ALGORITHMICS\$APPLIED

APPLIEDALGORITHMICS\$

CS\$APPLIEDALGORITHMI

DALGORITHMICS\$APPLIE

EDALGORITHMICS\$APPLI

GORITHMICS\$APPLIEDAL

HMICS\$APPLIEDALGORIT

ICS\$APPLIEDALGORITHM

Compression

21 March 2022

Sebastian Wild

Learning Outcomes

- Understand the necessity for encodings and know ASCII and UTF-8 character encodings.
- 2. Understand (qualitatively) the *limits of compressibility*.
- Know and understand the algorithms (encoding and decoding) for Huffman codes, RLE, Elias codes, LZW, MTF, and BWT, including their properties like running time complexity.
- **4.** Select and *adapt* (slightly) a *compression* pipeline for specific type of data.

Unit 7: Compression

Outline

7 Compression

- 7.1 Context
- 7.2 Character Encodings
- 7.3 Huffman Codes
- 7.4 Entropy
- 7.5 Run-Length Encoding
- 7.6 Lempel-Ziv-Welch
- 7.7 Lempel-Ziv-Welch Decoding
- 7.8 Move-to-Front Transformation
- 7.9 Burrows-Wheeler Transform
- 7.10 Inverse BWT

7.1 Context

Overview

- ▶ Unit 4–6: How to *work* with strings
 - finding substrings
 - finding approximate matches
 - ► finding repeated parts
 - ▶ ..
 - ► assumed character array (random access)!
- ▶ Unit 7–8: How to *store/transmit* strings
 - computer memory: must be binary
 - ▶ how to compress strings (save space)
 - ▶ how to robustly transmit over noisy channels → Unit 8

Clicker Question

What compression methods do you know?

Terminology

- ▶ **source text:** string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet
- ▶ **coded text:** encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- encoding: algorithm mapping source texts to coded texts
- ▶ decoding: algorithm mapping coded texts back to original source text

Terminology

- ▶ **source text:** string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet
- ▶ **coded text:** encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- ▶ encoding: algorithm mapping source texts to coded texts
- ▶ decoding: algorithm mapping coded texts back to original source text
- ► Lossy vs. Lossless
 - lossy compression can only decode approximately;
 the exact source text S is lost
- ► For media files, lossy, logical compression is useful (e.g. JPEG, MPEG)
- ▶ We will concentrate on *lossless* compression algorithms. These techniques can be used for any application.

What is a good encoding scheme?

- ▶ Depending on the application, goals can be
 - efficiency of encoding/decoding
 - ▶ resilience to errors/noise in transmission
 - security (encryption)
 - ▶ integrity (detect modifications made by third parties)
 - size

What is a good encoding scheme?

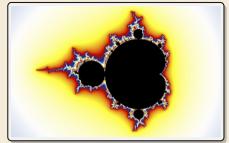
- ▶ Depending on the application, goals can be
 - efficiency of encoding/decoding
 - ► resilience to errors/noise in transmission
 - security (encryption)
 - ▶ integrity (detect modifications made by third parties)
 - ▶ size
- ► Focus in this unit: size of coded text

 Encoding schemes that (try to) minimize the size of coded texts perform data compression.
- ▶ We will measure the *compression ratio*:
 - < 1 means successful compression
 - = 1 means no compression
 - > 1 means "compression" made it bigger!?

size of source text

(yes, that happens ...)

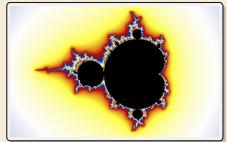
Is this image compressible?



Is this image compressible?

visualization of Mandelbrot set

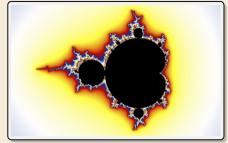
- ► Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!



Is this image compressible?

visualization of Mandelbrot set

- ► Clearly a complex shape!
- ► Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!



→ Kolmogorov complexity

ightharpoonup C = any program that outputs S

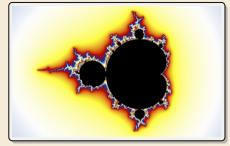
self-extracting archives!

► Kolmogorov complexity = length of smallest such program

Is this image compressible?

visualization of Mandelbrot set

- Clearly a complex shape!
- ► Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!



→ Kolmogorov complexity

ightharpoonup C = any program that outputs S

self-extracting archives!

- ► Kolmogorov complexity = length of smallest such program
- ▶ **Problem:** finding smallest such program is *uncomputable*.
- → No optimal encoding algorithm is possible!
- → must be inventive to get efficient methods

What makes data compressible?

Lossless compression methods mainly exploit two types of redundancies in source texts:

uneven character frequencies some characters occur more often than others → Part I

2. repetitive texts
different parts in the text are (almost) identical → Part II

What makes data compressible?

- Lossless compression methods mainly exploit two types of redundancies in source texts:
 - uneven character frequencies some characters occur more often than others → Part I
 - 2. repetitive texts different parts in the text are (almost) identical \rightarrow Part II

There is no such thing as a free lunch!

Not *everything* is compressible (\rightarrow tutorials)

→ focus on versatile methods that often work

Part I

Exploiting character frequencies

7.2 Character Encodings

Character encodings

- ► Simplest form of encoding: Encode each source character individually
- \rightsquigarrow encoding function $E: \Sigma_S \to \Sigma_C^*$
 - typically, $|\Sigma_S| \gg |\Sigma_C|$, so need several bits per character
 - ▶ for $c \in \Sigma_S$, we call E(c) the *codeword* of c
- ▶ **fixed-length code:** |E(c)| is the same for all $c \in \Sigma_C$
- ▶ variable-length code: not all codewords of same length

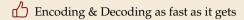
Fixed-length codes

- fixed-length codes are the simplest type of character encodings
- Example: ASCII (American Standard Code for Information Interchange, 1963)

```
0000000 NUL
               0010000 DLE
                              0100000
                                            0110000 0
                                                         1000000 a
                                                                      1010000 P
                                                                                    1100000 '
                                                                                                 1110000 p
0000001 SOH
               0010001 DC1
                              0100001 !
                                            0110001 1
                                                         1000001 A
                                                                      1010001 0
                                                                                    1100001 a
                                                                                                 1110001 a
0000010 STX
               0010010 DC2
                              0100010 "
                                            0110010 2
                                                         1000010 B
                                                                      1010010 R
                                                                                    1100010 b
                                                                                                 1110010 r
0000011 ETX
               0010011 DC3
                              0100011 #
                                            0110011 3
                                                         1000011 C
                                                                      1010011 S
                                                                                    1100011 c
                                                                                                 1110011 s
0000100 FOT
               0010100 DC4
                              0100100 $
                                            0110100 4
                                                         1000100 D
                                                                      1010100 T
                                                                                    1100100 d
                                                                                                 1110100 t
0000101 ENO
               0010101 NAK
                              0100101 %
                                            0110101 5
                                                         1000101 E
                                                                      1010101 U
                                                                                    1100101 e
                                                                                                 1110101 u
0000110 ACK
               0010110 SYN
                              0100110 &
                                            0110110 6
                                                         1000110 F
                                                                      1010110 V
                                                                                    1100110 f
                                                                                                 1110110 v
0000111 BEL
               0010111 ETB
                              0100111 '
                                            0110111 7
                                                         1000111 G
                                                                      1010111 W
                                                                                    1100111 q
                                                                                                 1110111 w
0001000 BS
               0011000 CAN
                              0101000 (
                                            0111000 8
                                                         1001000 H
                                                                      1011000 X
                                                                                    1101000 h
                                                                                                 1111000 x
0001001 HT
               0011001 EM
                              0101001 )
                                            0111001 9
                                                         1001001 I
                                                                      1011001 Y
                                                                                    1101001 i
                                                                                                 1111001 v
0001010 LF
               0011010 SUB
                              0101010 *
                                            0111010 :
                                                                      1011010 Z
                                                         1001010 J
                                                                                    1101010 i
                                                                                                 1111010 z
0001011 VT
               0011011 ESC
                              0101011 +
                                            0111011 :
                                                         1001011 K
                                                                      1011011 [
                                                                                    1101011 k
                                                                                                 1111011 {
0001100 FF
               0011100 FS
                              0101100 .
                                            0111100 <
                                                         1001100 L
                                                                      1011100 \
                                                                                    1101100 l
                                                                                                 1111100
0001101 CR
               0011101 GS
                              0101101 -
                                            0111101 =
                                                         1001101 M
                                                                      1011101 1
                                                                                    1101101 m
                                                                                                 1111101 }
0001110 SO
               0011110 RS
                                                                      1011110 ^
                              0101110 .
                                            0111110 >
                                                         1001110 N
                                                                                    1101110 n
                                                                                                 1111110 ~
0001111 SI
               0011111 US
                              0101111 /
                                            0111111 ?
                                                         1001111 0
                                                                      1011111
                                                                                    1101111 o
                                                                                                 1111111 DEL
```

- ▶ 7 bit per character
- ▶ just enough for English letters and a few symbols (plus control characters)

Fixed-length codes – Discussion

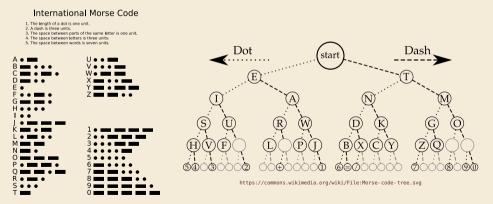


Unless all characters equally likely, it wastes a lot of space

inflexible (how to support adding a new character?)

Variable-length codes

- ▶ to gain more flexibility, have to allow different lengths for codewords
- ► actually an old idea: Morse Code



https://commons.wikimedia.org/wiki/File: International_Morse_Code.svg

Clicker Question

How many characters are there in the alphabet of the coded text in Morse Code, i. e., what is $|\Sigma_C|$?

sli.do/comp526

Clicker Question

How many characters are there in the alphabet of the coded text in Morse Code, i. e., what is $|\Sigma_C|$?

4 1

 $(E) = \frac{26}{2}$

F) 36

G 256

$$\bigcirc$$
 4

sli.do/comp526

Variable-length codes – UTF-8

► Modern example: UTF-8 encoding of Unicode:

default encoding for text-files, XML, HTML since 2009

- ► Encodes any Unicode character (137 994 as of May 2019, and counting)
- ▶ uses 1–4 bytes (codeword lengths: 8, 16, 24, or 32 bits)
- Every ASCII character is encoded in 1 byte with leading bit 0, followed by the 7 bits for ASCII
- Non-ASCII charactters start with 1–4 1s indicating the total number of bytes, followed by a 0 and 3–5 bits.

