
8 Error-Correcting Codes
31 March 2022

Sebastian Wild

COMP526 (Spring 2022)
University of Liverpool

version 2022-03-30 22:26



Learning Outcomes
1. Understand the context of error-prone

communication.

2. Understand concepts of error-detecting
codes and error-correcting codes.

3. Know and understand the terminology of
block codes.

4. Know and understand Hamming codes, in
particular 4+3 Hamming code.

5. Reason about the suitability of a code for
an application.

Unit 8: Error-Correcting Codes

1



Outline

8 Error-Correcting Codes
8.1 Introduction
8.2 Lower Bounds
8.3 Hamming Codes



8.1 Introduction



Noisy Communication
� most forms of communication are “noisy”

� humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

2



Noisy Communication
� most forms of communication are “noisy”

� humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

� How do humans cope with that?
� slow down and/or speak up
� ask to repeat if necessary

2



Noisy Communication
� most forms of communication are “noisy”

� humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

� How do humans cope with that?
� slow down and/or speak up
� ask to repeat if necessary

� But how is it possible (for us)
to decode a message in the presence of noise & errors?

Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!

2



Noisy Communication
� most forms of communication are “noisy”

� humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

� How do humans cope with that?
� slow down and/or speak up
� ask to repeat if necessary

� But how is it possible (for us)
to decode a message in the presence of noise & errors?

Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!

� We can
1. detect errors “This sentence has aao pi dgsdho gioasghds.”
2. correct (some) errors “Tiny errs ar corrrected automaticly.”

(sometimes too eagerly as in the Chinese Whispers / Telephone)

2



Noisy Channels
� computers: copper cables &

electromagnetic interference

� transmit a binary string

� but occasionally bits can “flip”

� want a robust code

3



Noisy Channels
� computers: copper cables &

electromagnetic interference

� transmit a binary string

� but occasionally bits can “flip”

� want a robust code

� We can aim at

1. error detection � can request a re-transmit
2. error correction � avoid re-transmit for common types of errors

3



Noisy Channels
� computers: copper cables &

electromagnetic interference

� transmit a binary string

� but occasionally bits can “flip”

� want a robust code

� We can aim at

1. error detection � can request a re-transmit
2. error correction � avoid re-transmit for common types of errors

� This will require redundancy: sending more

that’s the opposite of compression!

bits than plain message
� goal: robust code with lowest redundancy

3



Clicker Question

sli.do/comp526

What do you think, how many extra bits do we need to detect a single
bit error in a message of 100 bits?



Clicker Question

sli.do/comp526

What do you think, how many extra bits do we need to correct a
single bit error in a message of 100 bits?



8.2 Lower Bounds



Block codes
� model:

� want to send message 𝑆 ∈ {0, 1}★ (bitstream) across a (communication) channel
� any bit transmitted through the channel might flip (0 → 1 resp. 1 → 0)

no other errors occur (no bits lost, duplicated, inserted, etc.)

� instead of 𝑆, we send encoded bitstream 𝐶 ∈ {0, 1}★
sender encodes 𝑆 to 𝐶, receiver decodes 𝐶 to 𝑆 (hopefully)

� what errors can be detected and/or corrected?

4



Block codes
� model:

� want to send message 𝑆 ∈ {0, 1}★ (bitstream) across a (communication) channel
� any bit transmitted through the channel might flip (0 → 1 resp. 1 → 0)

no other errors occur (no bits lost, duplicated, inserted, etc.)

� instead of 𝑆, we send encoded bitstream 𝐶 ∈ {0, 1}★
sender encodes 𝑆 to 𝐶, receiver decodes 𝐶 to 𝑆 (hopefully)

� what errors can be detected and/or corrected?

� all codes discussed here are block codes
� divide 𝑆 into messages 𝑚 ∈ {0, 1}𝑘 of 𝑘 bits each (𝑘 = message length)
� encode each message (separately) as 𝐶(𝑚) ∈ {0, 1}𝑛 (𝑛 = block length, 𝑛 ≥ 𝑘)

� can analyze everything block-wise

4



Block codes
� model:

� want to send message 𝑆 ∈ {0, 1}★ (bitstream) across a (communication) channel
� any bit transmitted through the channel might flip (0 → 1 resp. 1 → 0)

no other errors occur (no bits lost, duplicated, inserted, etc.)

