

- computing LCP[1..n] naively too expensive
- each value could take $\Theta(n)$ time
q $\Theta\left(n^{2}\right)$ in total
- but: seeing one large (= costly) LCP value \rightsquigarrow can find another large one!

- first few suffixes in sorted order:

$$
\begin{aligned}
& T_{L[0]}=\$ \\
& T_{L[1]}=\text { alo_buffalo\$ } \\
& T_{L[2]}=\text { \& } \operatorname{lo}_{\boldsymbol{U}} \text { buffalo }{ }_{\boldsymbol{u}} \text { buffalo\$ } \\
& \text { alo_buffalo_buffalo } \rightsquigarrow \text { LCP[3] = } 19
\end{aligned}
$$

\rightsquigarrow Removing first character from $T_{L[2]}$ and $T_{L[3]}$ gives two new suffixes:

$$
\begin{aligned}
& T_{L[?]}=l_{0_{L}} \text { buffalo }{ }_{\mathbf{L}} \text { buffalo\$ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { unclear where. . }
\end{aligned}
$$

LCP array construction

- computing LCP[1..n] naively too expensive
- each value could take $\Theta(n)$ time
q $\Theta\left(n^{2}\right)$ in total
- but: seeing one large (= costly) LCP value \rightsquigarrow can find another large one!

- first few suffixes in sorted order:

$$
\begin{aligned}
& T_{L[0]}=\$ \\
& T_{L[1]}=\text { alo_buffalo\$ } \\
& T_{L[2]}=\text { alo }_{\boldsymbol{U}} \text { buffalo }{ }_{\boldsymbol{U}} \text { buffalo\$ } \\
& \text { alo_buffalo_buffalo } \rightsquigarrow \text { LCP[3] = } 19 \\
& T_{L[3]}=\text { alo }_{\boldsymbol{L}} \text { buffalo }_{\boldsymbol{L}} \text { buffalo }{ }_{\boldsymbol{L}} \text { buffalo\$ }
\end{aligned}
$$

\rightsquigarrow Removing first character from $T_{L[2]}$ and $T_{L[3]}$ gives two new suffixes:

$$
\begin{aligned}
& T_{L[?]}=l_{0_{L}} \text { buffalo }{ }_{\mathbf{L}} \text { buffalo\$ }
\end{aligned}
$$

Shortened suffixes might not be adjacent in sorted order! $\rightsquigarrow \quad$ no LCP entry for them!

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}
0	$6^{\text {th }}$	bananaban\$
1	$4^{\text {th }}$	ananaban\$
2	$9^{\text {th }}$	nanaban\$
3	$3^{\text {th }}$	anaban\$
4	$8^{\text {th }}$	naban\$
5	$1^{\text {th }}$	aban\$
6	$5^{\text {th }}$	ban\$
7	$2^{\text {th }}$	an\$
8	$7^{\text {th }}$	n\$
9	$0^{\text {th }}$	$\$$

| r | $L[r]$ | $T_{L[r]}$ |
| :--- | :--- | :--- | :--- |
| 0 | 9 | $\$$ |
| 1 | \$ | aban\$ |
| 2 | 7 | an\$ |
| 3 | 3 | anaban\$ |
| 4 | 1 | ananaban\$ |
| 5 | 6 | ban\$ |
| 6 | 0 | bananaban\$ |
| 7 | 8 | n\$ |
| 8 | 4 | naban\$ |
| 9 | 2 | nanaban\$ |

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

\rightarrow| | T_{i} | T_{i} |
| :--- | :--- | ---: |
| 0 | 6 | bananaban\$ |
| 1 | $4^{\text {th }}$ | ananaban\$ |
| 2 | $9^{\text {th }}$ | nanaban\$ |
| 3 | $3^{\text {th }}$ | anaban\$ |
| 4 | $8^{\text {th }}$ | naban\$ |
| 5 | $1^{\text {th }}$ | aban\$ |
| 6 | $5^{\text {th }}$ | ban\$ |
| 7 | $2^{\text {th }}$ | an\$ |
| 8 | $7^{\text {th }}$ | $n \$$ |
| 9 | $0^{\text {th }}$ | $\$$ |

r	$L[r]$	$T_{L[r]}$	$\mathrm{LCP}[r]$
0	9	\$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	
4	1	ananaban\$	
5	6	ban\$	
6	0	bananaban\$	
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