The remaining bytes each start with 10 followed by 6 bits.

Char. number range	UTF-8 octet sequence				
(hexadecimal)	(binary)				
0000 0000 - 0000 007F	0xxxxxx				
0000 0080 - 0000 07FF	110xxxxx 10xxxxxx				
0000 0800 - 0000 FFFF	1110xxxx 10xxxxxx 10xxxxxx				
0001 0000 - 0010 FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx				

For English text, most characters use only 8 bit, but we can include any Unicode character, as well.

Pitfall in variable-length codes

- Suppose we have the following code: $\begin{array}{c|ccccc} c & a & n & b & s \\ \hline E(c) & 0 & 10 & 110 & 100 \\ \end{array}$

Pitfall in variable-length codes

7
$$C = 1100100100 \text{ decodes both to banana and to bass: } \frac{1100}{b} \frac{100}{a} \frac{100}{s} \frac{100}{s}$$

→ not a valid code . . . (cannot tolerate ambiguity)
but how should we have known?

Pitfall in variable-length codes

7
$$C = 1100100100 \text{ decodes both to banana and to bass: $\frac{1100100100}{b \text{ a s}} \frac{100100100}{s}$$$

→ not a valid code . . . (cannot tolerate ambiguity)
but how should we have known?

- E(n) = 10 is a (proper) **prefix** of E(s) = 100
 - --> Leaves decoder wondering whether to stop after reading 10 or continue!
 - → Require a *prefix-free* code: No codeword is a prefix of another.

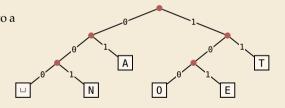
 prefix-free ⇒ instantaneously decodable ⇒ uniquely decodable

Code tries

► From now on only consider prefix-free codes E: E(c) is not a prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a *(code) trie* (trie of codewords) with characters of Σ_S at **leaves**.

no need for end-of-string symbols \$ here (already prefix-free!)



- ► Encode AN_ANT 0\001000
- Decode 11/1000001010111

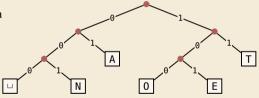
TOU

Code tries

- ► From now on only consider prefix-free codes E: E(c) is not a prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a *(code) trie* (trie of codewords) with characters of Σ_S at **leaves**.

no need for end-of-string symbols \$ here (already prefix-free!)



- ► Encode AN, ANT → 010010000100111
- ► Decode 111000001010111 → T0_EAT

Who decodes the decoder?

- ▶ Depending on the application, we have to **store/transmit** the **used code**!
- ► We distinguish:
 - ▶ <u>fixed coding:</u> code agreed upon in advance, not transmitted (e. g., Morse, UTF-8)
 - static coding: code depends on message, but stays same for entire message; it must be transmitted (e. g., Huffman codes → next)
 - **adaptive coding:** code depends on message and changes during encoding; implicitly stored withing the message (e. g., LZW \rightarrow below)

7.3 Huffman Codes

Character frequencies

- ▶ Goal: Find character encoding that produces short coded text
- ▶ Convention here: fix $\Sigma_C = \{0, 1\}$ (binary codes), abbreviate $\Sigma = \Sigma_S$,
- ▶ **Observation:** Some letters occur more often than others.

Typical English prose:

e	12.70%		d	4.25%		р	1.93%	
t	9.06%		1			b		
a	8.17%		c		_	v	0.98%	.
0	7.51%		u		_	-	0.77%	
i	6.97%		m		_	i	0.15%	1
n	6.75%	_	w	2.36%	_	X	0.15%	1
s	6.33%		f	2.23%	_		0.10%	1
h	6.09%	_	g	2.02%	-		0.07%	1
r	5.99%		v		-			
l -	0.000		•	1.,,,,				

→ Want shorter codes for more frequent characters!

Huffman coding

e.g. frequencies / probabilities

- ▶ **Given:** Σ and weights $w: \Sigma \to \mathbb{R}_{\geq 0}$
- ▶ **Goal:** prefix-free code E (= code trie) for Σ that minimizes coded text length

Huffman coding

e.g. frequencies / probabilities

- ▶ **Given:** Σ and weights $w: \Sigma \to \mathbb{R}_{\geq 0}$
- ▶ Goal: prefix-free code E (= code trie) for Σ that minimizes coded text length

i. e., a code trie minimizing
$$\sum_{c \in \Sigma} w(c) \cdot |E(c)|$$

- ► If we use w(c) = #occurrences of c in S, this is the character encoding with smallest possible |C|
 - → best possible character-wise encoding

▶ Quite ambitious! *Is this efficiently possible?*

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- 1. Find two characters a, b with lowest weights.
 - ▶ We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (u to be determined)
- **2.** (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- 3. Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines $u = E(\Box b)$.

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

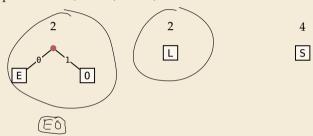
- 1. Find two characters a, b with lowest weights.
 - ▶ We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (u to be determined)
- **2.** (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- 3. Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines $u = E(\Box b)$.
- efficient implementation using a (min-oriented) *priority queue*
 - start by inserting all characters with their weight as key
 - ▶ step 1 uses two deleteMin calls
 - step 2 inserts a new character with the sum of old weights as key

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

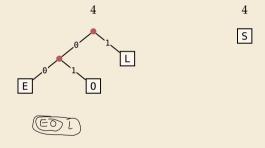
L

S

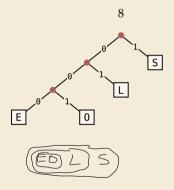
- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4



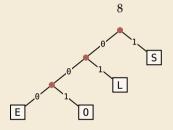
- ► Example text: S = LOSSLESS $\longrightarrow \Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4



- ► Example text: S = LOSSLESS $\longrightarrow \Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

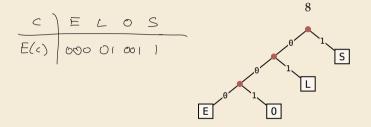


- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4



→ *Huffman tree* (code trie for Huffman code)

- ► Example text: S = LOSSLESS $\longrightarrow \Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4



→ *Huffman tree* (code trie for Huffman code)

LOSSLESS $\rightarrow \underline{01001110100011}$ compression ratio: $\frac{14}{8 \cdot \log 4} = \frac{14}{16} \approx 88\%$

Huffman tree – tie breaking

- ► The above procedure is ambiguous:
 - which characters to choose when weights are equal?
 - which subtree goes left, which goes right?
- ► For COMP 526: always use the following rule:
 - To break ties when selecting the two characters, first use the smallest letter according to the alphabetical order, or the tree containing the smallest alphabetical letter.
 - 2. When combining two trees of different values, place the lower-valued tree on the left (corresponding to a 0-bit).
 - When combining trees of equal value, place the one containing the smallest letter to the left.

Encoding with Huffman code

- ► The overall encoding procedure is as follows:
 - ▶ Pass 1: Count character frequencies in *S*
 - ► Construct Huffman code *E* (as above)
 - ► Store the Huffman code in *C* (details omitted)
 - ▶ Pass 2: Encode each character in *S* using *E* and append result to *C*
- Decoding works as follows:
 - ▶ Decode the Huffman code *E* from *C*. (details omitted)
 - ▶ Decode *S* character by character from *C* using the code trie.
- ► Note: Decoding is much simpler/faster!

Huffman code – Optimality

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Huffman code – Optimality

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Proof sketch: by induction over $\sigma = |\Sigma|$

- ▶ Given any optimal prefix-free code E^* (as its code trie).
- ightharpoonup code trie ightharpoonup \exists two sibling leaves x, y at largest depth D
- ▶ swap characters in leaves to have two lowest-weight characters a, b in x, y (that can only make ℓ smaller, so still optimal)
- ▶ any optimal code for $\Sigma' = \Sigma \setminus \{a, b\} \cup \{ab\}$ yields optimal code for Σ by replacing leaf ab by internal node with children a and b.
- \leadsto recursive call yields optimal code for Σ' by inductive hypothesis, so Huffman's algorithm finds optimal code for Σ .

7.4 Entropy

$$P_1 + P_2 + \cdots + P_n = 1$$
 $P_2 \in [0,1]$

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Pr Pr

Definition 7.2 (Entropy)

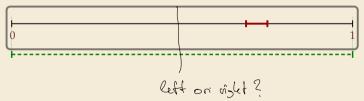
$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.



Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

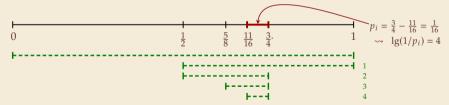
$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

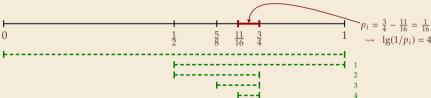
- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.



Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.



- \rightarrow Need to cut [0, 1) in half $\lg(1/p_i)$ times
- ► more precisely: the expected number of bits (Yes/No questions) required to nail down the random value

Entropy and Huffman codes

▶ would ideally encode value i using $\lg(1/p_i)$ bits not always possible; cannot use codeword of 1.5 bits . . .

Entropy and Huffman codes

would ideally encode value i using $\lg(1/p_i)$ bits but can be not always possible; cannot use codeword of 1.5 bits ... but:

not as length of single codeword that is;

but can be possible on average!

Theorem 7.3 (Entropy bounds for Huffman codes)

For any $\Sigma = \{a_1, \dots, a_\sigma\}$ and $w : \Sigma \to \mathbb{R}_{>0}$ and its Huffman code E, we have

$$\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1 \quad \text{where } \mathcal{H} = \mathcal{H}\left(\frac{w(a_1)}{W}, \dots, \frac{w(a_\sigma)}{W}\right) \text{ and } W = w(a_1) + \dots + w(a_\sigma).$$

$$\ell(E) = \sum_{i=1}^{\sigma} \omega(i) \cdot |E(a_i)|$$

Entropy and Huffman codes

would ideally encode value i using $\lg(1/p_i)$ bits but can be not always possible; cannot use codeword of 1.5 bits ... but:

not as length of single codeword that is;

but can be possible on average!