� instead of 𝑆, we send encoded bitstream 𝐶 ∈ {0, 1}★
sender encodes 𝑆 to 𝐶, receiver decodes 𝐶 to 𝑆 (hopefully)

� what errors can be detected and/or corrected?

� all codes discussed here are block codes
� divide 𝑆 into messages 𝑚 ∈ {0, 1}𝑘 of 𝑘 bits each (𝑘 = message length)
� encode each message (separately) as 𝐶(𝑚) ∈ {0, 1}𝑛 (𝑛 = block length, 𝑛 ≥ 𝑘)

� can analyze everything block-wise

� between 0 and 𝑛 bits might be flipped
� how many flipped bits can we definitely detect

invalid code

?
� how many flipped bits can we correct

i. e. decoding 𝑚 still possible

without retransmit?

4



Code distance
� each block code is an injective

𝑚 ≠ 𝑚� =⇒ 𝐶(𝑚) ≠ 𝐶(𝑚�)

function 𝐶 : {0, 1}𝑘 → {0, 1}𝑛

5



Code distance
� each block code is an injective

𝑚 ≠ 𝑚� =⇒ 𝐶(𝑚) ≠ 𝐶(𝑚�)

function 𝐶 : {0, 1}𝑘 → {0, 1}𝑛

� define C = set of all codewords = 𝐶({0, 1}𝑘)

� C ⊆ {0, 1}𝑛 |C| = 2𝑘 out of 2𝑛 𝑛-bit strings are valid codewords

� decoding = finding closest valid codeword

5



Code distance
� each block code is an injective

𝑚 ≠ 𝑚� =⇒ 𝐶(𝑚) ≠ 𝐶(𝑚�)

function 𝐶 : {0, 1}𝑘 → {0, 1}𝑛

� define C = set of all codewords = 𝐶({0, 1}𝑘)

� C ⊆ {0, 1}𝑛 |C| = 2𝑘 out of 2𝑛 𝑛-bit strings are valid codewords

� decoding = finding closest valid codeword

� distance of code:
𝑑 = minimal Hamming distance of any two codewords = min

𝑥 ,𝑦∈C
𝑑𝐻(𝑥 , 𝑦)

5



Code distance
� each block code is an injective

𝑚 ≠ 𝑚� =⇒ 𝐶(𝑚) ≠ 𝐶(𝑚�)

function 𝐶 : {0, 1}𝑘 → {0, 1}𝑛

� define C = set of all codewords = 𝐶({0, 1}𝑘)

� C ⊆ {0, 1}𝑛 |C| = 2𝑘 out of 2𝑛 𝑛-bit strings are valid codewords

� decoding = finding closest valid codeword

� distance of code:
𝑑 = minimal Hamming distance of any two codewords = min

𝑥 ,𝑦∈C
𝑑𝐻(𝑥 , 𝑦)

Implications for codes

1. Need distance 𝑑 to detect all errors flipping up to 𝑑 − 1 bits.

2. Need distance 𝑑 to correct all errors flipping up to
�
𝑑−1

2
�

bits.

5



Lower Bounds
� Main advantage of concept of code distance:

can prove lower bounds on block length

6



Lower Bounds
� Main advantage of concept of code distance:

can prove lower bounds on block length

� Singleton bound: 2𝑘 ≤ 2𝑛−(𝑑−1) � 𝑛 ≥ 𝑘 + 𝑑 − 1
� proof sketch: We have 2𝑘 codeswords with distance 𝑑

after deleting the first 𝑑 − 1 bits, all are still distinct
but there are only 2𝑛−(𝑑−1) such shorter bitstrings.

6



Lower Bounds
� Main advantage of concept of code distance:

can prove lower bounds on block length

� Singleton bound: 2𝑘 ≤ 2𝑛−(𝑑−1) � 𝑛 ≥ 𝑘 + 𝑑 − 1
� proof sketch: We have 2𝑘 codeswords with distance 𝑑

after deleting the first 𝑑 − 1 bits, all are still distinct
but there are only 2𝑛−(𝑑−1) such shorter bitstrings.

� Hamming bound: 2𝑘 ≤ 2𝑛��(𝑑−1)/2�
𝑓=0

�𝑛
𝑓

�
� proof idea: consider “balls” of bitstrings around codewords

count bitstrings with Hamming-distance ≤ 𝑡 = �(𝑑 − 1)/2�
correcting 𝑡 errors means all these balls are disjoint
so 2𝑘 · ball size ≤ 2𝑛

� We will come back to these.

