
2 Machines & Models
21 October 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25)
Philipps-Universität Marburg

version 2024-10-28 14:29 H

Learning Outcomes

Unit 2: Machines & Models

1. Understand the difference between empirical running time and algorithm analysis.

2. Understand worst / best / average case models for input data.

3. Know the RAM machine model.

4. Know the definitions of asymptotic notation (Big-Oh classes and relatives).

5. Understand the reasons to make asymptotic approximations.

6. Be able to analyze simple algorithms.

1

Outline

2 Machines & Models
2.1 Algorithm analysis
2.2 The RAM Model
2.3 Asymptotics & Big-Oh
2.4 Teaser: Maximum subarray problem

What is an algorithm?
An algorithm is a sequence

think: recipe

of instructions.

More precisely:
1. mechanically executable

e. g. Python script

⇝ no “common sense” needed

2. finite description ≠ finite computation!

3. solves a problem
𝑥 + 𝑦, not only 17 + 4

, i. e., a class of problem instances

▶ input-processing-output abstraction

3AlgorithmAlgorithm
input(s) output(s)

Typical example: bubblesort
⇝ not a specific program

but the underlying idea

2

What is a data structure?

A data structure is
1. a rule for encoding data

(in computer memory), plus

2. algorithms to work with it
(queries, updates, etc.)

typical example: binary search tree

3

2.1 Algorithm analysis

Good algorithms
Our goal: Find good (best?) algorithms and data structures for a task.

Good “usually” means

▶ fast running time
can be complicated in distributed systems

▶ moderate memory space usage

Algorithm analysis is a way to

▶ compare different algorithms,

▶ predict their performance in an application

4

Running time experiments
Why not simply run and time it?

▶ results only apply to
▶ single test machine
▶ tested inputs
▶ tested implementation
▶ . . .
≠ universal truths

▶ instead: consider and analyze algorithms on an abstract
survives Pentium 4

machine
⇝ provable statements for model
⇝ testable model hypotheses

⇝ Need precise model of machine (costs), input data and algorithms.

5

Data Models
Algorithm analysis typically uses one of the following simple data models:

▶ worst-case performance:
consider the worst of all inputs as our cost metric

▶ best-case performance:
consider the best of all inputs as our cost metric

▶ average-case performance:
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size 𝑛.

⇝ performance is only a function of 𝑛.

6

2.2 The RAM Model

Machine models
The machine model decides

▶ what algorithms are possible

▶ how they are described (= programming language)

▶ what an execution costs

Goal: Machine models should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

⇝ usually some compromise is needed

honest

smart investment
banker

7

Random Access Machines
Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

▶ unlimited memory MEM[0], MEM[1], MEM[2], . . .
▶ fixed number of registers 𝑅1 , . . . , 𝑅𝑟 (say 𝑟 = 100)

▶ memory cells MEM[𝑖] and registers 𝑅𝑖 store 𝑤-bit integers, i. e., numbers in [0..2𝑤 − 1]
𝑤 is the word width/size; typically 𝑤 ∝ lg 𝑛 ⇝ 2𝑤 ≈ 𝑛

▶ Instructions:
▶ load & store: 𝑅𝑖 := MEM[𝑅 𝑗] MEM[𝑅 𝑗] := 𝑅𝑖

▶ operations on registers: 𝑅𝑘 := 𝑅𝑖 + 𝑅 𝑗 (arithmetic is modulo 2𝑤 !)
also 𝑅𝑖 − 𝑅 𝑗 , 𝑅𝑖 · 𝑅 𝑗 , 𝑅𝑖 div 𝑅 𝑗 , 𝑅𝑖 mod 𝑅 𝑗

C-style operations (bitwise and/or/xor, left/right shift)

▶ conditional and unconditional jumps

▶ cost: number of executed instructions

⇝ The RAM is the standard model for sequential

we will see further models later

computation.