Theorem 7.3 (Entropy bounds for Huffman codes)

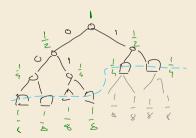
For any $\Sigma = \{a_1, \dots, a_\sigma\}$ and $w : \Sigma \to \mathbb{R}_{>0}$ and its Huffman code E, we have

$$\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1$$
 where $\mathcal{H} = \mathcal{H}\left(\frac{w(a_1)}{W}, \dots, \frac{w(a_\sigma)}{W}\right)$ and $W = w(a_1) + \dots + w(a_\sigma)$.

Proof sketch:

▶ $\ell(E) \ge \mathcal{H}$ Any prefix-free code E induces weights $q_i = 2^{-|E(a_i)|}$. By Kraft's Inequality, we have $q_1 + \cdots + q_{\sigma} \le 1$. Hence we can apply <u>Gibb's Inequality</u> to get

$$\mathcal{H} = \sum_{i=1}^{\sigma} p_i \lg \left(\frac{1}{p_i}\right) \stackrel{f}{\leq} \sum_{i=1}^{\sigma} p_i \lg \left(\frac{1}{\mathbf{q_i}}\right) = \ell(E).$$



Entropy and Huffman codes [2]

Proof sketch (continued):

$$\blacktriangleright$$
 $\ell(E) \leq \mathcal{H} + 1$

$$\ell(E) \leq \mathcal{H} + 1$$
Set $q_i = 2^{-\lceil \lg(1/p_i) \rceil}$. We have $\sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) = \sum_{i=1}^{\sigma} p_i \lceil \lg(1/p_i) \rceil \leq \mathcal{H} + 1$.

We construct a code E' for Σ with $|E'(a_i)| \leq \lg(1/q_i)$ as follows; w.l.o.g. assume $q_1 \leq q_2 \leq \cdots \leq q_{\sigma}$

▶ If $\sigma = 2$, E' uses a single bit each. Here, $q_i \le 1/2$, so $\lg(1/q_i) \ge 1 = |E'(a_i)| \checkmark$

[x] < x+1

▶ If $\sigma \ge 3$, we merge a_1 and a_2 to a_1a_2 , assign it weight $2q_2$ and recurse. If $q_1 = q_2$, this is like Huffman; otherwise, q_1 is a unique smallest value and $q_2 + q_2 + \cdots + q_{\sigma} \le 1$.

By the inductive hypothesis, we have
$$|E'(\overline{q_1q_2})| \le \lg\left(\frac{1}{2q_2}\right) = \lg\left(\frac{1}{q_2}\right) - 1$$
.

By construction, $|E'(a_1)| = |E'(a_2)| = |E'(\overline{a_1 a_2})| + 1$, so $|E'(a_1)| \le \lg(\frac{1}{a_1})$ and $|E'(a_2)| \le \lg(\frac{1}{a_2})$.

By optimality of *E*, we have
$$\ell(E) \leq \ell(E') \leq \sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) \leq \mathcal{H} + 1$$
.

Clicker Question

When does Huffman coding <u>yield more efficient</u> compression than a fixed-length character encoding?

- **A**) always
- **B** when $\mathcal{H} \approx \lg(\sigma)$
- **C** when $\mathcal{H} < \lg(\sigma)$
- **D** when $\mathcal{H} < \lg(\sigma) 1$
- \bullet when $\mathcal{H} \approx 1$

Clicker Ouestion

When does Huffman coding yield more efficient compression than a fixed-length character encoding?

B when
$$\mathcal{H} \simeq \lg(\sigma)$$

C) when
$$\mathcal{H} < \lg(\sigma)$$

D when
$$\mathcal{H} < \lg(\sigma) - 1$$

sli.do/comp526

Huffman coding – Discussion

- ▶ running time complexity: $O(\sigma \log \sigma)$ to construct code
 - ▶ build PQ + σ · (2 deleteMins and 1 insert)
 - ightharpoonup can do $\Theta(\sigma)$ time when characters already sorted by weight
 - time for encoding text (after Huffman code done): O(n + |C|)
- ▶ many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)

Huffman coding – Discussion

- ▶ running time complexity: $O(\sigma \log \sigma)$ to construct code
 - ▶ build PQ + σ · (2 deleteMins and 1 insert)
 - ightharpoonup can do $\Theta(\sigma)$ time when characters already sorted by weight
 - time for encoding text (after Huffman code done): O(n + |C|)
- ▶ many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)
- optimal prefix-free character encoding
- b very fast decoding
- needs 2 passes over source text for encoding
 - one-pass variants possible, but more complicated
- \bigcap have to store code alongside with coded text

Part II

Compressing repetitive texts

Beyond Character Encoding

► Many "natural" texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- character-by-character encoding will not capture such repetitions
 - → Huffman won't compression this very much

Beyond Character Encoding

► Many "natural" texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- character-by-character encoding will not capture such repetitions
 - → Huffman won't compression this very much
- \rightarrow Have to encode whole *phrases* of S by a single codeword

7.5 Run-Length Encoding

Run-Length encoding

▶ simplest form of repetition: *runs* of characters

```
0001011001000001111110000000000011111000
00111111111000111111111100000011111111000
00110000000000000000111000111000000000
001101100000000000000111001100111110000
00111111110000000000001110011111111111000
00111011111100000000011100011111001111100
00000000111000000001110000111100011110
00000000111000000011000001110000001100
00000000011000000110000000110000001110
00000000011000001110000001110000001100
0000000011100011100000000110000001110
66666666611666611166666666111666611166
000101100000001010011001000000100100000
```

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

Run-Length encoding

▶ simplest form of repetition: *runs* of characters

```
0001011001000001111110000000000011111000
00111111111000111111111100000011111111000
00110000000000000000111000111000000000
001101100000000000000111001100111110000
00111111110000000000001110011111111111000
00111011111100000000011100011111001111100
00000000111000000001110000111100011110
00000000111000000011000001110000001100
00000000011000000110000000110000001110
00000000011000001110000001110000001100
0000000011100011100000000110000001110
66666666611666611166666666111666611166
000101100000001010011001000000100100000
```

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

→ run-length encoding (RLE):

```
use runs as phrases: S = 00000 111 0000
```

Run-Length encoding

▶ simplest form of repetition: *runs* of characters

- same character repeated
- ▶ here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets
- → run-length encoding (RLE):

```
use runs as phrases: S = 00000 111 0000
```

- → We have to store
 - ▶ the first bit of *S* (either 0 or 1)
 - the length each each run
 - ▶ Note: don't have to store bit for later runs since they must alternate.
- ► Example becomes: 0,5,3,4

Run-Length encoding

▶ simplest form of repetition: *runs* of characters

```
0001011001000001111110000000000011111000
00111111111000111111111100000011111111000
001101100000000000000111001100111110000
00111111110000000000001110011111111111000
000000000111000000011100001110000001110
000000000111000000011000001110000001100
00000000011000000110000000110000001110
00000000011000001110000001110000001100
0000000011100011100000000110000001110
66666666611666611166666666111666611166
00110111111000111110111010000111111111000
000101100000001010011001000000100100000
```

same character repeated

- ▶ here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

→ run-length encoding (RLE):

```
use runs as phrases: S = 00000 111 0000
```

- → We have to store
 - ▶ the first bit of *S* (either 0 or 1)
 - the length each each run
 - ▶ Note: don't have to store bit for later runs since they must alternate.
- ► Example becomes: 0,5,3,4
- **Question**: How to encode a run length k in binary? (k can be arbitrarily large!)

Clicker Question

How would you encode a string that can we arbitrarily long?

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
- (wasn't the whole point of RLE to get rid of long runs??)

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
- (wasn't the whole point of RLE to get rid of long runs??)
- ► Refinement: *Elias gamma code*
 - ▶ Store the **length** ℓ of the binary representation in **unary**
 - Followed by the binary digits themselves

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
- ▶ (wasn't the whole point of RLE to get rid of long runs??)
- ► Refinement: *Elias gamma code*
 - ▶ Store the **length** ℓ of the binary representation in **unary**
 - ► Followed by the binary digits themselves
 - ▶ little tricks:
 - ▶ always $\ell \ge 1$, so store $\ell 1$ instead
 - ▶ binary representation always starts with 1 → don't need terminating 1 in unary
 - \rightarrow Elias gamma code = $\ell 1$ zeros, followed by binary representation

Examples:
$$1 \mapsto 1$$
, $3 \mapsto 011$, $5 \mapsto 00101$, $30 \mapsto 000011110$

Clicker Question

Decode the **first** number in Elias gamma code (at the beginning) of the following bitstream:

000110111011100110.

sli.do/comp526

► Encoding:

$$C = 1$$

► Decoding:

$$C = 00001101001001010$$

► Encoding:

► Decoding:

C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

$$C = 00001101001001010$$

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

$$C = 00001101001001010$$

$$b = 0$$

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

```
C = 00001101001001010
```

b = 0

 $\ell = 3 + 1$

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

```
C = 00001101001001010
```

b = 0

 $\ell = 3 + 1$

k = 13

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

```
C = 00001101001001010

b = 1

\ell = 2 + 1

k = 1

\delta = 1
```

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

```
C = 00001101001001010

b = 1

\ell = 2 + 1

k = 4

S = 000000000000001111
```

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

```
C = 00001101001001010

b = 0

\ell = 0 + 1

k = 000000000000001111
```

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

```
C = 0000110100100100
```

b = 0

 $\ell = 0 + 1$

k = 1

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 00001101001001010

b = 1

\ell = 1 + 1

k = 1

k = 1
```

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 00001101001001010

b = 1

\ell = 1 + 1

k = 2

S = 000000000000001111011
```

Run-length encoding – Discussion

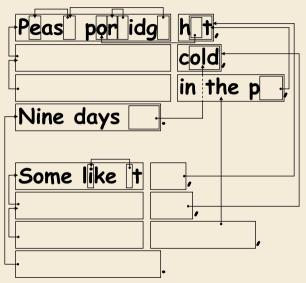
- extensions to larger alphabets possible (must store next character then)
- ▶ used in some image formats (e.g. TIFF)

Run-length encoding – Discussion

- extensions to larger alphabets possible (must store next character then)
- ▶ used in some image formats (e.g. TIFF)
- fairly simple and fast
- can compress n bits to $\Theta(\log n)$! for extreme case of constant number of runs
- negligible compression for many common types of data
 - ▶ No compression until run lengths $k \ge 6$
 - **expansion** for run length k = 2 or 6

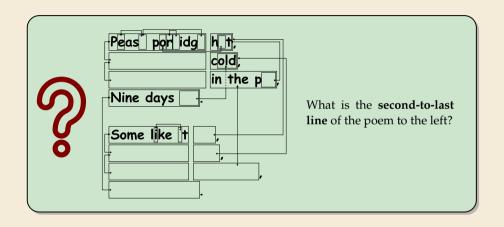
7.6 Lempel-Ziv-Welch

Warmup



https://classic.csunplugged.org/text-compression/

Clicker Question



sli.do/comp526

Lempel-Ziv Compression

- ▶ Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"

Lempel-Ziv Compression

- ► Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"
- ▶ **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ► **Idea:** store repeated parts by reference!
 - → each codeword refers to
 - \triangleright either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have already seen).