6



8.3 Hamming Codes



Parity Bit
� simplest possible error-detecting code: add a parity bit

0 1 1 0 1 1 1 1 0⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = 0

0 1 1 0 1 1 1 1 0 0

XOR

=

�
0 if number of ones is even
1 if number of ones is odd

7



Parity Bit
� simplest possible error-detecting code: add a parity bit

0 1 1 0 1 1 1 1 0⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = 0

0 1 1 0 1 1 1 1 0 0

XOR

=

�
0 if number of ones is even
1 if number of ones is odd

� code distance 2

� can detect any single-bit error (actually, any odd number of flipped bits)

� used in many hardware (communication) protocols
� PCI buses, serial buses
� caches
� early forms of main memory

7



Parity Bit
� simplest possible error-detecting code: add a parity bit

0 1 1 0 1 1 1 1 0⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = 0

0 1 1 0 1 1 1 1 0 0

XOR

=

�
0 if number of ones is even
1 if number of ones is odd

� code distance 2

� can detect any single-bit error (actually, any odd number of flipped bits)

� used in many hardware (communication) protocols
� PCI buses, serial buses
� caches
� early forms of main memory

very simple and cheap

cannot correct any errors
7



Clicker Question

sli.do/comp526

What do you think, how many extra bits do we need to detect a single
bit error in a message of 100 bits?



Error-correcting codes
� typical application: heavy-duty server

any downtime is expensive!

RAM
� bits can randomly flip (e. g., by cosmic rays)
� individually very unlikely,

but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

8



Error-correcting codes
� typical application: heavy-duty server

any downtime is expensive!

RAM
� bits can randomly flip (e. g., by cosmic rays)
� individually very unlikely,

but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

8



Error-correcting codes
� typical application: heavy-duty server

any downtime is expensive!

RAM
� bits can randomly flip (e. g., by cosmic rays)
� individually very unlikely,

but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

� Yes! store every bit three times!
� upon read, do majority vote
� if only one bit flipped, the other two (correct) will still win

8



Error-correcting codes
� typical application: heavy-duty server

any downtime is expensive!

RAM
� bits can randomly flip (e. g., by cosmic rays)
� individually very unlikely,

but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

� Yes! store every bit three times!
� upon read, do majority vote
� if only one bit flipped, the other two (correct) will still win

triples the cost! You want WHAT!?!

8



Error-correcting codes
� typical application: heavy-duty server

any downtime is expensive!

RAM
� bits can randomly flip (e. g., by cosmic rays)
� individually very unlikely,

but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

� Yes! store every bit three times!
� upon read, do majority vote
� if only one bit flipped, the other two (correct) will still win

triples the cost! You want WHAT!?!

Can do it with 11%

instead of 200% (!)

extra memory!

8



How to locate errors?
� Idea: Use several parity bits

� each covers a subset of bits
� clever subsets � violated/valid parity bit pattern narrows down error

9



How to locate errors?
� Idea: Use several parity bits

� each covers a subset of bits
� clever subsets � violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

9



How to locate errors?
� Idea: Use several parity bits

� each covers a subset of bits
� clever subsets � violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

� Consider 𝑛 = 7 bits 𝐵1 , . . . , 𝐵7 with the following constraints:

𝐵1

0012

𝐵2

0102

𝐵3

0112

𝐵4

1002

𝐵5

1012

𝐵6

1102

𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

9



How to locate errors?
� Idea: Use several parity bits

� each covers a subset of bits
� clever subsets � violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

� Consider 𝑛 = 7 bits 𝐵1 , . . . , 𝐵7 with the following constraints:

𝐵1

0012

𝐵2

0102

𝐵3

0112

𝐵4

1002

𝐵5

1012

𝐵6

1102

𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

Observe:
� No error (all 7 bits correct) � 𝐶 = 𝐶2𝐶1𝐶0 = 0002 = 0�� What happens if (exactly) 1 bit, say 𝐵𝑖 flips?