\rightarrow| i | $R[i]$ | T_{i} |
| :--- | :--- | ---: |
| 0 | 6 | bananaban\$ |
| 1 | $4^{\text {th }}$ | ananaban\$ |
| 2 | $9^{\text {th }}$ | nanaban\$ |
| 3 | $3^{\text {th }}$ | anaban\$ |
| 4 | $8^{\text {th }}$ | naban\$ |
| 5 | $1^{\text {th }}$ | aban\$ |
| 6 | $5^{\text {th }}$ | ban\$ |
| 7 | $2^{\text {th }}$ | an\$ |
| 8 | $7^{\text {th }}$ | $n \$$ |
| 9 | $0^{\text {th }}$ | $\$$ |

	$L r]$	$T_{L[r]}$	$\mathrm{LCP}[r]$
0	9	\$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	
4	1	ananaban\$	
5	6	ban\$	
6	0	bananaban\$	
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

\rightarrow| i | $R[i]$ | T_{i} |
| :--- | :--- | ---: |
| 0 | 6 | bananaban\$ |
| 1 | $4^{\text {th }}$ | ananaban\$ |
| 2 | $9^{\text {th }}$ | nanaban\$ |
| 3 | $3^{\text {th }}$ | anaban\$ |
| 4 | $8^{\text {th }}$ | naban\$ |
| 5 | $1^{\text {th }}$ | aban\$ |
| 6 | $5^{\text {th }}$ | ban\$ |
| 7 | $2^{\text {th }}$ | an\$ |
| 8 | $7^{\text {th }}$ | $n \$$ |
| 9 | $0^{\text {th }}$ | $\$$ |

	$[r]$	$T_{L[r]}$	$\mathrm{LCP}[r]$
0	9	\$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	
4	1	ananaban\$	
5	6	ban\$	
6	0	bananaban\$	
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

\rightarrow| i | $R[i]$ | T_{i} |
| :--- | :--- | ---: |
| 0 | 6 | bananaban\$ |
| 1 | $4^{\text {th }}$ | ananaban\$ |
| 2 | $9^{\text {th }}$ | nanaban\$ |
| 3 | $3^{\text {th }}$ | anaban\$ |
| 4 | $8^{\text {th }}$ | naban\$ |
| 5 | $1^{\text {th }}$ | aban\$ |
| 6 | $5^{\text {th }}$ | ban\$ |
| 7 | $2^{\text {th }}$ | an\$ |
| 8 | $7^{\text {th }}$ | $n \$$ |
| 9 | $0^{\text {th }}$ | $\$$ |

	$L r]$	$T_{L[r]}$	$\mathrm{LCP}[r]$
0	9	\$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	
4	1	ananaban\$	
5	6	ban\$	
6	0	bananaban\$	
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

\rightarrow| i | $R[i]$ | T_{i} |
| :--- | :--- | ---: |
| 0 | 6 | bananaban\$ |
| 1 | $4^{\text {th }}$ | ananaban\$ |
| 2 | $9^{\text {th }}$ | nanaban\$ |
| 3 | $3^{\text {th }}$ | anaban\$ |
| 4 | $8^{\text {th }}$ | naban\$ |
| 5 | $1^{\text {th }}$ | aban\$ |
| 6 | $5^{\text {th }}$ | ban\$ |
| 7 | $2^{\text {th }}$ | an\$ |
| 8 | $7^{\text {th }}$ | $n \$$ |
| 9 | $0^{\text {th }}$ | $\$$ |

	$L[r]$	$T_{L[r]}$	$\mathrm{LCP}[r]$
0	9	\$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	
4	1	ananaban\$	
5	6	ban\$	
6	0	bananaban\$	
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