Lempel-Ziv Compression

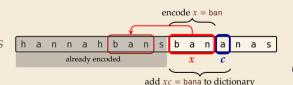
- ► Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"
- ▶ **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ► **Idea**: store repeated parts by reference!
 - → each codeword refers to
 - ightharpoonup either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have already seen).
 - Variants of Lempel-Ziv compression
 - "LZ77" Original version ("sliding window")
 Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, ...
 DEFLATE used in (pk)zip, gzip, PNG
 - "LZ78" Second (slightly improved) version Derivatives: LZW, LZMW, LZAP, LZY, ... LZW used in compress, GIF

Lempel-Ziv-Welch

- ► here: Lempel-Ziv-Welch (LZW) (arguably the "cleanest" variant of Lempel-Ziv)
- ► variable-to-fixed encoding
 - ▶ all codewords have k bits (typical: k = 12) \rightsquigarrow fixed-length
 - but they represent a variable portion of the source text!

Lempel-Ziv-Welch

- ► here: Lempel-Ziv-Welch (LZW) (arguably the "cleanest" variant of Lempel-Ziv)
- ► variable-to-fixed encoding
 - ▶ all codewords have k bits (typical: k = 12) \longrightarrow fixed-length
 - ▶ but they represent a variable portion of the source text!
- \blacktriangleright maintain a **dictionary** D with 2^k entries \leadsto codewords = indices in dictionary
 - ▶ initially, first $|\Sigma_S|$ entries encode single characters (rest is empty)
 - **add** a new entry to *D* **after each step**:
 - Encoding: after encoding a substring x of S, add xc to D where c is the character that follows x in S.

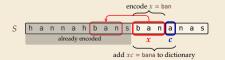


- \rightarrow new codeword in D
- \triangleright D actually stores codewords for x and c, not the expanded string

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

C =

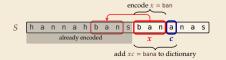


Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)



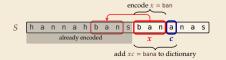
Code	String
32	
33	
79	0
82	R
85	U
(89°)	Υ
<u> </u>	

Code	String
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! \ Y0U! \ Y0UR \ Y0Y0!

 Σ_S = ASCII character set (0–127)

C = 89



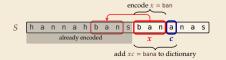
Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0 -
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

	Υ	0
C =	89	79



Code	String
32	П
33	!
(79)	0
<u> </u>	
82	R
85	U
89	Y

Code	String
128	Y0
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

$$\Sigma_S$$
 = ASCII character set (0–127)

	Υ	0
C =	89	79

\mathcal{D}	_
\mathcal{D}	=

								6	_	en	cod	$\frac{\log x}{2}$	= b	an				
S	h	а	n	n	а	h	b	а	n	S	b	а	n	а	n	а	S	
		already encoded									х		c					
	add $xc = bana$ to dictionary																	

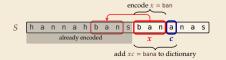
Code	String
32	
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

	Υ	0	- 1
C =	89	79	33



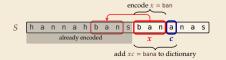
Code	String
32	
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

	Υ	0	!
C =	89	79	33



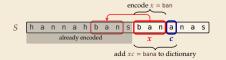
Code	String
32	
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	1
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш
C = 89	79	33	32



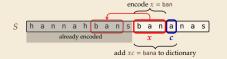
Code	String
32	
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	
132	
133	
134	
135	
136	
137	
138	
139	

$$\Sigma_S$$
 = ASCII character set (0–127)

Υ	0	!	ш
C = 89	79	33	32

\Box	_
ν	_



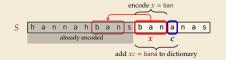
Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	П	Y0
C = 89	79	33	32	128



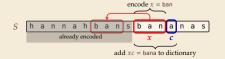
Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! L Y0 C = 89 79 33 32 128



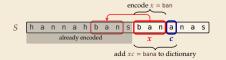
Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	 Y0	U
C = 89				

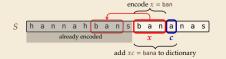


Code	String
32	
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	
134	
135	
136	
137	
138	
139	

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U
C = 89	79	33	32	128	85



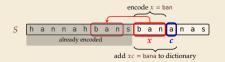
Code	String
32	П
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	
135	
136	
137	
138	
139	

$$\Sigma_S$$
 = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	!
C = 89	79	33	32	128	85	130

D	=	



Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
(130)	_:
131	Y
132	YOU
133	U!
134	
135	
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

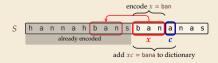
Υ	0	Ţ	ш	Y0	U	!
C = 89	79	33	32	128	85	130

Code	String				
32	П				
33	!				
79	0				
82	R				
85	U				
89	Υ				

D =

Codo String

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	! Y
135	
136	
137	
138	
139	



Input: Y0! Y0U! Y0UR Y0Y0!

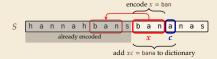
 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	!	YOU
C = 89	79	33	32	128	85	130	132

ſ

Code	String
32	П
33	!
79	0
82	R
85	U
89	Υ

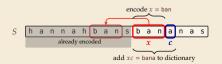
Code	String
128	Y0
129	0!
130	!
131	٦Y
(132)	YOU
133	U!
134	! LY
135	
136	
137	
138	
139	



Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

D	=	
D	=	



Code	String
32	П
33	!
79	0
82	R
85	U
89	Y

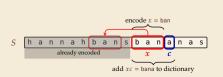
Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	!Y
135	YOUR
136	
137	
138	
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	П	Y0	U	!	YOU	R
C = 89	79	33	32	128	85	130	132	82

_		
_		



Code	String
32	⊔
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	! _ Y
135	YOUR
136	
137	
138	
139	

Input: Y0!,,Y0U!,,Y0UR,,Y0Y0!

 Σ_S = ASCII character set (0–127)

Y0 YOU $C = 89 \quad 79 \quad 33 \quad 32 \quad 128$ 85 130 132

D =

Code

32 33

82

85

89

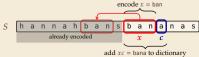
String

0

R

U

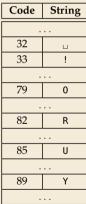
Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	
138	
139	



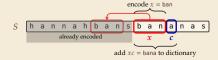
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! _ Y0 U ! _ Y0U R _Y C = 89 79 33 32 128 85 130 132 82 131



Code	String
128	Y0
129	0!
130	!
(131)	٦Y
132	YOU
133	U!
134	! _L Y
135	Y0UR
136	R⊔
137	
138	
139	



Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! _ Y0 U ! _ Y0U R _Y C = 89 79 33 32 128 85 130 132 82 131

								ç	_	en	cod	le x	= b	an				
S	h	а	n	n	а	h	b	а	n	S	b	a	n	а	n	a	s	
		already encoded								Τ	х		С					
		add x									= 1	oana	to	dict	ion	ary		

String
П
!
0
R
U
Υ

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	۷0 م
138	
139	

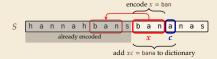
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

L
Γ

Code	String		
32	П		
33	!		
79	0		
82	R		
85	U		
89	Y		

Code	String
128	Y0
129	0!
130	
131	٦
132	YOU
133	U!
134	! _ Y
135	YOUR
136	R⊔
137	۷0_
138	
139	



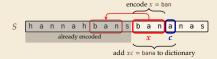
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

l
l
l

Code	String
32	П
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	۷0 ا
138	0Y
139	



Input: Y0!,,Y0U!,,Y0UR,,Y0Y0!

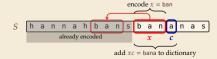
 Σ_S = ASCII character set (0–127)

Y0 YOU R LY Y0 $C = 89 \quad 79 \quad 33 \quad 32 \quad 128$ 85 130 132 82 131 79 128

3	
7	
8	
8.	

Code	String
32	
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	!_Y
135	<u>YOU</u> R
136	R⊔
137	۷0 م
138	0Y
139	

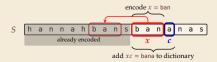


Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Code	String
32	
33	!
79	0
82	R
85	U
89	Υ

Code	String
128	Y0
129	0!
130	!
131	¬А
132	YOU
133	U!
134	! _L Y
135	Y0UR
136	R⊔
137	۷0 م
138	0Y
139	Y0!



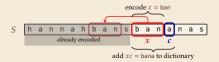
$$\Sigma_S$$
 = ASCII character set (0–127)

D =

Code

String

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	۷0 ا
138	0Y
139	Y0!



LZW encoding – Code

```
1 procedure LZWencode(S[0..n))
      x := \varepsilon // previous phrase, initially empty
     C := \varepsilon // output, initially empty
      D := dictionary, initialized with codes for c \in \Sigma_S // stored as trie
    k := |\Sigma_S| // next free codeword
    for i := 0, ..., n-1 do
           c := S[i]
7
           if D.containsKev(xc) then
                x := xc
           else
10
                C := C \cdot D.get(x) // append codeword for x
11
                D.put(xc, k) // add xc to D, assigning next free codeword
12
                k := k + 1: x := c
13
      end for
      C := C \cdot D.get(x)
      return C
16
```

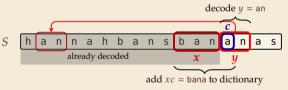
7.7 Lempel-Ziv-Welch Decoding

LZW decoding

▶ Decoder has to replay the process of growing the dictionary!

→ Decoding:

after decoding a substring y of S, add xc to D, where x is previously encoded/decoded substring of S, and c = y[0] (first character of y)



 \rightarrow Note: only start adding to *D* after *second* substring of *S* is decoded

► Same idea: build dictionary while reading string.