9



How to locate errors?
� Idea: Use several parity bits

� each covers a subset of bits
� clever subsets � violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

� Consider 𝑛 = 7 bits 𝐵1 , . . . , 𝐵7 with the following constraints:

𝐵1

0012

𝐵2

0102

𝐵3

0112

𝐵4

1002

𝐵5

1012

𝐵6

1102

𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

Observe:
� No error (all 7 bits correct) � 𝐶 = 𝐶2𝐶1𝐶0 = 0002 = 0�� What happens if (exactly) 1 bit, say 𝐵𝑖 flips?

𝐶𝑗 = 1 iff 𝑗th bit in binary representation of 𝑖 is 1

9



How to locate errors?
� Idea: Use several parity bits

� each covers a subset of bits
� clever subsets � violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

� Consider 𝑛 = 7 bits 𝐵1 , . . . , 𝐵7 with the following constraints:

𝐵1

0012

𝐵2

0102

𝐵3

0112

𝐵4

1002

𝐵5

1012

𝐵6

1102

𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

Observe:
� No error (all 7 bits correct) � 𝐶 = 𝐶2𝐶1𝐶0 = 0002 = 0�� What happens if (exactly) 1 bit, say 𝐵𝑖 flips?

𝐶𝑗 = 1 iff 𝑗th bit in binary representation of 𝑖 is 1 � 𝐶 encodes position of error!

9



4+3 Hamming Code
� How can we turn this into a code?

𝐵1

0012
𝐵2

0102
𝐵3

0112
𝐵4

1002
𝐵5

1012
𝐵6

1102
𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

10



4+3 Hamming Code
� How can we turn this into a code?

𝐵1

0012
𝐵2

0102
𝐵3

0112
𝐵4

1002
𝐵5

1012
𝐵6

1102
𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

� 𝐵4, 𝐵2 and 𝐵1 occur only in one constraint each � define them based on rest!

� 4 + 3 Hamming Code – Encoding
1. Given: message 𝐷3𝐷2𝐷1𝐷0 of length 𝑘 = 4

10



4+3 Hamming Code
� How can we turn this into a code?

𝐵1

0012
𝐵2

0102
𝐵3

0112
𝐵4

1002
𝐵5

1012
𝐵6

1102
𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐷3 𝐷2 𝐷1 𝐷0

� 𝐵4, 𝐵2 and 𝐵1 occur only in one constraint each � define them based on rest!

� 4 + 3 Hamming Code – Encoding
1. Given: message 𝐷3𝐷2𝐷1𝐷0 of length 𝑘 = 4
2. copy 𝐷3𝐷2𝐷1𝐷0 to 𝐵7𝐵6𝐵5𝐵3

10



4+3 Hamming Code
� How can we turn this into a code?

𝐵1

0012
𝐵2

0102
𝐵3

0112
𝐵4

1002
𝐵5

1012
𝐵6

1102
𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐷3 𝐷2 𝐷1 𝐷0𝑃2

⊕ 𝑃2 = 𝐷3 ⊕ 𝐷2 ⊕ 𝐷1

𝑃1

⊕ 𝑃1 = 𝐷3 ⊕ 𝐷2 ⊕ 𝐷0
𝑃0

⊕
𝑃0 = 𝐷3 ⊕ 𝐷1 ⊕ 𝐷0

� 𝐵4, 𝐵2 and 𝐵1 occur only in one constraint each � define them based on rest!

� 4 + 3 Hamming Code – Encoding
1. Given: message 𝐷3𝐷2𝐷1𝐷0 of length 𝑘 = 4
2. copy 𝐷3𝐷2𝐷1𝐷0 to 𝐵7𝐵6𝐵5𝐵3
3. compute 𝑃2𝑃1𝑃0 = 𝐵4𝐵2𝐵1 so that 𝐶 = 0

10



4+3 Hamming Code
� How can we turn this into a code?

𝐵1

0012
𝐵2

0102
𝐵3

0112
𝐵4

1002
𝐵5

1012
𝐵6

1102
𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐷3 𝐷2 𝐷1 𝐷0𝑃2

⊕ 𝑃2 = 𝐷3 ⊕ 𝐷2 ⊕ 𝐷1

𝑃1

⊕ 𝑃1 = 𝐷3 ⊕ 𝐷2 ⊕ 𝐷0
𝑃0

⊕
𝑃0 = 𝐷3 ⊕ 𝐷1 ⊕ 𝐷0

� 𝐵4, 𝐵2 and 𝐵1 occur only in one constraint each � define them based on rest!