8

https://www.springer.com/gp/book/9783030252083

RAM-Program Example

Example RAM program

1 // Assume: 𝑅1 stores number 𝑁
2 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
3 𝑅2 := 𝑅1;
4 𝑅3 := 𝑅1 − 2;
5 𝑅4 := MEM[𝑅3];
6 𝑅5 := 𝑅3 + 1;
7 𝑅6 := MEM[𝑅5];
8 if (𝑅4 ≤ 𝑅6) goto line 11;
9 MEM[𝑅3] := 𝑅6;

10 MEM[𝑅5] := 𝑅4;
11 𝑅3 := 𝑅3 − 1;
12 if (𝑅3 ≥ 0) goto line 5;
13 𝑅2 := 𝑅2 − 1;
14 if (𝑅2 > 0) goto line 4;
15 // Done:

MEM[0..𝑁) sorted

9

RAM-Program Example

Example RAM program

1 // Assume: 𝑅1 stores number 𝑁
2 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
3 𝑅2 := 𝑅1;
4 𝑅3 := 𝑅1 − 2;
5 𝑅4 := MEM[𝑅3];
6 𝑅5 := 𝑅3 + 1;
7 𝑅6 := MEM[𝑅5];
8 if (𝑅4 ≤ 𝑅6) goto line 11;
9 MEM[𝑅3] := 𝑅6;

10 MEM[𝑅5] := 𝑅4;
11 𝑅3 := 𝑅3 − 1;
12 if (𝑅3 ≥ 0) goto line 5;
13 𝑅2 := 𝑅2 − 1;
14 if (𝑅2 > 0) goto line 4;
15 // Done: MEM[0..𝑁) sorted

10

Pseudocode
▶ Programs for the random-access machine are very low level and detailed

≈ assembly/machine language

Typical simplifications when describing and analyzing algorithms:

▶ more abstract pseudocode
code that humans understand (easily)

▶ control flow using if, for, while, etc.
▶ variable names instead of fixed registers and memory cells
▶ memory management (more below)

▶ count dominant elementary operations (e. g. memory accesses)
instead of all RAM instructions

In both cases: We can go to full detail where needed/desired.

honest

smart investment
banker

11

Pseudocode – Example
RAM-Program

1 // Bubblesort
2 // Assume: 𝑅1 stores number 𝑁
3 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
4 𝑅2 := 𝑅1;
5 𝑅3 := 𝑅1 − 2;
6 𝑅4 := MEM[𝑅3];
7 𝑅5 := 𝑅3 + 1;
8 𝑅6 := MEM[𝑅5];
9 if (𝑅4 ≤ 𝑅6) goto line 12;

10 MEM[𝑅3] := 𝑅6;
11 MEM[𝑅5] := 𝑅4;
12 𝑅3 := 𝑅3 − 1;
13 if (𝑅3 ≥ 0) goto line 6;
14 𝑅2 := 𝑅2 − 1;
15 if (𝑅2 > 0) goto line 5;
16 // Done: MEM[0..𝑁) sorted

Pseudocode Algorithm

1 procedure bubblesort(𝐴[0..𝑁)):
2 for 𝑖 := 𝑁, 𝑁 − 1, . . . , 1
3 for 𝑗 := 𝑁 − 2, 𝑁 − 3, . . . , 0
4 if 𝐴[𝑗] > 𝐴[𝑗 + 1]:
5 Swap 𝐴[𝑗] and 𝐴[𝑗 + 1]
6 end if
7 end for
8 end for

⇝ much more readable

▶ closer to modern high-level
programming languages

▶ but: only allow primitive
operations that correspond to
𝑂(1) RAM instructions
⇝ analysis

12

Memory management & Pointers
▶ A random-access machine is a bit like a bare CPU . . . without any operating system
⇝ cumbersome to use

▶ All high-level programming languages / operating systems add memory management:
▶ Instruction to allocate a contiguous piece of memory of a given size (like malloc).

▶ used to allocate a new array (of a fixed size) or
▶ a new object/record (with a known list of instance variables)
▶ There’s a similar instruction to free allocated memory again

or an automated garbage collector.

⇝ A pointer is a memory address (i. e., the 𝑖 of MEM[𝑖]).

▶ Support for procedures (a.k.a. functions, methods) calls including recursive calls
▶ (this internally requires maintaining call stack)

We will mostly ignore how all this works here.

13

2.3 Asymptotics & Big-Oh

Why asymptotics?
Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.
▶ abstracts from unnecessary detail
▶ simplifies analysis
▶ often necessary for sensible comparison

Asymptotics = approximation around ∞

Example: Consider a function 𝑓 (𝑛) given by
2𝑛2 − 3𝑛⌊log2(𝑛 + 1)⌋ + 7𝑛 − 3⌊log2(𝑛 + 1)⌋ + 120 ∼ 2𝒏2

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
·104

14

Asymptotic tools – Formal & definitive definition

▶ “Tilde Notation”: 𝑓 (𝑛) ∼ 𝑔(𝑛) iff
if, and only if

lim
𝑛→∞

𝑓 (𝑛)
𝑔(𝑛) = 1

„ 𝑓 and 𝑔 are asymptotically equivalent”

▶ “Big-Oh Notation”: 𝑓 (𝑛) ∈
also write ‘=’ instead

𝑂
(
𝑔(𝑛)

)
iff

����� 𝑓 (𝑛)𝑔(𝑛)

����� is bounded for 𝑛 ≥ 𝑛0

iff lim sup
need supremum since limit might not exist!