	Code #	String
	32	П
	65	Α
) =	66	В
	67	С
	78	N
	83	S

input	decodes to	Code #	String (human)	String (computer)

► Same idea: build dictionary while reading string.

Code #	String
32	
	Α
	В
67	С
78	N
83	S

input	decodes to	Code #	String (human)	String (computer)
67	С			

► Same idea: build dictionary while reading string.

Code #	String	
32		
65	Α	
66	В	
67	С	
78	N	
83	S	
	32 65 66 67	

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	Α	128	CA	67, A

► Same idea: build dictionary while reading string.

	Code #	String
İ	32	П
	65	Α
D =	66	В
	67	С
	78	N
	83	S

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	А	128	CA	67, A
78	N	129	AN	65, N

► Same idea: build dictionary while reading string.

	Code #	String
	32	
	65	Α
D =	66	В
	67	С
	78	N
	83	S

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	Α	128	CA	67, A
78	N	129	AN	65, N
32	2	130	N	78, ⊔

► Same idea: build dictionary while reading string.

	Code #	String
	32	П
	65	Α
D =	66	В
	67	С
	78	N
	83	S

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			
65	Α	128	CA	67, A
78	N	129	AN	65, N
32	u u	130	N	78, ⊔
66	В	131	uВ	32, B

► Same idea: build dictionary while reading string.

C	o صلط	B/A	
1	alread	18	have
/	beec	în	D?

	Code #	String
	32	П
	65	Α
) =	66	В
	67	С
	78	N
	83	S

C A	128	(human)	(computer)
C A	120		/
Α	120		
	128	CA	67, A
N	129	AN /	65, N
п	130	N _L	78, ⊔
В	131	_B /	32, B
AN	132	BA /	66, A
	ы В	ц 130 В 131	ц 130 Nц В 131 цВ

LZW decoding – Example

► Same idea: build dictionary while reading string.

Example: 67 65 78 32 66 129 133

	Code #	String	
	32	П	
	65	Α	
D =	66	В	
	67	С	
	78	N	
	83	S	

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	Α	128	CA	67, A
78	N	129	AN	65, N
32	ш	130	N	78, ⊔
66	В	131	uВ	32, B
129	AN	132	BA	66, A
133	???	133		

LZW decoding – Example

► Same idea: build dictionary while reading string.

Example: 67 65 78 32 66 129 133

Code #	String
32	
65	Α
66	В
67	С
78	N
83	S
	32 65 66 67

input	decodes to	Code #	Str. (hur	
67	С			
65	А	128	CA	67, A
78	N	129	AN	65, N
32		130	N	78, ⊔
66	В	131	uВ	32, B
129	AN	132	BA	66, A
133	???	133		

LZW decoding – Bootstrapping

▶ example: Want to decode 133, but not yet in dictionary!

decoder is "one step behind" in creating dictionary

LZW decoding – Bootstrapping

▶ example: Want to decode 133, but not yet in dictionary!

decoder is "one step behind" in creating dictionary

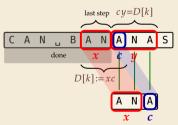
→ problem occurs if *we want to use a code* that we are *just about to build*.

LZW decoding - Bootstrapping

▶ example: Want to decode 133, but not yet in dictionary!

decoder is "one step behind" in creating dictionary

- → problem occurs if we want to use a code that we are just about to build.
- ▶ But then we actually know what is going on:
 - ightharpoonup Situation: decode using k in the step that will define k.
 - decoder knows last phrase x, needs phrase y = D[k] = xc.



- **1.** en/decode x.
- 2. store D[k] := xc
- 3. next phrase y equals D[k]

$$\rightarrow$$
 $D[k] = xc = x \cdot x[0]$ (all known)

LZW decoding - Code

```
1 procedure LZWdecode(C[0..m))
       D := \text{dictionary } [0..2^d) \to \Sigma_c^+, \text{ initialized with codes for } c \in \Sigma_S \text{ // stored as array }
       k := |\Sigma_S| // next unused codeword
       q := C[0] // first codeword
      y := D[a] // lookup meaning of a in D
      S := y // output, initially first phrase
      for i := 1, ..., m-1 do
            x := y // remember last decoded phrase
            a := C[i] // next codeword
           if q == k then
10
                 y := x \cdot x[0] // bootstrap case
11
          else
12
                 y := D[a]
13
            S := S \cdot y // append decoded phrase
14
            D[k] := x \cdot y[0] // store new phrase
15
            k := k + 1
16
       end for
17
       return S
18
```

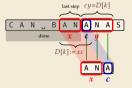
LZW decoding – Example continued

Example: 67 65 78 32 66 129 133 83

\times	=	(-1
		1
		C

	Code #	String	
	32	П	
_	65	Α	
D =	66	В	
	67	С	
	78	N	
	83	S	

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			
65	А	128	CA	67, A
78	N	129	AN	65, N
32		130	N	78, ⊔
66	В	131	⊔В	32, B
129	AN	132	BA	66, A
133	ANA	133	ANA	129, A



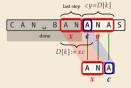
- 1. en/decode x.
- **2.** store D[k] := xc
- 3. next phrase y equals D[k] $D[k] = xc = x \cdot x[0]$ (all known)

LZW decoding – Example continued

Example: 67 65 78 32 66 129 133 83

	Code #	String	
	32		
	65	Α	
D = (66	В	
	67	С	
	78	N	
	83	S	

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	Α	128	CA	67, A
78	N	129	AN	65, N
32		130	N	78, ⊔
66	В	131	⊔В	32, B
129	AN	132	BA	66, A
133	ANA	133	ANA	129, A
83	S	134	ANAS	133, S



- 1. en/decode x.
- **2.** store D[k] := xc
- 3. next phrase y equals D[k] $D[k] = xc = x \cdot x[0]$ (all known)

Clicker Question

How many phrases will LZW create on $S = a^n$, a run of n copies of as?

- $(\mathbf{A}) \sim n$
- $\sim n/2$
- C $\sim n/4$
- $\Theta(n/\log n)$
- $lackbox{\bf E}$ $\Theta(\sqrt{n})$

- $\overline{\mathbf{F}}$ $\Theta(\log n)$
- **G** $\Theta(\log\log n)$
- **H**) 2
- I) 1

sli.do/comp526

Clicker Question

How many phrases will LZW create on $S = a^n$, a run of n copies of as?

A -#

F e

 $\mathbf{B} = \frac{\pi/2}{2}$

G @(log log n

 $\Theta(\sqrt{n})$

sli.do/comp526

LZW – Discussion

- ► As presented, LZW uses coded alphabet $\Sigma_C = [0..2^d)$.
 - \leadsto use another encoding for code numbers \mapsto binary, e.g., Huffman
- ▶ need a rule when dictionary is full; different options:
 - ightharpoonup increment $d \rightsquigarrow$ longer codewords
 - ▶ "flush" dictionary and start from scratch → limits extra space usage
 - ▶ often: reserve a codeword to trigger flush at any time
- encoding and decoding both run in linear time (assuming $|\Sigma_S|$ constant)

LZW – Discussion

- ▶ As presented, LZW uses coded alphabet $\Sigma_C = [0..2^d)$.
 - \rightsquigarrow use another encoding for code numbers \mapsto binary, e.g., Huffman
- ▶ need a rule when dictionary is full; different options:
 - ightharpoonup increment $d \rightsquigarrow$ longer codewords
 - ▶ "flush" dictionary and start from scratch → limits extra space usage
 - ▶ often: reserve a codeword to trigger flush at any time
- encoding and decoding both run in linear time (assuming $|\Sigma_S|$ constant)
- fast encoding & decoding
- works in streaming model (no random access, no backtrack on input needed)
- significant compression for many types of data
- captures only local repetitions (with bounded dictionary)

Compression summary

Huffman codes	Run-length encoding	Lempel-Ziv-Welch
fixed-to-variable	variable-to-variable	variable-to-fixed
2-pass	1-pass	1-pass
must send dictionary	can be worse than ASCII	can be worse than ASCII
60% compression on English text	bad on text	45% compression on English text
optimal binary character encopding	good on long runs (e.g., pictures)	good on English text
rarely used directly	rarely used directly	frequently used
part of pkzip, JPEG, MP3	fax machines, old picture-formats	GIF, part of PDF, Unix compress

Part III

Text Transforms

Text transformations

- ▶ compression is effective is we have one the following:
 - ▶ long runs → RLE
 - ► frequently used characters → Huffman
 - ▶ many (local) repeated substrings → LZW

Text transformations

- compression is effective is we have one the following:
 - ▶ long runs → RLE
 - ► frequently used characters → Huffman
 - ► many (local) repeated substrings → LZW
- ▶ but methods can be frustratingly "blind" to other "obvious" redundancies
 - LZW: repetition too distant 7 dictionary already flushed
 - ► Huffman: changing probabilities (local clusters) **7** averaged out globally
 - ▶ RLE: run of alternating pairs of characters 🦅 not a run

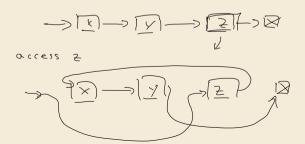
Text transformations

- compression is effective is we have one the following:
 - ▶ long runs → RLE
 - ► frequently used characters → Huffman
 - ► many (local) repeated substrings → LZW
- but methods can be frustratingly "blind" to other "obvious" redundancies
 - LZW: repetition too distant 7 dictionary already flushed
 - ► Huffman: changing probabilities (local clusters) 🕇 averaged out globally
 - ▶ RLE: run of alternating pairs of characters 🦅 not a run
- ► Enter: text transformations
 - invertible functions of text
 - do not by themselves reduce the space usage
 - ▶ but help compressors "see" existing redundancy
 - → use as pre-/postprocessing in compression pipeline

7.8 Move-to-Front Transformation

Move to Front

- ▶ *Move to Front (MTF)* is a heuristic for *self-adjusting linked lists*
 - unsorted linked list of objects
 - whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
 - list "learns" probabilities of access to objects makes access to frequently requested ones cheaper



Move to Front

- ▶ *Move to Front (MTF)* is a heuristic for *self-adjusting linked lists*
 - unsorted linked list of objects
 - whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
 - list "learns" probabilities of access to objects makes access to frequently requested ones cheaper
- ▶ Here: use such a list for storing source alphabet Σ_S
 - ightharpoonup to encode c, access it in list
 - ▶ encode *c* using its (old) position in list
 - ▶ then apply MTF to the list
 - \rightsquigarrow codewords are integers, i. e., $\Sigma_C = [0..\sigma)$