\rightarrow| i | $R[i]$ | T_{i} |
| :--- | :--- | ---: |
| 0 | 6 | bananaban\$ |
| 1 | $4^{\text {th }}$ | ananaban\$ |
| 2 | $9^{\text {th }}$ | nanaban\$ |
| 3 | $3^{\text {th }}$ | anaban\$ |
| 4 | $8^{\text {th }}$ | naban\$ |
| 5 | $1^{\text {th }}$ | aban\$ |
| 6 | $5^{\text {th }}$ | ban\$ |
| 7 | $2^{\text {th }}$ | an\$ |
| 8 | $7^{\text {th }}$ | $n \$$ |
| 9 | $0^{\text {th }}$ | $\$$ |

	$L[r]$	$T_{L[r]}$	$\mathrm{LCP}[r]$
0	9	\$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	
4	1	ananaban\$	
5	6	ban\$	
6	0	bananaban\$	3
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}
0	$6^{\text {th }}$	bananaban\$
1	$4^{\text {th }}$	ananaban\$
2	$9^{\text {th }}$	nanaban\$
3	$3^{\text {th }}$	anaban\$
4	$8^{\text {th }}$	naban\$
5	$1^{\text {th }}$	aban\$
6	$5^{\text {th }}$	ban\$
7	$2^{\text {th }}$	an\$
8	$7^{\text {th }}$	n\$
9	$0^{\text {th }}$	$\$$

r	$L[r]$		$T_{L[r]}$
	$\mathrm{LCP}[r]$		
0	9	$\$$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	
4	1	ananaban\$	
5	6	ban\$	
6	0	bananaban\$	3
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

\rightarrow| i | $R[i]$ | T_{i} |
| :---: | :---: | ---: |
| 0 | $6^{\text {th }}$ | bananaban\$ |
| 1 | 4 | ananaban\$ |
| 2 | $9^{\text {th }}$ | nanaban\$ |
| 3 | $3^{\text {th }}$ | anaban\$ |
| 4 | $8^{\text {th }}$ | naban\$ |
| 5 | $1^{\text {th }}$ | aban\$ |
| 6 | $5^{\text {th }}$ | ban\$ |
| 7 | $2^{\text {th }}$ | an\$ |
| 8 | $7^{\text {th }}$ | $n \$$ |
| 9 | $0^{\text {th }}$ | $\$$ |

r	$L[r]$		$T_{L[r]}$
	$\mathrm{LCP}[r]$		
0	9	$\$$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	
4	1	ananaban\$	
5	6	ban\$	
6	0	bananaban\$	3
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}	r	[r]	$T_{L[r]}$	P
0	$6^{\text {th }}$	bananaban\$	0	9	\$	-
1	4	ananaban\$	1	5	aban\$	
2	$9^{\text {th }}$	nanaban\$	2	7	an\$ $<$	
3	$3^{\text {th }}$	anaban\$	3	3	anaban\$	
4	$8^{\text {th }}$	naban\$	4	1	ananaban\$	
5	$1{ }^{\text {th }}$	aban\$	5	6	ban\$	
6	$5^{\text {th }}$	ban\$	6	0	bananaban\$	3
7	$2^{\text {th }}$	an\$	7	8	n\$	
8	$7{ }^{\text {th }}$	n\$	8	4	naban\$	
9	$0^{\text {th }}$	\$	9	2	nanaban\$	

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}
0	$6^{\text {th }}$	bananaban\$
1	$4^{\text {th }}$	ananaban\$
2	$9^{\text {th }}$	nanaban\$
3	$3^{\text {th }}$	anaban\$
4	$8^{\text {th }}$	naban\$
5	$1^{\text {th }}$	aban\$
6	$5^{\text {th }}$	ban\$
7	$2^{\text {th }}$	an\$
8	$7^{\text {th }}$	n\$
9	$0^{\text {th }}$	$\$$

r	$L[r]$	$T_{L[r]}$	$\mathrm{LCP}[r]$
0	9	\$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	
4	1	ananaban\$	3
5	6	ban\$	
6	0	bananaban\$	3
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