𝑛→∞

����� 𝑓 (𝑛)𝑔(𝑛)

����� < ∞

Variants:
▶ 𝑓 (𝑛) ∈ Ω

“Big-Omega”(
𝑔(𝑛)

)
iff 𝑔(𝑛) ∈ 𝑂

(
𝑓 (𝑛)

)
▶ 𝑓 (𝑛) ∈ Θ

“Big-Theta”

(
𝑔(𝑛)

)
iff 𝑓 (𝑛) ∈ 𝑂

(
𝑔(𝑛)

)
and 𝑓 (𝑛) ∈ Ω

(
𝑔(𝑛)

)
▶ “Little-Oh Notation”: 𝑓 (𝑛) ∈ 𝑜

(
𝑔(𝑛)

)
iff lim

𝑛→∞

����� 𝑓 (𝑛)𝑔(𝑛)

����� = 0

similarly: 𝑓 (𝑛) ∈ 𝜔
(
𝑔(𝑛)

)
if lim = ∞

(Benefit of this definition: Works for any 𝑓 , 𝑔 : ℝ → ℝ and is easy to generalize to limits other than 𝑛 → ∞)

15

Asymptotic tools – Intuition

▶ 𝑓 (𝑛) = 𝑂(𝑔(𝑛)): 𝑓 (𝑛) is at most 𝑔(𝑛)
up to constant factors and
for sufficiently large 𝑛

𝑐 𝑔(𝑛)

𝑓 (𝑛)

𝑛0

𝑓 (𝑛) ≤ 𝑐𝑔(𝑛)

𝑛

▶ 𝑓 (𝑛) = Θ(𝑔(𝑛)): 𝑓 (𝑛) is equal to 𝑔(𝑛)
up to constant factors and
for sufficiently large 𝑛

𝑐2 𝑔(𝑛)

𝑐1 𝑔(𝑛)
𝑓 (𝑛)

𝑛0

𝑐1𝑔(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐2𝑔(𝑛)

𝑛

Plots can be misleading! Example

16

https://cs.stackexchange.com/a/16714

Asymptotics – Example 1
Basic examples:

▶ 20𝑛3 + 10𝑛 ln(𝑛) + 5 ∼ 20𝑛3 = Θ(𝑛3)

▶ 3 lg(𝑛2) + lg(lg(𝑛)) = Θ(log 𝑛)

▶ 10100 = 𝑂(1)

Use wolframalpha to compute/check limits, but also practice it with pen and paper!
17

https://www.wolframalpha.com/

Asymptotics – Basic facts
Rules to work with Big-Oh classes:

▶ 𝑓 = Θ(𝑓) (reflexivity)

▶ 𝑓 = Θ(𝑔) ∧ 𝑔 = Θ(ℎ) =⇒ 𝑓 = Θ(ℎ)

▶ 𝑐 · 𝑓 (𝑛) = Θ(𝑓 (𝑛)) for constant 𝑐 ≠ 0

▶ 𝑓 ∼ 𝑔 ⇐⇒ 𝑓 = 𝑔 · (1 ± 𝑜(1))

▶ Θ(𝑓) · Θ(𝑔) = Θ(𝑓 · 𝑔)

▶ Θ(𝑓) + Θ(𝑔) = Θ(𝑓 + 𝑔) = Θ(max{ 𝑓 , 𝑔}) largest summand determines Θ-class

18

Asymptotics – Frequently encountered classes
Frequently used orders of growth:

▶ constant Θ(1)

▶ logarithmic Θ(log 𝑛) Note: 𝑎, 𝑏 > 0 constants ⇝ Θ(log𝑎 (𝑛)) = Θ(log𝑏 (𝑛))

▶ linear Θ(𝑛)

▶ linearithmic Θ(𝑛 log 𝑛)

▶ quadratic Θ(𝑛2)

▶ cubic Θ(𝑛3)