Move to Front

- ▶ *Move to Front (MTF)* is a heuristic for *self-adjusting linked lists*
 - unsorted linked list of objects
 - whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
 - list "learns" probabilities of access to objects makes access to frequently requested ones cheaper
- ▶ Here: use such a list for storing source alphabet Σ_S
 - ightharpoonup to encode c, access it in list
 - encode *c* using its (old) position in list
 - ▶ then apply MTF to the list
 - \rightarrow codewords are integers, i. e., $\Sigma_C = [0..\sigma)$

Clicker Question

Assume a MTF list currently contains the items XYZABC, and we now access A. What is the list content after the MTF rule has been applied?

sli.do/comp526

MTF - Code

► Transform (encode):

```
procedure MTF-encode(S[0..n))

L := \text{list containing } \Sigma_S \text{ (sorted order)}

C := \varepsilon

for i := 0, ..., n-1 do

c := S[i]

p := \text{position of } c \text{ in } L

C := C \cdot p

Move c to front of L

end for

return C
```

► Inverse transform (decode):

```
1 procedure MTF-decode(C[0..m))
2 L := list containing \Sigma_S (sorted order)
3 S := \varepsilon
4 for j := 0, ..., m-1 do
5 p := C[j]
6 c := character at position p in L
7 S := S \cdot c
8 Move c to front of L
9 end for
10 return S
```

► Important: encoding and decoding produce same accesses to list

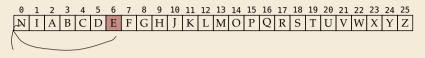
$$S = INEFFICIENCIES$$

$$C =$$

$$C = 8$$

$$S = INEFFICIENCIES$$

$$C = 813$$



$$S = INEFFICIENCIES$$

$$C = 8136$$

$$S = INEFFICIENCIES$$

$$C = 81367$$

$$S = INEFFICIENCIES$$

$$C = 813670$$

$$S = INEFFICIENCIES$$

$$C = 8136703$$

$$S = INEFFICIENCIES$$

$$C = 81367036$$

$$S = INEFFICIENCIES$$

$$C = 813670361$$

- ▶ What does a run in S encode to in C? $\sim \sim \circ f$ $\circ s$
- ► What does a run in C mean about the source S? repeated substrings

MTF - Discussion

- ► MTF itself does not compress text (if we store codewords with fixed length)
- → prime use as part of longer pipeline
- two simple ideas for encoding codewords:
 - ► Elias gamma code → smaller numbers gets shorter codewords works well for text with small "local effective" alphabet
 - ► Huffman code (better compression, but need 2 passes)
- ▶ but: most effective after BWT (\rightarrow next)

7.9 Burrows-Wheeler Transform

Burrows-Wheeler Transform

- ▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.
 - coded text has same letters as source, just in a different order
 - ▶ But: coded text is (typically) more compressible with MTF(!)

Burrows-Wheeler Transform

- ▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.
 - coded text has same letters as source, just in a different order
 - ▶ But: coded text is (typically) more compressible with MTF(!)
- ▶ Encoding algorithm needs **all** of *S* (no streaming possible).
 - → BWT is a block compression method.

Burrows-Wheeler Transform

- ▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.
 - coded text has same letters as source, just in a different order
 - ▶ But: coded text is (typically) more compressible with MTF(!)
- ▶ Encoding algorithm needs **all** of *S* (no streaming possible).
 - *→* BWT is a *block compression method*.
- ▶ BWT followed by MTF, RLE, and Huffman is the algorithm used by the bzip2 program. achieves best compression on English text of any algorithm we have seen:

```
4047392 bible.txt
1191071 bible.txt.gz
888604 bible.txt.7z
845635 bible.txt.bz2
```

BWT transform

• *cyclic shift* of a string:

$$T = time_uflies_uquickly_u$$

flies_quickly_time_

BWT transform

- *cyclic shift* of a string:
- ► add *end-of-word character* \$ to *S* (as in Unit 6)

 $T = time_uflies_uquickly_u$

flies_quickly_time_

i e m i t

BWT transform

- cyclic shift of a string:
- ► add *end-of-word character* \$ to *S*(as in Unit 6)
- can recover original string

 $T = \mathsf{time}_{\mathsf{u}}\mathsf{flies}_{\mathsf{u}}\mathsf{quickly}_{\mathsf{u}}$

flies_quickly_time_

→ cyclic shift

- ► The Burrows-Wheeler Transform proceeds in three steps:
 - **1.** Place *all cyclic shifts* of *S* in a list *L*
 - **2.** Sort the strings in *L* lexicographically
 - **3.** *B* is the *list of trailing characters* (last column, top-down) of each string in *L*

BWT transform – Example

 $S = alf_u eats_u alfalfa$ \$

1. Write all cyclic shifts

alf, eats, alfalfa\$ lf.eats_alfalfa\$a f_eats_alfalfa\$al _eats_alfalfa\$alf eats_alfalfa\$alf ats, alfalfa\$alf_e ts_alfalfa\$alf_ea s_alfalfa\$alf_eat _alfalfa\$alf_eats alfalfa\$alf_eats_ lfalfa\$alf_eats_a falfa\$alf_eats_al alfa\$alf,eats,alf lfa\$alf_eats_alfa fa\$alf_eats_alfal a\$alf.eats.alfalf \$alf, eats, alfalfa

 $\stackrel{\overset{}{\sim}}{\sim}$

BWT transform – Example

 $S = alf_eats_alfalfa$ \$

- 1. Write all cyclic shifts
- 2. Sort cyclic shifts

alf,,eats,,alfalfa\$ lf.,eats,,alfalfa\$a f.,eats,,alfalfa\$al _eats_alfalfa\$alf eats, alfalfa\$alf, ats,,alfalfa\$alf,,e ts..alfalfa\$alf..ea s..alfalfa\$alf..eat ,alfalfa\$alf,eats alfalfa\$alf_eats_ lfalfa\$alf,.eats,.a falfa\$alf_eats_al alfa\$alf,,eats,,alf lfa\$alf,.eats,.alfa fa\$alf..eats..alfal a\$alf,.eats,.alfalf \$alf..eats..alfalfa

\$alf,.eats,.alfalfa ..alfalfa\$alf_eats _eats_alfalfa\$alf a\$alf_eats_alfalf alf_eats_alfalfa\$ alfa\$alf_eats_alf alfalfa\$alf..eats.. ats.alfalfa\$alf.e eats alfalfa\$alf. f.,eats,,alfalfa\$al fa\$alf..eats..alfal falfa\$alf_eats_al lf_eats_alfalfa\$a lfa\$alf.eats.alfa lfalfa\$alf..eats..a s..alfalfa\$alf_eat ts..alfalfa\$alf..ea

BWT transform – Example

S = alf.eats.alfalfa

- 1. Write all cyclic shifts
- 2. Sort cyclic shifts
- 3. Extract last column

B = asff f.e., lllaaata

alf,,eats,,alfalfa\$ lf.,eats,,alfalfa\$a f.,eats,,alfalfa\$al _eats_alfalfa\$alf eats, alfalfa\$alf, ats,,alfalfa\$alf,,e ts..alfalfa\$alf..ea s..alfalfa\$alf..eat ,alfalfa\$alf,eats alfalfa\$alf,eats, lfalfa\$alf,.eats,.a falfa\$alf_eats_al alfa\$alf,,eats,,alf lfa\$alf,.eats,.alfa fa\$alf_eats_alfal a\$alf,.eats,.alfalf \$alf..eats..alfalfa

\$alf,.eats,.alfalfa ..alfalfa\$alf..eats "eats"alfalfa\$alf a\$alf_eats_alfalf alf_eats_alfalfa\$ alfa\$alf_eats_alf alfalfa\$alf,eats. ats.alfalfa\$alf.e eats alfalfa\$alf. f.,eats,,alfalfa\$at fa\$alf, eats, alfal falfa\$alf_eats_al lf, eats, alfalfa\$a lfa\$alf_eats_alfa lfalfa\$alf_eats_a s..alfalfa\$alf_eat ts..alfalfa\$alf..ea

~~>

sort

Clicker Question

What is the relation between suffix array L[0..n] and BWT B[0..n] of a string T[0..n)\$?

- $oldsymbol{A}$ L can be very easily computed from B and T
- f B B can be very easily computed from L and T
- C Both A and B
- D Neither A nor B

sli.do/comp526

Clicker Question

What is the relation between suffix array L[0..n] and BWT B[0..n] of a string T[0..n)\$?

- (A) Lean be very easily computed from B and T
- **B** B can be very easily computed from L and T
- C Both A and B
- Neither A nor B

sli.do/comp526

BWT – Implementation & Properties

Compute BWT efficiently:

- ightharpoonup cyclic shifts $S \cong \text{suffixes of } S$
- ► BWT is essentially suffix sorting!
 - ► B[i] = S[L[i] 1] (L = suffix array!) (if L[i] = 0, B[i] = \$)
 - \rightsquigarrow Can compute *B* in O(n) time

```
\downarrow L[r]
alf, eats, alfalfa$
                       0 $alf, eats, alfalfa
lf.eats.alfalfa$a
                          ..alfalfa$alf,.eats
f..eats..alfalfa$al
                          ..eats..alfalfa$alf
                          a$alf,eats,alfalf
,eats,alfalfa$alf
eats, alfalfa$alf...
                          alf_eats_alfalfa$
ats,,alfalfa$alf,,e
                         alfa$alf,,eats,,alf
ts..alfalfa$alf..ea
                          alfalfa$alf..eats..
s..alfalfa$alf..eat
                          ats_alfalfa$alf_e
..alfalfa$alf..eats
                          eats alfalfa$alf..
alfalfa$alf,.eats,.
                          f.eats.alfalfa$al
lfalfa$alf_eats_a
                       10 fa$alf, eats, alfal
falfa$alf,.eats,.al
                          falfa$alf,.eats,.al
alfa$alf..eats..alf
                         lf_eats_alfalfa$a
lfa$alf,.eats,.alfa
                       13 lfa$alf..eats..alfa
fa$alf..eats..alfal
                       14 lfalfa$alf..eats..a
                         s..alfalfa$alf,.eat
a$alf,_eats,_alfalf
$alf, eats, alfalfa
                       16 ts.,alfalfa$alf,ea
```

BWT – Implementation & Properties

Compute BWT efficiently:

- ightharpoonup cyclic shifts S = suffixes of S
- ► BWT is essentially suffix sorting!
 - ► B[i] = S[L[i] 1] (L = suffix array!) (if L[i] = 0, B[i] = \$)
 - \rightsquigarrow Can compute *B* in O(n) time

Why does BWT help?

