

31 March 2022

Sebastian Wild

COMP526 (Spring 2022) University of Liverpool version 2022-03-30 22:26

Learning Outcomes

- **1.** Understand the context of *error-prone communication*.
- **2.** Understand concepts of *error-detecting codes* and *error-correcting codes*.
- 3. Know and understand the *terminology of block codes*.
- **4.** Know and understand *Hamming codes*, in particular 4+3 Hamming code.
- 5. Reason about the *suitability of a code* for an application.

Unit 8: Error-Correcting Codes

Outline

8 Error-Correcting Codes

- 8.1 Introduction
- 8.2 Lower Bounds
- 8.3 Hamming Codes

8.1 Introduction

- most forms of communication are "noisy"
 - humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

most forms of communication are "noisy"

- humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages
- ► How do humans cope with that?
 - slow down and/or speak up
 - ask to repeat if necessary

most forms of communication are "noisy"

- humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages
- ► How do humans cope with that?
 - slow down and/or speak up
 - ▶ ask to repeat if necessary
- But how is it possible (for us)

to decode a message in the presence of noise & errors?

Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!

- most forms of communication are "noisy"
 - humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages
- ▶ How do humans cope with that?
 - slow down and/or speak up
 - ask to repeat if necessary
- But how is it possible (for us) to decode a message in the presence of noise & errors?

Bcaesue it semes taht ntaurul lanaguge has a lots fo **redundancy** bilt itno it!

- → We can
- 1. detect errors "This sentence has aao pi dgsdho gioasghds."
- correct (some) errors "Tiny errs ar corrrected automaticly." (sometimes too eagerly as in the Chinese Whispers / Telephone)

Noisy Channels

- computers: copper cables & electromagnetic interference
- transmit a binary string
- ▶ but occasionally bits can "flip"
- $\rightsquigarrow \ want \ a \ robust \ code$

Noisy Channels

- computers: copper cables & electromagnetic interference
- transmit a binary string
- ▶ but occasionally bits can "flip"
- \rightsquigarrow want a robust code

We can aim at

- **1.** error detection
- → can request a re-transmit
- 2. error correction
- → avoid re-transmit for common types of errors

Noisy Channels

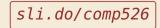
- computers: copper cables & electromagnetic interference
- transmit a binary string
- ▶ but occasionally bits can "flip"
- \rightsquigarrow want a robust code

We can aim at

- **1.** error detection \rightsquigarrow can request a re-transmit
- 2. error correction \longrightarrow avoid re-transmit for common types of errors
- This will require *redundancy*: sending *more* bits than plain message ~ goal: robust code with lowest redundancy that's the opposite of compression!

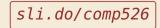
Clicker Question

What do you think, how many extra bits do we need to **detect** a **single bit error** in a message of 100 bits?



Clicker Question

What do you think, how many extra bits do we need to **correct** a **single bit error** in a message of 100 bits?



8.2 Lower Bounds

Block codes

▶ model:

- ▶ want to send message $S \in \{0, 1\}^*$ (bitstream) across a (*communication*) channel
- ► any bit transmitted through the channel might *flip* (0 → 1 resp. 1 → 0) no other errors occur (no bits lost, duplicated, inserted, etc.)
- ▶ instead of *S*, we send *encoded bitstream* $C \in \{0, 1\}^*$ sender *encodes S* to *C*, receiver *decodes C* to *S* (hopefully)
- $\rightsquigarrow\,$ what errors can be detected and/or corrected?

Block codes

model:

- ▶ want to send message $S \in \{0, 1\}^*$ (bitstream) across a (*communication*) channel
- ► any bit transmitted through the channel might *flip* (0 → 1 resp. 1 → 0) no other errors occur (no bits lost, duplicated, inserted, etc.)
- ▶ instead of *S*, we send *encoded bitstream* $C \in \{0, 1\}^*$ sender *encodes S* to *C*, receiver *decodes C* to *S* (hopefully)
- $\rightsquigarrow\,$ what errors can be detected and/or corrected?
- all codes discussed here are block codes
 - divide *S* into messages $m \in \{0, 1\}^k$ of *k* bits each $(k = message \ length)$
 - encode each message (separately) as $C(m) \in \{0, 1\}^n$ $(n = block length, n \ge k)$
 - $\rightsquigarrow\$ can analyze everything block-wise

