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Learning Outcomes

i

Understand the context of error-prone
communication.

Understand concepts of error-detecting
codes and error-correcting codes.

Know and understand the ferminology of
block codes.

Know and understand Hamming codes, in
particular 4+3 Hamming code.

Reason about the suitability of a code for
an application.

Unit 8: Error-Correcting Codes




Outline

8 Error-Correcting Codes

8.1 Introduction
8.2 Lower Bounds

8.3 Hamming Codes
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Noisy Communication

» most forms of communication are “noisy”

» humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

s ~

» How do humans cope with that?
» slow down and/or speak up

> ask to repeat if necessary

UGH, PEDPLE ARE MAD AT ME AGAIN

BEchJ?e THEY DONT READ CAREFULLY.
» But how is it possible (for us) 1 & J eIl LR, €
g o Misi TS WHAT L SAY.
? NTERPRES
to decode a message in the presence of noise & errors? 10, SouNDS LI YOURE
PGNRERT AT COMMUNICATING,
7 7 . 3 ACTMTY THAT FAMOUSLY
Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it! R oo
~»  We can K>
1. detect errors “This sentence has aao pi dgsdho gioasghds.”
2. correct (some) errors “Tiny errs ar corrrected automaticly.”

(sometimes too eagerly as in the Chinese Whispers / Telephone)
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Noisy Channels

» computers: copper cables &
electromagnetic interference

» transmit a binary string
» but occasionally bits can “flip”

~~ want a robust code

» We can aim at
1. error detection ~» can request a re-transmit
2. error correction ~> avoid re-transmit for common types of errors

» This will require redundancy: sending more bits than plain message

~~ goal: robust code with lowest redundancy \, .. opposite of compression!



Clicker Question

What do you think, how many extra bits do we need to detect a single
bit error in a message of 100 bits?
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Clicker Question

What do you think, how many extra bits do we need to correct a
single bit error in a message of 100 bits?
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8.2 Lower Bounds



Block codes

» model:

>

>

want to send message S € {0, 1}* (bitstream) across a (communication) channel

any bit transmitted through the channel might flip (0 — 1resp.1 — 0)
no other errors occur (no bits lost, duplicated, inserted, etc.)

instead of S, we send encoded bitstream C € {0, 1}*
sender encodes S to C, receiver decodes C to S (hopefully)

what errors can be detected and/or corrected?
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Block codes

» model:

> want to send message S € {0, 1}* (bitstream) across a (communication) channel

» any bit transmitted through the channel might flip (0 — 1resp.1 — 0)
no other errors occur (no bits lost, duplicated, inserted, etc.)

» instead of S, we send encoded bitstream C € {0,1}*
sender encodes S to C, receiver decodes C to S (hopefully)

~~ what errors can be detected and/or corrected?
» all codes discussed here are block codes
» divide S into messages m € {0, 1}¥ of k bits each (k = message length)
» encode each message (separately) as C(m) € {0, 1}" (n = block length, n > k)
~+ can analyze everything block-wise
> between 0 and 7 bits might be flipped ~ nvalid code

» how many flipped bits can we definitely detect?
» how many flipped bits can we correct without retransmit?

i.e. decoding m still possible
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Code distance

m#m’ = C(m)# C(m’)

» each block code is an injective function C : {0, 1} — {0,1}"

» define C = set of all codewords = C({0, 1}¥)

~ € c{0,1}" [|G | = 2% out of 2" n-bit strings are valid Codewords]

» decoding = finding closest valid codeword

» distance of code:
d = minimal Hamming distance of any two codewords = mir(l du(x,y)
x,yeC

Implications for codes

1. Need distance d to detect all errors flipping up to 4 — 1 bits.
2. Need distance d to correct all errors flipping up to L%j bits.
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Lower Bounds

» Main advantage of concept of code distance:
can prove lower bounds on block length

> Singleton bound: 2K <21V . p>k+d-1

> proof sketch: We have 2K codeswords with distance d
after deleting the first d — 1 bits, all are still distinct
but there are only 2"~(?~1) such shorter bitstrings.