▶ polynomial 𝑂(𝑛𝑐) for some constant 𝑐

▶ exponential 𝑂(𝑐𝑛) for some constant 𝑐 > 1 Note: 𝑎 > 𝑏 > 0 constants ⇝ 𝑏𝑛 = 𝑜(𝑎𝑛)

19

Asymptotics – Example 2
Square-and-multiply algorithm
for computing 𝑥𝑚 with 𝑚 ∈ ℕ

Inputs:
▶ 𝑚 as binary number (array of bits)
▶ 𝑛 = #bits in 𝑚

▶ 𝑥 a floating-point number

1 def pow(𝑥, 𝑚):
2 # compute binary representation of exponent
3 exponent_bits = bin(𝑚)[2:]
4 result = 1
5 for bit in exponent_bits:
6 result ‗= result
7 if bit == '1':
8 result ‗= 𝑥

9 return result

▶ Cost: 𝐶 = # multiplications
▶ 𝐶 = 𝑛 (line 6) + #one-bits in binary representation of 𝑚 (line 8)

⇝ 𝑛 ≤ 𝐶 ≤ 2𝑛

⇝ 𝐶 = Θ(𝑛) = Θ(log𝑚)

�
Often, you can pretend Θ is “like ∼ with an unknown constant”
but in this case, no such constant exists!

0 200 400 600 800 1000

0

5

10

15

20

shift-and-multiply-exponentiation

20

https://de.wikipedia.org/wiki/Bin%C3%A4re_Exponentiation

Asymptotics with several variables
▶ Example: Algorithms on graphs with 𝑛 vertices and 𝑚 edges.

▶ want to say: Algorithm 𝐴 takes time Θ(𝑛 + 𝑚).
▶ But what does that even mean formally?!

� Inconsistent and incompatible definitions used in the literature!

▶ Here:
▶ (implicitly) always have a single “main” variable 𝑛: with 𝑛 → ∞
▶ all other variables are functions of 𝑛: 𝑚 = 𝑚(𝑛)
▶ must make conditions on functions explicit: 𝑚(𝑛) ∈ Ω(𝑛) and 𝑚(𝑛) ∈ 𝑂(𝑛2).
⇝ Can make statements like

𝑂(𝑛 + 𝑚) ⊆ 𝑂(𝑛𝑚) (𝑛 → ∞, 𝑚 ∈ Ω(1))

21

2.4 Teaser: Maximum subarray problem

Bring on the puzzles!
Time for a concrete example of algorithm design!
▶ we will illustrate the algorithm design process on a “toy problem”
▶ clean abstract problem, but nontrivial to solve!

Maximum (sum) subarray problem

▶ Given: 𝐴[0..𝑛) with 𝐴[𝑖] ∈ ℤ for 0 ≤ 𝑖 < 𝑛.

▶ Abbreviate 𝑠(𝑖 , 𝑗) ≔

𝑗−1∑
𝑘=𝑖

𝐴[𝑘]

▶ Goal: Compute 𝑠 ≔ max
{
𝑠(𝑖 , 𝑗) : 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

}
and a pair

will ignore that here; easy to modify algorithms

(𝑖 , 𝑗) with 𝑠 = 𝑠(𝑖 , 𝑗).

Applications:

▶ largest gain of a stock
𝐴[𝑖] price change on day 𝑖

▶ signal detection in
biological sequence
analysis

▶ 2D generalization used in
image analysis

Modeling decisions:
▶ input size: # numbers 𝑛
▶ assume all integers (and sums) fit in 𝑂(1) words
⇝ count # additions as elementary operation

22

Template for Describing an Algorithm
1. � Algorithmic Idea

Abstract idea that makes the algorithm work (prose)
(an expert could fill in the rest from here)

2. / Pseudocode
structured description of procedure including edge cases
should be unambiguous and close to real code

3. ◎ Correctness proof
argument why the correct result is computed
often uses induction and invariants

4. � Algorithm analysis
analysis of the efficiency of the algorithm
usually want Θ-class of worst-case running time
where interesting, also space usage

23

Brute force approach
▶ Let’s start with the simplest thinkable solution

Maximal subarray problem

▶ Given: 𝐴[0..𝑛) with 𝐴[𝑖] ∈ ℤ for 0 ≤ 𝑖 < 𝑛.