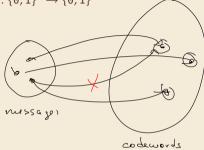
Block codes

model:

- ▶ want to send message $S \in \{0, 1\}^*$ (bitstream) across a (*communication*) channel
- ► any bit transmitted through the channel might *flip* (0 → 1 resp. 1 → 0) no other errors occur (no bits lost, duplicated, inserted, etc.)
- ▶ instead of *S*, we send *encoded bitstream* $C \in \{0, 1\}^*$ sender *encodes S* to *C*, receiver *decodes C* to *S* (hopefully)
- $\rightsquigarrow\,$ what errors can be detected and/or corrected?
- all codes discussed here are block codes
 - divide *S* into messages $m \in \{0, 1\}^k$ of *k* bits each $(k = message \ length)$
 - encode each message (separately) as $C(m) \in \{0, 1\}^n$ $(n = block length, n \ge k)$
 - $\rightsquigarrow\$ can analyze everything block-wise
- between 0 and n bits might be flipped invalid code
 - how many flipped bits can we definitely detect?
 - how many flipped bits can we correct without retransmit?

i.e. decoding m still possible

▶ each block code is an *injective* function $C : \{0, 1\}^k \to \{0, 1\}^n$



 $\rightsquigarrow \mathcal{C} \subseteq \{0,1\}^n$

 $\swarrow^{m \neq m'} \implies C(m) \neq C(m')$ each block code is an *injective* function C : {0, 1}^k → {0, 1}ⁿ

• define \mathcal{C} = set of all codewords = $C(\{0, 1\}^k)$

 $|\mathcal{C}| = 2^k$ out of 2^n *n*-bit strings are valid codewords

decoding = finding closest valid codeword

 $\rightsquigarrow \mathcal{C} \subseteq \{0, 1\}^n$

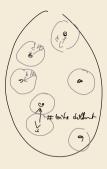
- ▶ each block code is an *injective* function $C : \{0, 1\}^k \to \{0, 1\}^n$
- define \mathcal{C} = set of all codewords = $C(\{0, 1\}^k)$

 $|\mathcal{C}| = 2^k$ out of 2^n *n*-bit strings are valid codewords

decoding = finding closest valid codeword

► distance of code:

d = minimal Hamming distance of any two codewords $= \min_{x,y \in \mathcal{C}} d_H(x, y)$



 $\rightsquigarrow \mathcal{C} \subseteq \{0, 1\}^n$

 $m \neq m' \implies C(m) \neq C(m')$

- each block code is an *injective* function $C : \{0, 1\}^k \to \{0, 1\}^n$
- define C = set of all codewords = $C(\{0, 1\}^k)$

 $|\mathcal{C}| = 2^k$ out of 2^n *n*-bit strings are valid codewords

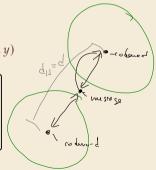
decoding = finding closest valid codeword

► distance of code:

d = minimal Hamming distance of any two codewords $= \min_{x,y \in \mathcal{C}} d_H(x, y)$

Implications for codes

- **1.** Need distance *d* to **detect** all errors flipping up to d 1 bits.
- **2.** Need distance *d* to **correct** all errors flipping up to $\lfloor \frac{d-1}{2} \rfloor$ bits.



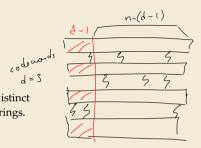
Lower Bounds

 Main advantage of concept of code distance: can *prove* lower bounds on block length

Lower Bounds

- Main advantage of concept of code distance: can *prove* lower bounds on block length
- Singleton bound: $2^k \le 2^{n-(d-1)} \iff n \ge k+d-1$

▶ proof sketch: We have 2^k codeswords with distance d = after deleting the first d − 1 bits, all are still distinct but there are only 2^{n−(d−1)} such shorter bitstrings.



Lower Bounds

 Main advantage of concept of code distance: can *prove* lower bounds on block length

• Singleton bound: $2^k \le 2^{n-(d-1)} \iff n \ge k+d-1$

▶ proof sketch: We have 2^k codeswords with distance d after deleting the first d − 1 bits, all are still distinct but there are only 2^{n−(d−1)} such shorter bitstrings.