. Voo koo s Lo, d
d-1)/2 n G e R A N
Z'I}(:O )/ J (f) —> \QOUMJ M‘QA !f (?QLwé’\Q—U(/j KPOM“%
» proof idea: consider “balls” of bitstrings around codewords
jcount bitstrings with Hamming-distance < t = | (d - 1)/2]
correcting t errors means all these balls are disjoint cadsvord
so 2k - ball size < 2" ‘

d=0 1 bibdiny Celowad?
~» We will come back to these. doi " . (fesp | bt

=5 (3]

» Hamming bound: 2 <

6
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1 if number of ones is odd

101000101016 160 =0
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» PCI buses, serial buses
» caches

» early forms of main memory



Parity Bit

» simplest possible error-detecting code:  add a parity bit

[011011110]0
—— B {0 if number of ones is even

1 if number of ones is odd

elelellelele®lsdl =0

XOR
~» code distance 2
> can detect any single-bit error (actually, any odd number of flipped bits)

» used in many hardware (communication) protocols
» PCI buses, serial buses
» caches

» early forms of main memory
@ very simple and cheap

l@ cannot correct any errors



Clicker Question

What do you think, how many extra bits do we need to detect a single
bit error in a message of 100 bits?
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» bits can randomly flip (e g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!
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Error-correcting codes

any downtime is expensive!

» typical application: heavy-duty server RAM
» bits can randomly flip (e g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack- of- the-cosmic- rays-v2

267 7

2  Can we correct a bit error without knowing where it occurred? How?

» Yes! store every bit three times!
» upon read, do majority vote
» if only one bit flipped, the other two (correct) will still win
E@ triples the cost!

instead of 200% (!)
D o ,
QIOJ Can do it with 11% extra memory!
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How to locate errors?

» Idea: Use several parity bits
» each covers a subset of bits
» clever subsets ~- violated/valid parity bit pattern narrows down error

A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, . .

(

111,
By

[

|

110,
Be

[

101,
Bs

1

By

2

11,
B3

B>

2

[

12
By

(65)
C1
Co

., B7 with the following constraints:

B4 @ Bs ® Bg @ By
By ® B3 ® B ® By
B1 @ B3 @ Bs ® By

o @ @



How to locate errors?

» Idea: Use several parity bits
» each covers a subset of bits
» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..., By with the following constraints:
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How to locate errors?

» Idea: Use several parity bits
» each covers a subset of bits
» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..., By with the following constraints:

Cyp = B4 ® Bs @ B @ By

| | | C1 = B, ® B3 @ B @ By

Co = Bi1®B;®Bs® B

(1] [ I [ oo
111, 110, 101, 100, 11, 010, 1,

By Bg Bs B4 B3 By B

Observe:
» No error (all 7 bits correct) ~» C = CyC1Cp =000, = 0\/
»> What happens if (exactly) 1 bit, say B; flips?

[C j =1 iff jthbitin binary representation of 7 is 1]

=@ @

=



How to locate errors?

» Idea: Use several parity bits
» each covers a subset of bits
» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..., By with the following constraints:

Co = B4®Bs®Bs @By = 0
|l
| | | Ci = Bb®B3s®Bg®By =0
( | ( |( | ( Cyo = Bi1®B3s®Bs® By = 0
111, 110, 101, 100, 11, 10, 1,

By Bg Bs B4 B3 By B

Observe:
» No error (all 7 bits correct) ~» C = CyC1Cp =000, = 0\/
»> What happens if (exactly) 1 bit, say B; flips?

[C j =1 iff jthbitin binary representation of 7 is 1] ~  C encodes position of error!




4+3 Hamming Code

» How can we turn this into a code?

Cyp = B4 ® Bs @ B @ By
7 7 r Ci = Bb®B3®B; ®By
(( | 7 7 | 7 Co = B1® B3 @ Bs @ By

111, 110, 101, 100, 011, 010, 001,
B7 B6 B5 B4 B3 BZ Bl

o e 9



4+3 Hamming Code

» How can we turn this into a code?

C, = B4®Bs®Bs ®B; = 0
( ( ( ( C1=BQEBB3®B6@B7$O
[— r 1 T G = e @i = U

111, 110, 101, 100, 011, 01
B, B¢ Bs By Bz By B

» By, B> and Bj occur only in one constraint each ~+ define them based on rest!

» 4+ 3 Hamming Code — Encoding
1. Given: message D3D,D1Dy of length k = 4
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4+3 Hamming Code

» How can we turn this into a code?

C, = B4®Bs®Bs ®B; = 0
( ( C1=BQEBB3®B6@B7$O
[( i r 7 r—— Co=Bi®B®B;887 = 0

[
111, 110, 101, 100, 011, 010, 001,
B, B¢ Bs By B; B

D; Dy D Dy

» By, B> and Bj occur only in one constraint each ~+ define them based on rest!

» 4+ 3 Hamming Code — Encoding
1. Given: message D3D,D1Dy of length k = 4
2. copy D3DyD1Dg to ByB¢Bs5B3
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4+3 Hamming Code

» How can we turn this into a code?