▶ Abbreviate 𝑠(𝑖 , 𝑗) ≔

𝑗−1∑
𝑘=𝑖

𝐴[𝑘]

▶ Goal: Compute 𝑠 ≔ max
{
𝑠(𝑖 , 𝑗) : 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

}
and a pair (𝑖 , 𝑗) with 𝑠 = 𝑠(𝑖 , 𝑗).

1. � Algorithmic Idea
try all contiguous subarrays 𝐴[𝑖.. 𝑗)

2. / Pseudocode
1 𝑠 = 0
2 for 𝑖 = 0, . . . , 𝑛 − 1
3 for 𝑗 = 𝑖 , . . . , 𝑛

4 𝑡 = 0
5 for 𝑘 = 𝑖 , . . . , 𝑗 − 1
6 𝑡 = 𝑡 + 𝐴[𝑘]
7 end for
8 if 𝑡 > 𝑠 then 𝑠 := 𝑡

9 end for
10 end for

3. ◎ Correctness proof
direct by definition of 𝑠

4. � Algorithm analysis

additions

=

𝑛−1∑
𝑖=0

𝑛∑
𝑗=𝑖

𝑗−1∑
𝑘=𝑖

1 =

𝑛−1∑
𝑖=0

𝑛∑
𝑗=𝑖

(𝑗 − 𝑖)

=

𝑛−1∑
𝑖=0

𝑛−𝑖∑
𝑗=0

𝑗 =

𝑛−1∑
𝑖=0

(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)
2

=
1
2

𝑛∑
𝑖=1

𝑖(𝑖 + 1) =
1
2

𝑛∑
𝑖=1

𝑖2 + 1
2

𝑛∑
𝑖=1

𝑖

=
𝑛(𝑛 + 1)(2𝑛 + 1)

12 + 𝑛(𝑛 + 1)
4

=
𝑛(𝑛 + 1)(𝑛 + 2)

6 ∼ 1
6𝑛

3 = Θ(𝑛3)
24

Reusing sums
1. � Algorithmic Idea

▶ brute force algorithm is unnecessarily wasteful!
▶ can use 𝑠(𝑖 , 𝑗) = 𝑠(𝑖 , 𝑗 − 1) + 𝐴[𝑗 − 1]

2. / Pseudocode
1 𝑠 = 0
2 for 𝑖 = 0, . . . , 𝑛 − 1
3 𝑡 = 0
4 for 𝑗 = 𝑖 + 1, . . . , 𝑛
5 𝑡 = 𝑡 + 𝐴[𝑗 − 1]
6 if 𝑡 > 𝑠 then 𝑠 := 𝑡

7 end for
8 end for

3. ◎ Correctness proof: as above

4. � Algorithm analysis:
𝑛−1∑
𝑖=0

𝑛∑
𝑗=𝑖+1

1 =
𝑛(𝑛 + 1)

2 ∼ 1
2𝑛

2 = Θ(𝑛2) additions

Can we possibly do better?
▶ There are

(
𝑛
2
)
∼ 1

2𝑛
2 different 𝑠(𝑖 , 𝑗) . . .

⇝ Can’t look at all of them

25

A subquadratic solution
� Algorithmic idea:

Consider 𝑛/2-mark.
Only 3 options for optimal solution 𝑠(𝑖 , 𝑗):

(a) 0 ≤ 𝑖 ≤ 𝑗 < ⌈ 𝑛
2 ⌉ (left)

(b) ⌈ 𝑛
2 ⌉ ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 (right)

(c) 𝑖 < ⌈ 𝑛
2 ⌉ ≤ 𝑗 (straddle) 0 𝑛/2 𝑛

(a) (b)
(c)

� optimal straddle easy to compute!
▶ independently find best left endpoint 𝑖 for 𝑠(𝑖 , ⌈ 𝑛2 ⌉) and

best right endpoint 𝑗 for 𝑠(⌈ 𝑛2 ⌉, 𝑗)

▶ for (a) and (b), recurse on instance of half the size!