► Hamming bound:
$$2^k \le \frac{2^n}{\sum_{f=0}^{\lfloor (d-1)/2 \rfloor} {n \choose f}}$$

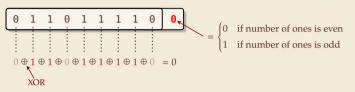
► proof idea: consider "balls" of bitstrings around codewords
| count bitstrings with Hamming-distance $\le t = \lfloor (d-1)/2 \rfloor$
correcting t errors means all these balls are disjoint
so $2^k \cdot$ ball size $\le 2^n$
 $d = 0$ | bitstring (columed)
 $d = 1$ h " (flep | bit)

9 = t

8.3 Hamming Codes

Parity Bit

▶ simplest possible error-detecting code: add a **parity bit**



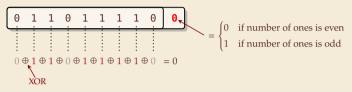
Parity Bit



- \rightsquigarrow code distance 2
- can detect any single-bit error (actually, any odd number of flipped bits)
- used in many hardware (communication) protocols
 - PCI buses, serial buses
 - ► caches
 - early forms of main memory

Parity Bit

simplest possible error-detecting code: add a parity bit

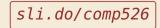


- \rightsquigarrow code distance 2
- can detect any single-bit error (actually, any odd number of flipped bits)
- used in many hardware (communication) protocols
 - PCI buses, serial buses
 - ► caches
 - early forms of main memory
- very simple and cheap

C cannot correct any errors

Clicker Question

What do you think, how many extra bits do we need to **detect** a **single bit error** in a message of 100 bits?



,any downtime is expensive!

- typical application: heavy-duty server RAM
 - bits can randomly flip (e.g., by cosmic rays)
 - individually very unlikely, but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

, any downtime is expensive!

- typical application: heavy-duty server RAM
 - bits can randomly flip (e.g., by cosmic rays)
 - individually very unlikely, but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we **correct** a bit error without knowing where it occurred? How?

, any downtime is expensive!

- typical application: heavy-duty server RAM
 - bits can randomly flip (e.g., by cosmic rays)
 - individually very unlikely, but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we **correct** a bit error without knowing where it occurred? How?

- ► Yes! store every bit *three times*!
 - upon read, do majority vote
 - ▶ if only one bit flipped, the other two (correct) will still win

, any downtime is expensive!

- typical application: heavy-duty server RAM
 - bits can randomly flip (e.g., by cosmic rays)
 - individually very unlikely, but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we **correct** a bit error without knowing where it occurred? How?

- ► Yes! store every bit *three times*!
 - upon read, do majority vote
 - ▶ if only one bit flipped, the other two (correct) will still win
 - C *triples* the cost!

You want WHAT!?!

,any downtime is expensive!

- typical application: heavy-duty server RAM
 - bits can randomly flip (e.g., by cosmic rays)
 - individually very unlikely, but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we **correct** a bit error without knowing where it occurred? How?

- ► Yes! store every bit *three times*!
 - upon read, do majority vote
 - ▶ if only one bit flipped, the other two (correct) will still win
 - C *triples* the cost!

You want WHAT!?!



How to locate errors?

- ► Idea: Use several parity bits
 - each covers a **subset** of bits
 - clever subsets ~~ violated/valid parity bit pattern narrows down error

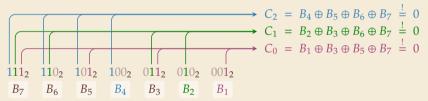
How to locate errors?

- ► Idea: Use several parity bits
 - each covers a **subset** of bits
 - ▶ clever subsets → violated/valid parity bit pattern narrows down error
 - flipped bit can be one of the parity bits!

- ► Idea: Use several parity bits
 - each covers a subset of bits
 - clever subsets ~~ violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

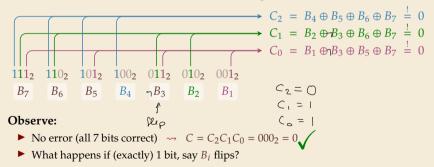
• Consider n = 7 bits B_1, \ldots, B_7 with the following constraints:



- ▶ Idea: Use several parity bits
 - each covers a subset of bits
 - clever subsets ~~ violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

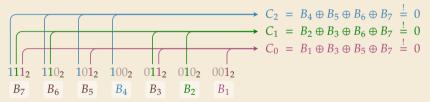
• Consider n = 7 bits B_1, \ldots, B_7 with the following constraints:



- ▶ Idea: Use several parity bits
 - each covers a subset of bits
 - clever subsets ~~ violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

• Consider n = 7 bits B_1, \ldots, B_7 with the following constraints:



Observe:

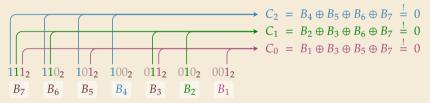
- No error (all 7 bits correct) $\rightsquigarrow C = C_2 C_1 C_0 = 000_2 = 0$
- What happens if (exactly) 1 bit, say B_i flips?