� 4 + 3 Hamming Code – Encoding
1. Given: message 𝐷3𝐷2𝐷1𝐷0 of length 𝑘 = 4
2. copy 𝐷3𝐷2𝐷1𝐷0 to 𝐵7𝐵6𝐵5𝐵3
3. compute 𝑃2𝑃1𝑃0 = 𝐵4𝐵2𝐵1 so that 𝐶 = 0
4. send 𝐷3𝐷2𝐷1𝑃2𝐷0𝑃1𝑃0

10





4+3 Hamming Code – Decoding
� 4 + 3 Hamming Code – Decoding

1. Given: block 𝐵7𝐵6𝐵5𝐵4𝐵3𝐵2𝐵1 of length 𝑛 = 7
2. compute 𝐶 (as above)
3. if 𝐶 = 0 no (detectable) error occurred

otherwise, flip 𝐵𝐶 (the 𝐶th bit was twisted)
4. return 4-bit message 𝐵7𝐵6𝐵5𝐵3

11



Clicker Question

sli.do/comp526

What is the code distance of 4 + 3 Hamming code?



4+3 Hamming Code – Properties
� Hamming bound:

� 24 valid 7-bit codewords (on per message)
� any of the 7 single-bit errors corrected towards valid codeword
� each codeword covers 8 of all possible 7-bit strings
� 24 · 23 = 27 � exactly cover space of 7-bit strings

12



4+3 Hamming Code – Properties
� Hamming bound:

� 24 valid 7-bit codewords (on per message)
� any of the 7 single-bit errors corrected towards valid codeword
� each codeword covers 8 of all possible 7-bit strings
� 24 · 23 = 27 � exactly cover space of 7-bit strings

� distance 𝑑 = 3

� can correct any 1-bit error

12



4+3 Hamming Code – Properties
� Hamming bound:

� 24 valid 7-bit codewords (on per message)
� any of the 7 single-bit errors corrected towards valid codeword
� each codeword covers 8 of all possible 7-bit strings
� 24 · 23 = 27 � exactly cover space of 7-bit strings

� distance 𝑑 = 3

� can correct any 1-bit error

� How about 2-bit errors?
� We can detect that something went wrong.
� But: above decoder mistakes it for a (different!) 1-bit error and “corrects” that

� Variant: store one additional parity bit for entire block
� Can detect any 2-bit error, but not correct it.

12



Hamming Codes – General recipe
� construction can be generalized:

� Start with 𝑛 = 2ℓ − 1 bits for ℓ ∈ ℕ (we had ℓ = 3)

� use the ℓ bits whose index is a power of 2 as parity bits
� the other 𝑛 − ℓ are data bits

13



Hamming Codes – General recipe
� construction can be generalized:

� Start with 𝑛 = 2ℓ − 1 bits for ℓ ∈ ℕ (we had ℓ = 3)

� use the ℓ bits whose index is a power of 2 as parity bits
� the other 𝑛 − ℓ are data bits

� Choosing ℓ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

13



Hamming Codes – General recipe
� construction can be generalized:

� Start with 𝑛 = 2ℓ − 1 bits for ℓ ∈ ℕ (we had ℓ = 3)

� use the ℓ bits whose index is a power of 2 as parity bits
� the other 𝑛 − ℓ are data bits

� Choosing ℓ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

simple and efficient coding / decoding

fairly space-efficient

13



Outlook
� Indeed: (2ℓ−ℓ−1) + ℓ Hamming Code is “perfect”

= matches Hamming lower bound� cannot use fewer bits . . .

� if message length is 2ℓ − ℓ − 1 for ℓ ∈ ℕ≥2
i. e., one of 1, 4, 11, 26, 57, 120, 247, 502, 1013, . . .

� and we want to correct 1-bit errors

14



Outlook
� Indeed: (2ℓ−ℓ−1) + ℓ Hamming Code is “perfect”

= matches Hamming lower bound� cannot use fewer bits . . .

� if message length is 2ℓ − ℓ − 1 for ℓ ∈ ℕ≥2
i. e., one of 1, 4, 11, 26, 57, 120, 247, 502, 1013, . . .

� and we want to correct 1-bit errors

� For other scenarios, finding good codes is an active research area
� information theory predicts that almost all randomly chosen codes are good(!)
� but these are inefficient to decode
� clever tricks and constructions needed

14


