
Department of Computer Science
Dr. Sebastian Wild · Ben Smith

Date: 2023-10-16
Version: 2023-10-14 19:35

Tutorial 4 for
COMP 526 – Efficient Algorithmics, Fall 2023

Problem 1 (Sorted with outliers)

In this task, we consider a different type of presortedness:

Given an array A[0..n), we say A is d-deletion-sortable if there are indices 0 ≤ i1 < i2 <
· · · id < n, so that after deleting the positions i1, . . . , id from A, the resulting sequence
is sorted. For example

2, 4, 1, 6, 7, 5, 8, 12, 0

is 3-deletion-sortable (by removing elements 1, 5, 0), but it is not 2-deletion-sortable.

In the following, we always assume that we are given an array A[0..n) that is d-deletion-
sortable. For simplicity, you may assume that the elements in A are pairwise different.

a) Design an adaptive sorting algorithm for A when you are also given (a sorted array
D[0..d) of) the indices i1, . . . , id to delete.

Assuming d ≪ n, your algorithm should run in time o(n log n); more precisely, a
full solution would sort a

√
n-deletion-sortable A[0..n) in O(n) time.

Describe your algorithm (in clear prose or pseudocode) and analyze its running
time (as a Θ-class).

b) How large can d be before your solution requires ω(n) time?
How large can d be before your solution requites Ω(n log n) time?

c) Bonus problem:
Design an algorithm as in a), but this time you are neither given d, nor the indices
to delete.

Hint: Can you find a set of indices I, so that A is sorted after removing those
indices (without making I too big)? You may not be able to achieve |I| ≤ d easily,
but it is sufficient to be “not too far” from d.

	Problem 1 (Sorted with outliers)