 $C_i = 1$ iff *j*th bit in binary representation of *i* is 1

- ▶ Idea: Use several parity bits
 - each covers a subset of bits
 - clever subsets ~~ violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

• Consider n = 7 bits B_1, \ldots, B_7 with the following constraints:

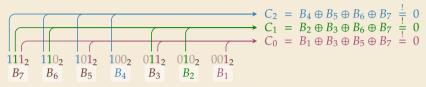


Observe:

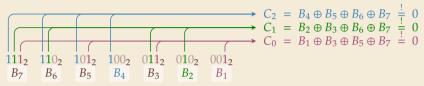
- ► No error (all 7 bits correct) $\rightsquigarrow C = C_2 C_1 C_0 = 000_2 = 0$
- ▶ What happens if (exactly) 1 bit, say *B_i* flips?

 $C_j = 1$ iff *j*th bit in binary representation of *i* is 1 \rightsquigarrow *C* encodes position of error!

► How can we turn this into a code?

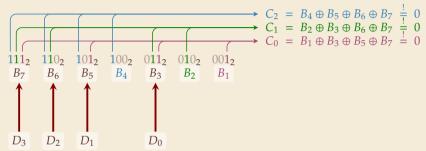


▶ How can we turn this into a code?



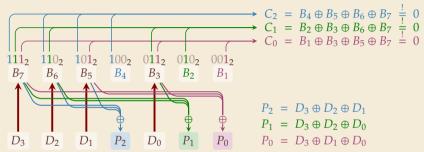
- ▶ B_4 , B_2 and B_1 occur only in one constraint each \rightarrow **define** them based on rest!
- ▶ 4 + 3 Hamming Code Encoding
 - **1.** Given: message $D_3D_2D_1D_0$ of length k = 4

► How can we turn this into a code?



- ▶ B_4 , B_2 and B_1 occur only in one constraint each $\rightarrow \rightarrow$ define them based on rest!
- ▶ 4 + 3 Hamming Code Encoding
 - **1.** Given: message $D_3D_2D_1D_0$ of length k = 4
 - **2.** copy $D_3 D_2 D_1 D_0$ to $B_7 B_6 B_5 B_3$

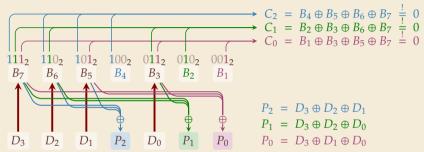
▶ How can we turn this into a code?



▶ B_4 , B_2 and B_1 occur only in one constraint each $\rightarrow \rightarrow$ define them based on rest!

- ▶ 4 + 3 Hamming Code Encoding
 - **1.** Given: message $D_3D_2D_1D_0$ of length k = 4
 - **2.** copy $D_3D_2D_1D_0$ to $B_7B_6B_5B_3$
 - **3.** compute $P_2P_1P_0 = B_4B_2B_1$ so that C = 0

► How can we turn this into a code?



▶ B_4 , B_2 and B_1 occur only in one constraint each $\rightarrow \rightarrow$ define them based on rest!

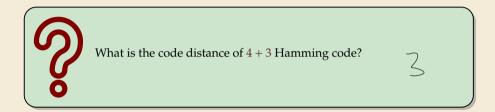
- ▶ 4 + 3 Hamming Code Encoding
 - **1.** Given: message $D_3D_2D_1D_0$ of length k = 4
 - **2.** copy $D_3D_2D_1D_0$ to $B_7B_6B_5B_3$
 - **3.** compute $P_2P_1P_0 = B_4B_2B_1$ so that C = 0
 - **4.** send $D_3 D_2 D_1 P_2 D_0 P_1 P_0$