- sorting groups characters by what follows
 - Example: If always preceded by a
- \rightarrow B has local clusters of characters
 - that makes MTF effective
- ▶ repeated substring in $S \rightsquigarrow runs$ of characters in B
 - picked up by RLE

```
alf, eats, alfalfa$
lf.eats.alfalfa$a
f.eats_alfalfa$al
,eats,alfalfa$alf
eats, alfalfa$alf...
ats,,alfalfa$alf,,e
ts..alfalfa$alf..ea
s..alfalfa$alf..eat
_alfalfa$alf_eats
alfalfa$alf,.eats,.
lfalfa$alf,.eats,.a
falfa$alf,.eats,.al
alfa$alf..eats..alf
lfa$alf,.eats,.alfa
fa$alf..eats..alfal
a$alf,_eats,_alfalf
$alf, eats, alfalfa
```

```
\downarrow L[r]
0 $alf, eats, alfalfa
   .,alfalfa$alf.,eats
   ..eats..alfalfa$alf
   asalf, eats, alfalf
   alf, eats, alfalfa$
  alfa$alf,,eats,,alf
   alfalfa$alf..eats..
   ats.alfalfa$alf.e
   eats_alfalfa$alf_
   f.eats.alfalfa$al
10 fa$alf, eats, alfal
   falfa$alf,,eats,,al
12 If eats alfalfasa
13 lfa$alf,eats,alfa
14 lfalfa$alf_eats_a
15 s.,alfalfa$alf.,eat
   ts.,alfalfa$alf.,ea
```

Bigger Example

have_had_hadnt_hasnt_havent_has_what\$ ave had hadnt hasnt havent has whatsh ve.,had,,hadnt,,hasnt,,havent,,has,,what\$ha e.,had,,hadnt,,hasnt,,havent,,has,,what\$hav .,had,,hadnt,,hasnt,,havent,,has,,what\$have had, hadnt, hasnt, havent, has, what have, ad_hadnt_hasnt_havent_has_what\$have_h d.,hadnt,,hasnt,,havent,,has,,what\$have,,ha _hadnt_hasnt_havent_has_what\$have_had hadnt_hasnt_havent_has_what\$have_had_ adnt..hasnt..havent..has..what\$have..had..h dnt.,hasnt,,havent,,has,,what\$have,,had,,ha nt..hasnt..havent..has..what\$have..had..had t_hasnt_havent_has_what\$have_had_hadn ..hasnt..havent..has..what\$have..had..hadnt hasnt, havent, has, what have, had, hadnt, asnt. havent. has. what\$have. had. hadnt. h snt.,havent.,has.,what\$have.,had.,hadnt.,ha nt.,havent.,has.,what\$have.,had.,hadnt.,has t..havent_has_what\$have_had_hadnt_hasn ..havent..has..what\$have..had..hadnt..hasnt havent has what shave had hadnt hasnt. avent..has..what\$have..had..hadnt..hasnt..h vent..has..what\$have..had..hadnt..hasnt..ha ent..has..what\$have..had..hadnt..hasnt..hav nt..has..what\$have..had..hadnt..hasnt..have t has what shave had hadnt hasnt haven ..has..what\$have..had..hadnt..hasnt..havent has what shave had hadnt hasnt havent. as.,what\$have.,had.,hadnt.,hasnt.,havent.,h s.,what\$have.,had.,hadnt.,hasnt.,havent.,ha _what\$have_had_hadnt_hasnt_havent_has what\$have..had..hadnt..hasnt..havent..has... hat shave had hadnt hasnt havent has w at\$have..had..hadnt..hasnt..havent..has..wh t\$have, had, hadnt, hasnt, havent, has, wha \$have had hadnt hasnt havent has what \$have..had..hadnt..hasnt..havent..has..what had hadnt hasnt havent has what shave .,hadnt,,hasnt,,havent,,has,,what\$have,,had .,has,,what\$have,,had,,hadnt,,hasnt,,havent .,hasnt,,havent,,has,,what\$have,,had,,hadnt .,havent,,has,,what\$have,,had,,hadnt,,hasnt what shave had hadnt hasnt havent has ad_hadnt_hasnt_havent_has_what\$have_h adnt_hasnt_havent_has_what\$have_had_h as..what\$have..had..hadnt..hasnt..havent..h asnt..havent..has..what\$have..had..hadnt..h at\$have,.had,.hadnt,.hasnt,.havent,.has,.wh ave..had..hadnt..hasnt..havent..has..what\$h avent_has_what\$have_had_hadnt_hasnt_h d. hadnt..hasnt..havent..has..what\$have..ha dnt.,hasnt,,havent,,has,,what\$have,,had,,ha e. had. hadnt. hasnt. havent. has. whatshav ent., has, what shave, had, hadnt, hasnt, ha v had hadnt hasnt havent has what have... hadnt.hasnt.havent.has.what\$have.had.. has, what \$have, had, hadnt, hasnt, havent... hasnt.havent,has,what\$have,had,hadnt, hat\$have..had..hadnt..hasnt..havent..has..w have..had..hadnt..hasnt..havent..has..what \$ havent., has., what \$have., had., hadnt., hasnt., nt..has..what\$have..had..hadnt..hasnt..have nt..hasnt..havent,.has,,what\$have,,had,,had nt.,havent.,has.,what\$have.,had.,hadnt.,has s,what\$have,had,hadnt,hasnt,havent,ha snt.,havent.,has.,what\$have.,had,.hadnt.,ha t\$have, had, hadnt, hasnt, havent, has, wh a t_has_what\$have_had.hadnt_hasnt.haven t.,hasnt.,havent.,has.,what\$have.,had.,had n t_havent_has_what\$have_had_hadnt_has n ve..had..hadnt..hasnt..havent..has..what\$ha vent has what shave had hadnt hasnt ha what shave had hadnt hasnt havent has...

T= have _ had _ had nt _ has nt _ have nt _ has _ what \$\$B=\$ tedttts $\frac{1}{2}$ hhhhhhhaavv _ _ _ _ w \$ _ edsaaannnaa _ MTF(B)= 85520087000000007090800010929987001000105

Clicker Question

Consider $T = \text{have_had_hadnt_hasnt_havent_has_what}$. The BWT is $B = \text{tedtttshhhhhhhaavv}_{uuuu}$ w\$_edsaaannnaa_. How can we explain the long run of hs in B?

- A h is the most frequent character
- B h always appears at the beginning of a word
- c almost all words start with h
- **D** h is always followed by a
- E all as are preceded by h
- F h is the 4th character in the alphabet

sli.do/comp526

Clicker Question

Consider $T = \text{have_had_hadnt_hasnt_havent_has_what}$. The BWT is $B = \text{tedtttshhhhhhhaavv}___w\$_\text{edsaaannnaa}_$. How can we explain the long run of hs in B?

- A h is the most frequent character
- B halways appears at the beginning of a word
- C) almost all words start with h
- D) h is always followed by a
- \mathbf{E} all as are preceded by h $\sqrt{}$
- F h is the 4th character in the alphabet

sli.do/comp526

7.10 Inverse BWT

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

not even obvious that it is at all invertible!

► Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

not even obvious that it is at all invertible!

► "Magic" solution:

- **1.** Create array D[0..n] of pairs: D[r] = (B[r], r).
- **2.** Sort *D* stably with respect to first entry.
- **3.** Use *D* as linked list with (char, next entry)

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

D "Magic" solution: o(a, 0)**1.** Create array D[0..n] of pairs: ı (r, 1) D[r] = (B[r], r).2 (d, 2) 2. Sort *D* stably with **3** (\$, 3) respect to first entry. 4 (r, 4) 3. Use D as linked list with 5 (c, 5) (char, next entry) 6 (a, 6) 7 (a, 7) Example: 8 (a, 8) B = ard\$rcaaaabb9 (a, 9) S =10 (b, 10) 11 (b, 11)

not even obvious that

it is at all invertible!

	D	sorted D	not even obvious that it is at all invertible!
► "Magic" solution:	o (a, 0)	char next 0 (\$, 3)	
1. Create array $D[0n]$ of pairs: $D[r] = (B[r], r)$.	1 (r, 1) 2 (d, 2)	1 (a, 0) 2 (a, 6)	
2. Sort <i>D</i> stably with respect to first entry.	3 (\$, 3) 4 (r, 4)	3 (a, 7) 4 (a, 8)	
3. Use <i>D</i> as linked list with (char, next entry)	5 (c, 5)	5 (a, 9) 6 (b, 10)	
Example:	6 (a, 6) 7 (a, 7)	7 (b, 11)	
B = ard rcaaaabb S =	8 (a, 8) 9 (a, 9)	8 (c, 5) 9 (d, 2)	
	10 (b, 10) 11 (b, 11)	10 (r, 1)	

► Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that D sorted D it is at all invertible! char next "Magic" solution: (\$, 3)o(a, 0)**1.** Create array D[0..n] of pairs: 1 (r, 1) (a, D D[r] = (B[r], r).2 (d, 2) 2. Sort *D* stably with з (\$, 3) з (a, 7) respect to first entry. 4 (r, 4) 4 (a, 8) 3. Use D as linked list with 5 (c, 5) 5 (a, 9) (char, next entry) 6 (a, 6) 6 (b, 10) 7 (a, 7) 7 (b, 11) Example: 8 (c, 5) 8 (a, 8) B = ard\$rcaaaabb9 (d, 2) (a, 9) $S = \mathbf{a}$ 10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

	D	sorted D	not even obvious that it is at all invertible!
► "Magic" solution:	o (a, 0)	char next 0 (\$, 3)	
1. Create array $D[0n]$ of pairs: $D[r] = (B[r], r)$.	1 (r, 1) 2 (d, 2)	1 (a, 0) 2 (a, 6)	
2. Sort <i>D</i> stably with respect to first entry.	3 (\$, 3) 4 (r, 4)	3 (a, 7) 4 (a, 8)	
3. Use <i>D</i> as linked list with (char, next entry)	5 (c, 5) 6 (a, 6)	5 (a, 9)	
Example:	7 (a, 7)	7 (b, 11)	
B = ard\$rcaaaabb S = ab	8 (a, 8) 9 (a, 9)	8 (c, 5) 9 (d, 2)	
	10 (b, 10)	10 (r, 1)	