\rightarrow| i | $R[i]$ | T_{i} |
| ---: | :---: | ---: |
| 0 | $6^{\text {th }}$ | bananaban\$ |
| 1 | $4^{\text {th }}$ | ananaban\$ |
| 2 | 9 | nanaban\$ |
| 3 | $3^{\text {th }}$ | anaban\$ |
| 4 | $8^{\text {th }}$ | naban\$ |
| 5 | $1^{\text {th }}$ | aban\$ |
| 6 | $5^{\text {th }}$ | ban\$ |
| 7 | $2^{\text {th }}$ | an\$ |
| 8 | $7^{\text {th }}$ | $\mathrm{n} \$$ |
| 9 | $0^{\text {th }}$ | $\$$ |

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}	r	L r]	$T_{L[r]}$	
0	$6^{\text {th }}$	bananaban\$	0	9	\$	-
1	$4^{\text {th }}$	ananaban\$	1	5	aban\$	
2	9	nanaban\$	2	7	an\$	
3	$3^{\text {th }}$	anaban\$	3	3	anaban\$	
4	$8^{\text {th }}$	naban\$	4	1	ananaban\$	3
5	$1{ }^{\text {th }}$	aban\$	5	6	ban\$	
6	$5^{\text {th }}$	ban\$	6	0	bananaban\$	3
7	$2^{\text {th }}$	an\$	7	8	n\$	
8	$7^{\text {th }}$	n\$	8	4	naban\$	
9	$0^{\text {th }}$	\$	9	2	nanaban\$	

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}	r	$[r$	$T_{L[r]}$	
0	$6^{\text {th }}$	bananaban\$	0	9	\$	
1	$4{ }^{\text {th }}$	ananaban\$	1	5	aban\$	
2	9	nanaban\$	2	7	an\$	
3	$3^{\text {th }}$	anaban\$	3	3	anaban\$	
4	$8^{\text {th }}$	naban\$	4	1	ananaban\$	3
5	$1{ }^{\text {th }}$	aban\$	5	6	ban\$	
6	$5^{\text {th }}$	ban\$	6	0	bananaban\$	3
7	$2^{\text {th }}$	an\$	7	8	n\$	
8	$7^{\text {th }}$	n\$	8	4	naban\$	
9	$0^{\text {th }}$	\$	9	2	nanaban\$	

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}	r	$L[r]$	$T_{L[r]}$	
0	$6^{\text {th }}$	bananaban\$	0	9	\$	-
1	$4^{\text {th }}$	ananaban\$	1	5	aban\$	
2	9	nanaban\$	2	7	an\$	
3	$3^{\text {th }}$	anaban\$	3	3	anaban\$	
4	$8{ }^{\text {th }}$	naban\$	4	1	ananaban\$	3
5	$1{ }^{\text {th }}$	aban\$	5	6	ban\$	
6	$5^{\text {th }}$	ban\$	6	0	bananaban\$	3
7	$2^{\text {th }}$	an\$	7	8	n\$	
8	$7{ }^{\text {th }}$	n\$	8	4	naban\$	
9	$0^{\text {th }}$	\$	9	2	nanaban\$	2

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}
0	$6^{\text {th }}$	bananaban\$
1	$4^{\text {th }}$	ananaban\$
2	$9^{\text {th }}$	nanaban\$
3	$3^{\text {th }}$	anaban\$
4	$8^{\text {th }}$	naban\$
5	$1^{\text {th }}$	aban\$
6	$5^{\text {th }}$	ban\$
7	$2^{\text {th }}$	an\$
8	$7^{\text {th }}$	n\$
9	$0^{\text {th }}$	$\$$