Example: message = 1101

4+3 Hamming Code – Decoding

- ▶ 4 + 3 Hamming Code Decoding
 - **1.** Given: block $B_7B_6B_5B_4B_3B_2B_1$ of length n = 7
 - **2.** compute *C* (as above)
 - 3. if C = 0 no (detectable) error occurred otherwise, flip B_C (the *C*th bit was twisted)
 - **4.** return 4-bit message $B_7B_6B_5B_3$

Clicker Question



4+3 Hamming Code – Properties

Hamming bound:

- ▶ 2⁴ valid 7-bit codewords (on per message)
- ▶ any of the 7 single-bit errors corrected towards valid codeword
- $\rightsquigarrow~$ each codeword covers 8 of all possible 7-bit strings
- ▶ $2^4 \cdot 2^3 = 2^7 \quad \rightsquigarrow \quad \text{exactly cover space of 7-bit strings}$

4+3 Hamming Code – Properties

Hamming bound:

- ▶ 2⁴ valid 7-bit codewords (on per message)
- any of the 7 single-bit errors corrected towards valid codeword
- $\rightsquigarrow\,$ each codeword covers 8 of all possible 7-bit strings
- ▶ $2^4 \cdot 2^3 = 2^7 \quad \rightsquigarrow \quad \text{exactly cover space of 7-bit strings}$
- distance d = 3
- ▶ can *correct* any 1-bit error

4+3 Hamming Code – Properties

Hamming bound:

- ▶ 2⁴ valid 7-bit codewords (on per message)
- any of the 7 single-bit errors corrected towards valid codeword
- $\rightsquigarrow~$ each codeword covers 8 of all possible 7-bit strings
- ▶ $2^4 \cdot 2^3 = 2^7 \implies$ exactly cover space of 7-bit strings
- distance d = 3
- can *correct* any 1-bit error
- ► How about 2-bit errors?
 - We can *detect* that *something* went wrong.
 - ▶ But: above decoder mistakes it for a (different!) 1-bit error and "corrects" that
 - Variant: store one additional parity bit for entire block
 - → Can *detect* any 2-bit error, but *not correct* it.

Hamming Codes – General recipe

- construction can be generalized:
 - Start with $n = 2^{\ell} 1$ bits for $\ell \in \mathbb{N}$ (we had $\ell = 3$)
 - use the ℓ bits whose index is a power of 2 as parity bits
 - the other $n \ell$ are data bits

Hamming Codes – General recipe

- construction can be generalized:
 - Start with $n = 2^{\ell} 1$ bits for $\ell \in \mathbb{N}$ (we had $\ell = 3$)
 - use the ℓ bits whose index is a power of 2 as parity bits
 - the other $n \ell$ are data bits

Choosing l = 7 we can encode entire word of memory (64 bit) with 11% overhead (using only 64 out of the 120 possible data bits)

Hamming Codes – General recipe

- construction can be generalized:
 - Start with $n = 2^{\ell} 1$ bits for $\ell \in \mathbb{N}$ (we had $\ell = 3$)
 - use the ℓ bits whose index is a power of 2 as parity bits
 - the other $n \ell$ are data bits
- Choosing l = 7 we can encode entire word of memory (64 bit) with 11% overhead (using only 64 out of the 120 possible data bits)

simple and efficient coding / decoding
 fairly space-efficient

Outlook

• Indeed: $(2^{\ell} - \ell - 1) + \ell$ Hamming Code is "perfect"

 $\rightsquigarrow~$ cannot use fewer bits \ldots

= matches Hamming lower bound

- if message length is 2^ℓ ℓ 1 for ℓ ∈ N≥2
 i. e., one of 1, 4, 11, 26, 57, 120, 247, 502, 1013, ...
- and we want to correct 1-bit errors

Outlook

• Indeed: $(2^{\ell} - \ell - 1) + \ell$ Hamming Code is "*perfect*"

 \rightsquigarrow cannot use fewer bits . . .

= matches Hamming lower bound

- if message length is 2^ℓ ℓ 1 for ℓ ∈ N≥2
 i. e., one of 1, 4, 11, 26, 57, 120, 247, 502, 1013, ...
- and we want to correct 1-bit errors
- ▶ For other scenarios, finding good codes is an active research area
 - ▶ information theory predicts that *almost all* randomly chosen codes are good(!)
 - but these are inefficient to decode
 - $\rightsquigarrow\$ clever tricks and constructions needed