	D	sorted D	not even obvious that it is at all invertible!
► "Magic" solution:	o (a, 0)	char next 0 (\$, 3)	
1. Create array $D[0n]$ of pairs: $D[r] = (B[r], r)$.	1 (r, 1) 2 (d, 2)	1 (a, 0) 2 (a, 6)	
2. Sort <i>D</i> stably with respect to first entry.	3 (\$, 3) 4 (r, 4)	3 (a, 7) 4 (a, 8)	
3. Use <i>D</i> as linked list with (char, next entry)	5 (c, 5)	s (a, 9)	
Example:	6 (a, 6) 7 (a, 7)	6 (b, 10) 7 (b, 11)	
B = ard\$rcaaaabb S = abr	8 (a, 8) 9 (a, 9)	8 (c, 5) 9 (d, 2)	
	10 (b, 10)	10 (r, 1)	

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

not even obvious that D it is at all invertible! sorted D char next "Magic" solution: 0 (\$, 3) o(a, 0)**1.** Create array D[0..n] of pairs: 1 (a, 0) 1 (r, 1) D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort *D* stably with з (a, 7) з (\$, 3) respect to first entry. 4 (r, 4) (a, 8)3. Use D as linked list with (a, 9)5 (c, 5) (char, next entry) (b, 10)6 (a, 6) (b, 11)(a, 7)Example: (a, 8)B = ard\$rcaaaabb(a, 9)(d, S = abra(b, 10)(r, 1)11 (b, 11) (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

not even obvious that D sorted D it is at all invertible! char next "Magic" solution: 0 (\$, 3) o(a, 0)**1.** Create array D[0..n] of pairs: 1 (a, 0) 1 (r, 1) D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort *D* stably with з (\$, 3) з (a, 7) respect to first entry. 4 (r, 4) (a, 8)-3. Use D as linked list with 5 (c, 5) (char, next entry) 6 (a, 6) (b, 11)7 (a, 7) Example: (c, 5)8 (a, 8) B = ard\$rcaaaabb9 (d, 2) (a, 9)S = abrac10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

		D	sorted D	not even obvious that it is at all invertible!
► "Magic" solution:	Θ	(a, 0)	char next 0 (\$, 3)	
1. Create array $D[0n]$ of pairs: $D[r] = (B[r], r)$.		(r, 1) (d, 2)	1 (a, 0) 2 (a, 6)	
2. Sort <i>D</i> stably with respect to first entry.	3	(\$, 3) (r, 4)	3 (a, 7) 4 (a, 8)	
3. Use <i>D</i> as linked list with (char, next entry)	5	(c, 5) (a, 6)	5 (a, 9) (b, 10)	
Example:	7	(a, 7)	7 (b, 11)	
B = ard\$rcaaaabb S = abraca	9	(a, 8) (a, 9)	8 (c, 5)— 9 (d, 2)	
		(b, 10) (b, 11)	10 (r, 1)	

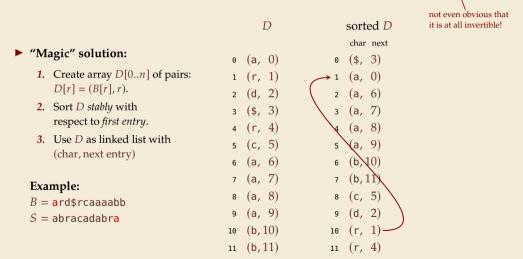
	D	sorted D	not even obvious that it is at all invertible!
► "Magic" solution:	o (a, 0)	char next 0 (\$, 3)	
1. Create array $D[0n]$ of pairs: $D[r] = (B[r], r)$.	1 (r, 1) 2 (d, 2)	1 (a, 0) 2 (a, 6)	
2. Sort <i>D</i> stably with respect to first entry.	3 (\$, 3) 4 (r, 4)	3 (a, 7) 4 (a, 8)	
3. Use <i>D</i> as linked list with (char, next entry)	5 (c, 5)	5 (a, 9)	
Example:	6 (a, 6) 7 (a, 7)	6 (b, 10) 7 (b, 11)	
B = ard \$rcaaaabb S = abracad	8 (a, 8) 9 (a, 9)	$\binom{8}{9} \binom{(c, 5)}{(d, 2)}$	
	10 (b, 10)	10 (r, 1)	

► Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that D it is at all invertible! sorted D char next "Magic" solution: 0 (\$, 3) o(a, 0)**1.** Create array D[0..n] of pairs: 1 (r, 1) 1 (a, 0) D[r] = (B[r], r).2 (d, 2) (a, 6)2. Sort *D* stably with **3** (\$, 3) (a, 7)respect to first entry. 4 (r, 4) (a, 8)3. Use D as linked list with 5 (c, 5) (char, next entry) 6 (a, 6) (a, 7)(b, 11)Example: (c, 5)(a, 8)B = ard\$rcaaaabb9 (d, 2) (a, 9)S = abracada(b, 10)10 (r, 1) 11 (b, 11) 11 (r, 4)

	D	sorted D	not even obvious that it is at all invertible!
► "Magic" solution:	o (a, 0)	char next 0 (\$, 3)	
1. Create array $D[0n]$ of pairs: $D[r] = (B[r], r)$.	1 (r, 1) 2 (d, 2)	1 (a, 0) 2 (a, 6)	
2. Sort <i>D</i> stably with respect to first entry.	3 (\$, 3) 4 (r, 4)	3 (a, 7) 4 (a, 8)	
3. Use <i>D</i> as linked list with (char, next entry)	5 (c, 5) 6 (a, 6)	5 (a, 9) 6 (b, 10)	
Example:	7 (a, 7) 8 (a, 8)	7 (b, 11) 8 (c, 5)	
$B = \operatorname{ard}\operatorname{*rcaaaabb}$ $S = \operatorname{abracadab}$	9 (a, 9) 10 (b, 10)	9 (d, 2) 10 (r, 1)	
	10 (b, 10)	10 (r, 1) 11 (r. 4)	

	D	sorted D	not even obvious that it is at all invertible!
► "Magic" solution:	o (a, 0)	char next 0 (\$, 3)	
1. Create array $D[0n]$ of pairs: $D[r] = (B[r], r)$.	1 (r, 1) 2 (d, 2)	1 (a, 0) 2 (a, 6)	
2. Sort <i>D</i> stably with respect to first entry.	3 (\$, 3) 4 (r, 4)	3 (a, 7) 4 (a, 8)	
Use D as linked list with (char, next entry)	5 (c, 5)	s (a, 9)	
Example:	6 (a, 6) 7 (a, 7)	6 (b, 10) 7 (b, 11)	
B = ard\$rcaaaabb S = abracadabr	8 (a, 8) 9 (a, 9)	8 (c, 5) 9 (d, 2)	
	10 (b, 10) 11 (b, 11)	\rightarrow 10 (r, 1)	



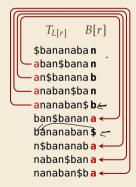
	D	1	sorted D	not even obvious that it is at all invertible!
► "Magic" solution:	o (a, (2) -> 0	char next (\$, 3)	
1. Create array $D[0n]$ of pairs: $D[r] = (B[r], r)$.	ı (r, :	1) 1	(a, 0)	
2. Sort <i>D</i> stably with respect to first entry.	2 (d, 2 3 (\$, 3	3) 3	(a, 6) (a, 7)	
3. Use <i>D</i> as linked list with (char, next entry)	4 (r, 4 5 (c, 5	5) 5	(a, 8) (a, 9)	
Example:	6 (a, (7) 7	(b, 10) (b, 11)	
B = ard rcaaaabb S = abracadabra	8 (a, 8 9 (a, 9	<u> </u>	(c, 5) (d, 2)	
	10 (b, 10		(r, 1) (r, 4)	

- ► Inverse BWT very easy to compute:
 - ▶ only sort individual characters in *B* (not suffixes)
 - \rightsquigarrow O(n) with counting sort
- ▶ but why does this work!?

- ► Inverse BWT very easy to compute:
 - ▶ only sort individual characters in *B* (not suffixes)
 - \rightsquigarrow O(n) with counting sort
- ▶ but why does this work!?
- ▶ decode char by char
 - ▶ can find unique \$ → starting row
- to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
 - when we can walk through and decode

- ► Inverse BWT very easy to compute:
 - ▶ only sort individual characters in *B* (not suffixes)
 - \rightarrow O(n) with counting sort
- ▶ but why does this work!?
- ▶ decode char by char
 - ► can find unique \$ → starting row
- ▶ to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
 - $\rightsquigarrow\,$ then we can walk through and decode
- ► for (i): first column = characters of *B* in sorted order

- ► Inverse BWT very easy to compute:
 - ▶ only sort individual characters in *B* (not suffixes)
 - \rightsquigarrow O(n) with counting sort
- ▶ but why does this work!?
- decode char by char
- ▶ can find unique \$ → starting row
 ▶ to get next char, we need
 (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT→ then we can walk through and decode
- ► for (i): first column = characters of *B* in sorted order
- ► for (ii): relative order of same character stays same: ith a in first column = ith a in BWT
 - \rightsquigarrow stably sorting (B[r], r) by first entry enough



L[r]

0

6

BWT – Discussion

- ▶ Running time: $\Theta(n)$
 - encoding uses suffix sorting
 - decoding only needs counting sort
 - \rightsquigarrow decoding much simpler & faster (but same Θ -class)

BWT – Discussion

- ▶ Running time: $\Theta(n)$
 - encoding uses suffix sorting
 - decoding only needs counting sort
 - \rightsquigarrow decoding much simpler & faster (but same Θ -class)
- typically slower than other methods
- need access to entire text (or apply to blocks independently)
- BWT-MTF-RLE-Huffman (bzip2) pipeline tends to have best compression

Summary of Compression Methods

- Huffman Variable-width, single-character (optimal in this case)
 - RLE Variable-width, multiple-character encoding
 - LZW Adaptive, fixed-width, multiple-character encoding Augments dictionary with repeated substrings
 - MTF Adaptive, transforms to smaller integers should be followed by variable-width integer encoding
 - BWT Block compression method, should be followed by MTF