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Learning Outcomes

Unit 1: Proof Techniques

1. Know logical proof strategies for proving implications, set inclusions, set equalities, and
quantified statements.

2. Be able to use mathematical induction in simple proofs.

3. Know techniques for proving termination and correctness of procedures.



Outline

1 Proof Techniques

1.1 Digression: Random Shuffle
1.2 Proof Templates
1.3 Mathematical Induction

1.4 Correctness Proofs



1.1 Digression: Random Shuffle



Random shuffle

» Goal: Put an array A[0..n) of n numbers into random order.

More precisely: Any ordering of the elements A[0], ..., A[n — 1] should be equally
likely.

» A natural approach yields the following code

1 procedure myShuffle(A[0..n))

2 fori :=0,...,n—-1

3 r := randomInt([0..n)) // A uniformly random number r with 0 < r < n.
4 Swap Ali] and A[r] // Swap Ali] to random position.

5 end for

» Intuitively: All elements are moved to a random index, so the order is random . . . right?
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Correct shuffle

> interestingly, a very small change corrects the issue

1 procedure shuffleKnuthFisherYates(A[0..n))

2 fori :=0,...,n—-1

3 r := randomInt([i..n))
4 Swap A[i] and A[r]

5 end for

n=2 in =3 n=4
n=>5

» Jooks good ...

> ...but how can we convince ourselves that it is correct, beyond any doubt?



1.2 Proof Templates



What is a formal proof?

A formal proof (in alogical system) is a sequence of statements such that each statement

1. is an axiom (of the logical system), OT

2. follows from previous statements using the inference rules (of the logical system).

Among experts: Suffices to convince a human that a formal proof exists.

But: Use formal logic as guidance against faulty reasoning. ~~ bulletproof

Notation:

> Statements: A = “itrains”, B = “the street is wet”.

> Negation: -A “Not A”

» And/Or: AANB “Aand B”; AV B “Aor B orboth”
» Implication: A = B “If A, thenB”; —-AVB

» Equivalence: A & B “A holds true if and only if (‘iff’) B holds true.”; (A = B)A(B= A)



Implications

To prove A = B, we can
» directly derive B from A direct proof
» prove (—B) = (-A) indirect proof, proof by contraposition
> assume A A =B and derive a contradiction proof by contradiction, reductio ad absurdum

> distinguish cases, i. e., separately prove
(AANC)= Band (AA-C)= B. proof by exhaustive case distinction



Equivalences

To prove A & B,
we prove both implications A = B and B = A separately.

(Often, one direction is much easier than the other.)



Set Inclusion and Equality

To prove that a set S contains a set R,i.e.,, RC S,
we prove the implication x € R = x € S.

To prove that two sets S and R are equal, S = R,
we prove both inclusions, S € R and R C S separately.



1.3 Mathematical Induction



Quantified Statements
Notation

“x is an even number.”

> Statements with parameters: A(x)
» Existential quantifiers: Jx : A(x) “There exists some x, so that A(x).”
» Universal quantifiers: Vx : A(x) “For all x it holds that A(x).”

Note: Vx : A(x) is equivalent to —=3x : =A(x)

Quantifiers can be nested, e. g., e-6-criterion for limits:

lim f(x) = a o Ve>035>0: (Jx—& <06) =|f(x)—a|<e.

To prove Jx : A(x), we simply list an example & such that A(¢) is true.



For-all statements
To prove Vx : A(x), we can
» derive A(x) for an “arbitrary but fixed value of x”, or,

» for x € Ny, use induction, i.e.,

» prove A(0), induction basis, and
» prove Vn e Ny : A(n) = A(n +1) inductive step

More general variants of induction:

> complete/strong induction
inductive step shows (A(0) A--- A A(n)) = A(n +1)

» structural/transfinite induction

works on any well-ordered set, e. g., binary trees, graphs, Boolean formulas, strings, .. .

no infinite strictly decreasing chains

10



1.4 Correctness Proofs



Formal verification

» verification: prove that a program computes the correct result
~ not our key focus in CS 566
but same techniques are useful for reasoning about algorithms
Here:
1. Prove that loop or recursive call eventually terminates.

2. Prove that a loop computes the correct result.

11



Proving termination
To prove that a recursive procedure proc(xy, ..., x,;) eventually terminates, we

» define a potential (x1, ... x,) € Ny of the parameters
(Note: @(x1, ...x,) = 0 by definition!)

> prove that every recursive call decreases the potential, i. e.,
any recursive call proc(y1, ..., y,) inside proc(xy, . .., x,,) satisfies
D(y1,..., Ym) < O(x1,...,%Xm) which means
D(y1, .-, Ym) < Px1, ..., xp) =1

~» proc(xy, ..., X;) terminates because
we can only strictly decrease the (integral) potential
a finite number of times from its initial value

» Can use same idea for a loop: show that potential decreases in each iteration.

~» see tutorials for an example.

12



Loop invariants

Goal: Prove that a post condition holds after execution of a (terminating) loop.

1 // (A) before loop For that, we

2 while cond do ) . )

3 // (B) before body » find a loop invariant I (that's the tough part!)
o b » prove that [ holds at (A)

5 // (C) after body

¢ end while » prove that I A cond at (B) imply I at (C)

7 /(D) after loop » prove that I A —cond imply the desired post condition at (D)

Note: [ holds before, during, and after the loop execution, hence the name.



Loop invariant — Example

» loop condition: cond = j <n
» post condition (in line 13):
curMax = max Alk]
ke[0..n-1]
» loop invariant:

I = curMax = max Alk] A j<n
ke[0..j-1]

We have to proof:
(i) I holds at (A)
(ii)) I A cond at(B) = [at(C)

(iii) I A mcond = post condition

1
2
3
4
5
6
7
8
9

procedure arrayMax(A,n)
// input: array of n elements, n > 1
// output: the maximum element in A[0..n — 1]
curMax := A[0]; j:=1
//(A)
while j <1 do
//(B)
if Ali] > curMax
curMax := A[j]
=l
//(C)
end while
// (D)

return curMax

14



Loop invariant — Example

15
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