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}
0	$6^{\text {th }}$	bananaban\$
1	$4^{\text {th }}$	ananaban\$
2	$9^{\text {th }}$	nanaban\$
3	3	anaban\$
4	$8^{\text {th }}$	naban\$
5	$1^{\text {th }}$	aban\$
6	$5^{\text {th }}$	ban\$
7	$2^{\text {th }}$	an\$
8	$7^{\text {th }}$	n\$
9	$0^{\text {th }}$	\$

r	$L[r]$	$T_{L[r]}$	$\mathrm{LCP}[r]$
0	9	\$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	
4	1	ananaban\$	3
5	6	ban\$	
6	0	bananaban\$	3
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	2

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}
0	$6^{\text {th }}$	bananaban\$
1	$4^{\text {th }}$	ananaban\$
2	$9^{\text {th }}$	nanaban\$
3	$3^{\text {th }}$	anaban\$
4	$8^{\text {th }}$	naban\$
5	$1^{\text {th }}$	aban\$
6	$5^{\text {th }}$	ban\$
7	$2^{\text {th }}$	an\$
8	$7^{\text {th }}$	$\mathrm{n} \$$
9	$0^{\text {th }}$	$\$$

r	$[r]$	$T_{L[r]}$	LCP $[r]$
0	9	\$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	
4	1	ananaban\$	3
5	6	ban\$	
6	0	bananaban\$	3
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	2

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}
0	$6^{\text {th }}$	bananaban\$
1	$4^{\text {th }}$	ananaban\$
2	$9^{\text {th }}$	nanaban\$
3	$3^{\text {th }}$	anaban\$
4	$8^{\text {th }}$	naban\$
5	$1^{\text {th }}$	aban\$
6	$5^{\text {th }}$	ban\$
7	$2^{\text {th }}$	an\$
8	$7^{\text {th }}$	$\mathrm{n} \$$
9	$0^{\text {th }}$	$\$$

r	$[r]$	$T_{L[r]}$	LCP $[r]$
0	9	\$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	
4	1	ananaban\$	3
5	6	ban\$	
6	0	bananaban\$	3
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	2

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}
0	$6^{\text {th }}$	bananaban\$
1	$4^{\text {th }}$	ananaban\$
2	$9^{\text {th }}$	nanaban\$
3	$3^{\text {th }}$	anaban\$
4	$8^{\text {th }}$	naban\$
5	$1^{\text {th }}$	aban\$
6	$5^{\text {th }}$	ban\$
7	$2^{\text {th }}$	an\$
8	$7^{\text {th }}$	$\mathrm{n} \$$
9	$0^{\text {th }}$	$\$$

r	$[r]$	$T_{L[r]}$	LCP $[r]$
0	9	\$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	
4	1	ananaban\$	3
5	6	ban\$	
6	0	bananaban\$	3
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	2

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}
0	$6^{\text {th }}$	bananaban\$
1	$4^{\text {th }}$	ananaban\$
2	$9^{\text {th }}$	nanaban\$
3	$3^{\text {th }}$	anaban\$
4	$8^{\text {th }}$	naban\$
5	$1^{\text {th }}$	aban\$
6	$5^{\text {th }}$	ban\$
7	$2^{\text {th }}$	an\$
8	$7^{\text {th }}$	$\mathrm{n} \$$
9	$0^{\text {th }}$	$\$$

r	$[r]$	$T_{L[r]}$	LCP $[r]$
0	9	\$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	2
4	1	ananaban\$	3
5	6	ban\$	
6	0	bananaban\$	3
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	2

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}
0	$6^{\text {th }}$	bananaban\$
1	$4^{\text {th }}$	ananaban\$
2	$9^{\text {th }}$	nanaban\$
3	$3^{\text {th }}$	anaban\$
4	$8^{\text {th }}$	naban\$
5	$1^{\text {th }}$	aban\$
6	$5^{\text {th }}$	ban\$
7	$2^{\text {th }}$	an\$
8	$7^{\text {th }}$	n\$
9	$0^{\text {th }}$	$\$$