(( ( ([

Tl ( 1 (
111, 110, 101, 100, 011, 010, 001,
By B6 B5 By B3 By By

\ \\\ \\ 3

N\ X, =
= [ 1
\2 ¥ ¥
D3 D2 D1 Pz DO Pl PO

» By, B> and B; occur only in one constraint each

» 4+ 3 Hamming Code — Encoding

1. Given: message D3D,D1Dy of length k = 4

2. copy D3DyD1Dg to ByB¢Bs5B3
3. compute PpP1Py = B4B3B1 so that C =0

Py
Py

~

B4 @& Bs & Bg @ By
B> & B3 & B¢ @ By
B1 & B3 & Bs & By

[ ={]e={]==
o OO

= D3® D, ® D,
= D3& D, ® Dy
= D3® D; @ Dy

define them based on rest!

10



4+3 Hamming Code

» How can we turn this into a code?

C2=B4€BB5€BB6€BB7%0
( ( ( ( Cq ZBz€BB3®B6EBB7$0
[( | 7 e | 7 Co = Bi1®B3s®Bs® By =0

111, 110, 101, 100, 011, 01
By Bé B5 By B3 By By

\ \\\ \\ \
= ‘ﬁ ﬁ P, = D3® D, ® D,
v
P

Y 9 Py = D3 ® D,y ® Dy
Dy Py Py Py D3 & D1 @ Dy

D; Dy D

» By, B> and Bj occur only in one constraint each ~+ define them based on rest!

» 4+ 3 Hamming Code — Encoding

1. Given: message D3D,D1Dy of length k = 4
2. copy D3DyD1Dg to ByB¢Bs5B3
3. compute PpP1Py = B4B3B1 so that C =0
4. send D3D,D1P>DyP1Py
10






4+3 Hamming Code — Decoding

» 4 +3 Hamming Code — Decoding
1. Given: block ByBsB5B4B3ByB1 of lengthn =7
2. compute C (as above)

3. if C = 0 no (detectable) error occurred
otherwise, flip B¢ (the Cth bit was twisted)

4. return 4-bit message B7BgB5B3

11



Clicker Question

What is the code distance of 4 + 3 Hamming code? Z

o
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4+3 Hamming Code — Properties

» Hamming bound:
> 2% valid 7-bit codewords (on per message)
» any of the 7 single-bit errors corrected towards valid codeword
~+ each codeword covers 8 of all possible 7-bit strings

> 24.23 =27 s exactly cover space of 7-bit strings
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4+3 Hamming Code — Properties

» Hamming bound:

> 2% valid 7-bit codewords (on per message)
» any of the 7 single-bit errors corrected towards valid codeword
~+ each codeword covers 8 of all possible 7-bit strings

> 24.23 =27 s exactly cover space of 7-bit strings

» distance d =3
» can correct any 1-bit error

» How about 2-bit errors?

» We can detect that something went wrong.

»> But: above decoder mistakes it for a (different!) 1-bit error and “corrects” that

» Variant: store one additional parity bit for entire block

~+ Can detect any 2-bit error, but not correct it.

12



Hamming Codes — General recipe

> construction can be generalized:
» Start with n = 2{ — 1 bits for ¢ € N (wehad ¢ = 3)
> use the ¢ bits whose index is a power of 2 as parity bits
» the other 1 — { are data bits

13



Hamming Codes — General recipe

> construction can be generalized:
» Start with n = 2{ — 1 bits for ¢ € N (wehad ¢ = 3)
> use the ¢ bits whose index is a power of 2 as parity bits
» the other 1 — { are data bits

» Choosing ¢ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

13



Hamming Codes — General recipe

> construction can be generalized:

» Start with n = 2{ — 1 bits for ¢ € N (wehad ¢ = 3)
> use the ¢ bits whose index is a power of 2 as parity bits
» the other 1 — { are data bits

» Choosing ¢ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

[b simple and efficient coding / decoding
[ﬁ fairly space-efficient

13



Outlook

» Indeed: (2/—¢-1)+ ¢ Hamming Code is “perfect”

~» cannot use fewer bits . . . = matches Hamming lower bound

> if message length is 20 —¢—1forf e Ns»
i.e.,,oneof1,4,11,26,57,120,247,502,1013, ...

» and we want to correct 1-bit errors
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Outlook

» Indeed: (2/—¢-1)+ ¢ Hamming Code is “perfect”

~s cannot use fewer bits . . . = matches Hamming lower bound

> if message length is 20 —¢—1forf e Ns»
i.e.,,oneof1,4,11,26,57,120,247,502,1013, ...

» and we want to correct 1-bit errors

» For other scenarios, finding good codes is an active research area

» information theory predicts that almost all randomly chosen codes are good(!)
» but these are inefficient to decode

~ clever tricks and constructions needed

14



