il

4 4

1B HEAH [[.
22 L N0 -
1ML =S =R
“HO DML = 0-:
10 PRI =L
2HNHMKER T
)L M-
LD OWNMHF
IRV E0m!
EAH AT UOL
T NETBE UL
2= 0B H<J6
lnvzmb <t
1AM O0OZ2 R
) HILHU M =
1O AHIE
A O2HOHF
OHRLBERD
ldHL 2l HC
><C O [[[[T

_| |

Proof Techniques

15 October 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25)

Philipps-Univer:

sitat Marburg

version 2024-10-14 15:17 H

Learning Outcomes

Unit 1: Proof Techniques

1. Know logical proof strategies for proving implications, set inclusions, set equalities, and
quantified statements.

2. Be able to use mathematical induction in simple proofs.

3. Know techniques for proving termination and correctness of procedures.

Outline

1 Proof Techniques

1.1 Digression: Random Shuffle
1.2 Proof Templates
1.3 Mathematical Induction

1.4 Correctness Proofs

1.1 Digression: Random Shuffle

Random shuffle

» Goal: Put an array A[0..n) of n numbers into random order.

More precisely: Any ordering of the elements A[0], ..., A[n — 1] should be equally
likely.

» A natural approach yields the following code

1 procedure myShuffle(A[0..n))

2 fori :=0,...,n—-1

3 r := randomInt([0..n)) // A uniformly random number r with 0 < r < n.
4 Swap Ali] and A[r] // Swap Ali] to random position.

5 end for

» Intuitively: All elements are moved to a random index, so the order is random . . . right?

Random shuffle

» Goal: Put an array A[0..n) of n numbers into random order.
More precisely: Any ordering of the elements A[0], .. ., A[n — 1] should be equally
likely.

» A natural approach yields the following code

«— WRONG!
DO NOT USE

om number r with 0 < r < n.

»"Intuitively: All elements are moved to a random index, so the order is random .".

I8 AREEREN Tnn
i -+

. right?22?

Correct shuffle

> interestingly, a very small change corrects the issue

1 procedure shuffleKnuthFisherYates(A[0..n))

2 fori :=0,...,n—-1

3 r := randomInt([i..n))
4 Swap A[i] and A[r]

5 end for

n=2 in =3 n=4
n=>5

» Jooks good ...

> ...but how can we convince ourselves that it is correct, beyond any doubt?

1.2 Proof Templates

What is a formal proof?

A formal proof (in alogical system) is a sequence of statements such that each statement

1. is an axiom (of the logical system), OT

2. follows from previous statements using the inference rules (of the logical system).

Among experts: Suffices to convince a human that a formal proof exists.

But: Use formal logic as guidance against faulty reasoning. ~~ bulletproof

Notation:

> Statements: A = “itrains”, B = “the street is wet”.

> Negation: -A “Not A”

» And/Or: AANB “Aand B”; AV B “Aor B orboth”
» Implication: A = B “If A, thenB”; —-AVB

» Equivalence: A & B “A holds true if and only if (‘iff’) B holds true.”; (A = B)A(B= A)

Implications

To prove A = B, we can
» directly derive B from A direct proof
» prove (—B) = (-A) indirect proof, proof by contraposition
> assume A A =B and derive a contradiction proof by contradiction, reductio ad absurdum

> distinguish cases, i. e., separately prove
(AANC)= Band (AA-C)= B. proof by exhaustive case distinction

Equivalences

To prove A & B,
we prove both implications A = B and B = A separately.

(Often, one direction is much easier than the other.)

Set Inclusion and Equality

To prove that a set S contains a set R,i.e.,, RC S,
we prove the implication x € R = x € S.

To prove that two sets S and R are equal, S = R,
we prove both inclusions, S € R and R C S separately.

1.3 Mathematical Induction

Quantified Statements
Notation

“x is an even number.”

> Statements with parameters: A(x)
» Existential quantifiers: Jx : A(x) “There exists some x, so that A(x).”
» Universal quantifiers: Vx : A(x) “For all x it holds that A(x).”

Note: Vx : A(x) is equivalent to —=3x : =A(x)

Quantifiers can be nested, e. g., e-6-criterion for limits:

lim f(x) = a o Ve>035>0: (Jx—& <06) =|f(x)—a|<e.

To prove Jx : A(x), we simply list an example & such that A(¢) is true.

For-all statements
To prove Vx : A(x), we can
» derive A(x) for an “arbitrary but fixed value of x”, or,

» for x € Ny, use induction, i.e.,

» prove A(0), induction basis, and
» prove Vn e Ny : A(n) = A(n +1) inductive step

More general variants of induction:

> complete/strong induction
inductive step shows (A(0) A--- A A(n)) = A(n +1)

» structural/transfinite induction

works on any well-ordered set, e. g., binary trees, graphs, Boolean formulas, strings, .. .

no infinite strictly decreasing chains

10

1.4 Correctness Proofs

Formal verification

» verification: prove that a program computes the correct result
~ not our key focus in CS 566
but same techniques are useful for reasoning about algorithms
Here:
1. Prove that loop or recursive call eventually terminates.

2. Prove that a loop computes the correct result.

11

Proving termination
To prove that a recursive procedure proc(xy, ..., x,;) eventually terminates, we

» define a potential (x1, ... x,) € Ny of the parameters
(Note: @(x1, ...x,) = 0 by definition!)

> prove that every recursive call decreases the potential, i. e.,
any recursive call proc(y1, ..., y,) inside proc(xy, . .., x,,) satisfies
D(y1,..., Ym) < O(x1,...,%Xm) which means
D(y1, .-, Ym) < Px1, ..., xp) =1

~» proc(xy, ..., X;) terminates because
we can only strictly decrease the (integral) potential
a finite number of times from its initial value

» Can use same idea for a loop: show that potential decreases in each iteration.

~» see tutorials for an example.

12

Loop invariants

Goal: Prove that a post condition holds after execution of a (terminating) loop.

1 // (A) before loop For that, we

2 while cond do) .)

3 // (B) before body » find a loop invariant I (that's the tough part!)
o b » prove that [holds at (A)

5 // (C) after body

¢ end while » prove that I A cond at (B) imply I at (C)

7 /(D) after loop » prove that I A —cond imply the desired post condition at (D)

Note: [holds before, during, and after the loop execution, hence the name.

Loop invariant — Example

» loop condition: cond = j <n
» post condition (in line 13):
curMax = max Alk]
ke[0..n-1]
» loop invariant:

I = curMax = max Alk] A j<n
ke[0..j-1]

We have to proof:
(i) I holds at (A)
(ii)) I A cond at(B) = [at(C)

(iii) I A mcond = post condition

1
2
3
4
5
6
7
8
9

procedure arrayMax(A,n)
// input: array of n elements, n > 1
// output: the maximum element in A[0..n — 1]
curMax := A[0]; j:=1
//(A)
while j <1 do
//(B)
if Ali] > curMax
curMax := A[j]
=l
//(C)
end while
// (D)

return curMax

14

Loop invariant — Example

15

	Proof Techniques
	 Learning Outcomes
	Digression: Random Shuffle
	 Random shuffle
	 Random shuffle
	 Correct shuffle

	Proof Templates
	 What is a formal proof?
	 Implications
	 Equivalences
	 Set Inclusion and Equality

	Mathematical Induction
	 Quantified Statements
	 For-all statements

	Correctness Proofs
	 Formal verification
	 Proving termination
	 Loop invariants
	 Loop invariant – Example
	 Loop invariant – Example