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}
0	$6^{\text {th }}$	bananaban\$
1	$4^{\text {th }}$	ananaban\$
2	$9^{\text {th }}$	nanaban\$
3	$3^{\text {th }}$	anaban\$
4	$8^{\text {th }}$	naban\$
5	$1^{\text {th }}$	aban\$
6	$5^{\text {th }}$	ban\$
7	$2^{\text {th }}$	an\$
8	$7^{\text {th }}$	n\$
9	$0^{\text {th }}$	$\$$

	$[r]$	$T_{L[r]}$	P
0	9	\$	-
1	5	aban\$	
2	7	an\$	
3	3	anaban\$	2
4	1	ananaban\$	3
5	6	ban\$	
6	0	bananaban\$	3
7	8	n\$	
8	4	naban\$	
9	2	nanaban\$	2

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}	r	$L[r]$	$T_{L[r]}$	P
0	$6^{\text {th }}$	bananaban\$	0	9	\$	-
1	$4{ }^{\text {th }}$	ananaban\$	1	5	aban\$	
2	$9{ }^{\text {th }}$	nanaban\$	2	7	an\$	
3	$3^{\text {th }}$	anaban\$	3	3	anaban\$	2
4	8	naban\$	4	1	ananaban\$	3
5	$1^{\text {th }}$	aban\$	5	6	ban\$	
6	$5^{\text {th }}$	ban\$	6	0	bananaban\$	3
7	$2^{\text {th }}$	an\$	7	8	n\$	
8	$7^{\text {th }}$	n\$	8	4	naban\$	1
9	$0^{\text {th }}$	\$	9	2	nanaban\$	2

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}	r	$[r$	$T_{L[r]}$	
0	$6^{\text {th }}$	bananaban\$	0	9	\$	-
1	$4{ }^{\text {th }}$	ananaban\$	1	5	aban\$	
2	$9^{\text {th }}$	nanaban\$	2	7	an\$	
3	$3^{\text {th }}$	anaban\$	3	3	anaban\$	2
4	$8^{\text {th }}$	naban\$	4	1	ananaban\$	3
5	1	aban\$	5	6	ban\$	
6	$5^{\text {th }}$	ban\$	6	0	bananaban\$	3
7	$2^{\text {th }}$	an\$	7	8	n\$	
8	$7{ }^{\text {th }}$	n\$	8	4	naban\$	1
9	$0^{\text {th }}$	\$	9	2	nanaban\$	2

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}	r	$[r]$	$T_{L[r]}$	P
0	$6^{\text {th }}$	bananaban\$	0	9	\$	-
1	$4^{\text {th }}$	ananaban\$	1	5	aban\$	0
2	$9^{\text {th }}$	nanaban\$	2	7	an\$	
3	$3^{\text {th }}$	anaban\$	3	3	anaban\$	2
4	$8^{\text {th }}$	naban\$	4	1.	ananaban\$	3
5	1	aban\$	5	6	ban\$	
6	$5^{\text {th }}$	ban\$	6	0	bananaban\$	3
7	$2^{\text {th }}$	an\$	7	8	n\$	
8	$7^{\text {th }}$	n\$	8	4	naban\$	1
9	$0^{\text {th }}$	\$	9	2	nanaban\$	2

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}
0	$6^{\text {th }}$	bananaban\$
1	$4^{\text {th }}$	ananaban\$
2	$9^{\text {th }}$	nanaban\$
3	$3^{\text {th }}$	anaban\$
4	$8^{\text {th }}$	naban\$
5	$1^{\text {th }}$	aban\$
6	$5^{\text {th }}$	ban\$
7	$2^{\text {th }}$	an\$
$\rightarrow 8$	7	$n \$$
9	$0^{\text {th }}$	$\$$

r	$L[r]$	$T_{L[r]}$	$\mathrm{LCP}[r]$
0	9	\$	-
1	5	aban\$	0
2	7	an\$	1
3	3	anaban\$	2
4	1	ananaban\$	3
5	6	ban\$	0
6	0	bananaban\$	3
7	8	n\$	
8	4	naban\$	1
9	2	nanaban\$	2

Kasai's algorithm - Example

- Kasai et al. used above observation systematically
- Key idea: compute LCP values in text order
- Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes, but LCP entry can only be longer.

i	$R[i]$	T_{i}
0	$6^{\text {th }}$	bananaban\$
1	$4^{\text {th }}$	ananaban\$
2	$9^{\text {th }}$	nanaban\$
3	$3^{\text {th }}$	anaban\$
4	$8^{\text {th }}$	naban\$
5	$1^{\text {th }}$	aban\$
6	$5^{\text {th }}$	ban\$
7	$2^{\text {th }}$	an\$
$\rightarrow 8$	7	$\mathrm{n} \$$
9	$0^{\text {th }}$	$\$$

r	$[r]$	$T_{L[r]}$	$\mathrm{LCP}[r]$
0	9	\$	-
1	5	aban\$	0
2	7	an\$	1
3	3	anaban\$	2
4	1	ananaban\$	3
5	6	ban\$	0
6	0	bananaban\$	3
7	8	n\$	0
8	4	naban\$	1
9	2	nanaban\$	2

Kasai's algorithm - Code

```
procedure computeLCP(T[0..n], \(L[0 . . n], R[0 . . n])\)
    \(/ /\) Assume \(T[n]=\$, L\) and \(R\) are suffix array and inverse
    \(\ell:=0\)
    for \(i:=0, \ldots, n-1 / /\) Consider \(T_{i}\) now
        \(r:=R[i]\)
        \(/ /\) compute LCP \([r]\); note that \(r>0\) since \(R[n]=0\)
        \(i_{-1}:=L[r-1]\)
        while \(T[i+\ell]==T\left[i_{-1}+\ell\right]\) do
            \(\ell:=\ell+1\)
        LCP \([r]:=\ell\)
        \(\ell:=\max \{\ell-1,0\}\)
    return \(\mathrm{LCP}[1 . . n]\)
```

- remember length ℓ of induced common prefix
- use L to get start index of suffixes

Kasai's algorithm - Code

```
procedure computeLCP(T[0..n], \(L[0 . . n], R[0 . . n])\)
    \(/ /\) Assume \(T[n]=\$, L\) and \(R\) are suffix array and inverse
    \(\ell:=0\)
    for \(i:=0, \ldots, n-1 / /\) Consider \(T_{i}\) now
        \(r:=R[i]\)
        \(/ /\) compute LCP \([r]\); note that \(r>0\) since \(R[n]=0\)
        \(i_{-1}:=L[r-1]\)
        while \(T[i+\ell]==T\left[i_{-1}+\ell\right]\) do
            \(\ell:=\ell+1\)
        LCP \([r]:=\ell\)
        \(\ell:=\max \{\ell-1,0\}\)
    return \(\mathrm{LCP}[1 . . n]\)
```

- remember length ℓ of induced common prefix
- use L to get start index of suffixes

Analysis:

- dominant operation: character comparisons
- separately count those with outcomes "=" resp. " $=$ "
- each \neq ends iteration of for-loop $\rightsquigarrow \leq n \mathrm{cmps}$
- each $=$ implies increment of ℓ, but $\ell \leq n$ and decremented $\leq n$ times

$$
\rightsquigarrow \leq 2 n \mathrm{cmps}
$$

$\rightsquigarrow \Theta(n)$ overall time

Back to suffix trees

We can finally look into the black box of linear-time suffix-array construction!

1. Compute suffix array for T.
2. Compute LCP array for T.
3. Construct \mathcal{T} from suffix array and LCP array.

Conclusion

- (Enhanced) Suffix Arrays are the modern version of suffix trees
q can be harder to reason about
0 can support same algorithms as suffix trees
\oiint but use much less space
0 simpler linear-time construction

[^0]: "Although the longest common substring problem looks trivial now, given our knowledge of suffix trees, it is very interesting to note that in 1970 Don Knuth conjectured that
 a linear-time algorithm for this problem would be impossible." [Gusfield: Algorithms on Strings, Trees, and Sequences (1997)]

[^1]: ${ }_{\text {here single edge, can be longer path }}$