26

A subquadratic solution – Pseudocode & Correctness
1 procedure findMaxSubarraySum(𝐴[ℓ ..𝑟)):
2 if 𝑟 − ℓ ≤ 0
3 return 0
4 if 𝑟 − ℓ == 1
5 return max{0, 𝐴[ℓ]}
6 𝑚 := ⌈(ℓ + 𝑟)/2⌉
7 𝑠(a) := findMaxSubarraySum(𝐴[ℓ , 𝑚))
8 𝑠(b) := findMaxSubarraySum(𝐴[𝑚, 𝑟))
9 // Find left endpoint of straddle:

10 𝑠ℓ := 0; 𝑡 := 0
11 for 𝑖 = 𝑚 − 1, 𝑚 − 2, . . . , ℓ
12 𝑡 := 𝐴[𝑖] + 𝑡

13 𝑠ℓ := max{𝑠ℓ , 𝑡}
14 end for
15 // Find right endpoint of straddle:
16 𝑠𝑟 := 0; 𝑡 := 0
17 for 𝑗 = 𝑚 + 1, . . . , 𝑟
18 𝑡 := 𝑡 + 𝐴[𝑗 − 1]
19 𝑠𝑟 := max{𝑠𝑟 , 𝑡}
20 end for
21 𝑠(c) := 𝑠ℓ + 𝑠𝑟
22 return max{𝑠(a) , 𝑠(b) , 𝑠(c)}

◎ Correctness proof:
▶ Induction over 𝑛 = 𝑟 − ℓ

▶ basis: for 𝑛 ≤ 1 ✓
▶ hypothesis: Assume

findMaxSubarraySum returns correct
result for all arrays of up to 𝑛 − 1
elements

▶ step: For array of 𝑛 ≥ 2 elements,
distinguish cases (a), (b), (c)
(a) and (b) ⇝ IH ✓
(c) “from inspection of the code”

27

A subquadratic solution – Analysis
1 procedure findMaxSubarraySum(𝐴[ℓ ..𝑟)):
2 if 𝑟 − ℓ ≤ 0
3 return 0
4 if 𝑟 − ℓ == 1
5 return max{0, 𝐴[ℓ]}
6 𝑚 := ⌈(ℓ + 𝑟)/2⌉
7 𝑠(a) := findMaxSubarraySum(𝐴[ℓ , 𝑚))
8 𝑠(b) := findMaxSubarraySum(𝐴[𝑚, 𝑟))
9 // Find left endpoint of straddle:

10 𝑠ℓ := 0; 𝑡 := 0
11 for 𝑖 = 𝑚 − 1, 𝑚 − 2, . . . , ℓ
12 𝑡 := 𝐴[𝑖] + 𝑡

13 𝑠ℓ := max{𝑠ℓ , 𝑡}
14 end for
15 // Find right endpoint of straddle:
16 𝑠𝑟 := 0; 𝑡 := 0
17 for 𝑗 = 𝑚 + 1, . . . , 𝑟
18 𝑡 := 𝑡 + 𝐴[𝑗 − 1]
19 𝑠𝑟 := max{𝑠𝑟 , 𝑡}
20 end for
21 𝑠(c) := 𝑠ℓ + 𝑠𝑟
22 return max{𝑠(a) , 𝑠(b) , 𝑠(c)}

� Algorithm analysis:

▶ Write 𝑛 = 𝑟 − ℓ

▶ # additions in non-recursive part:
(𝑚 − ℓ) + (𝑟 − 𝑚) + 1 = 𝑛 + 1

▶ Write 𝐶(𝑛) for total # additions for 𝑛
elements

⇝ 𝐶(𝑛) = 𝐶(⌈ 𝑛
2 ⌉) + 𝐶(⌊ 𝑛

2 ⌋) + 𝑛 + 1

▶ for 𝑛 = 2𝑘 for 𝑘 ∈ ℕ0, this simplifies to

𝐶(2𝑘) = 2𝐶(2𝑘−1) + 2𝑘 + 1

⇝ 𝐶(𝑛) ∼ 𝑛 log2(𝑛)

28

A lower bound
▶ Theorem: Every correct algorithm has a running time of Ω(𝑛).

29

An optimal algorithm
� Algorithmic idea:

In a clever sweep, we can compute best 𝑠(𝑖 , 𝑟) and best 𝑠(𝑖 , 𝑗) with 𝑖 ≤ 𝑗 ≤ 𝑟 for all 𝑟.

/ Pseudocode
1 procedure findMaxSubarraySum(𝐴[0..𝑛))
2 suffixMax := 0; globalMax := 0
3 for 𝑟 = 1, . . . , 𝑛
4 suffixMax := max{suffixMax + 𝐴[𝑟 − 1], 0}
5 globalMax := max{globalMax, suffixMax}
6 return globalMax

30

	Machines & Models
	 Learning Outcomes
	 What is an algorithm?
	 What is a data structure?
	Algorithm analysis
	 Good algorithms
	 Running time experiments
	 Data Models

	The RAM Model
	 Machine models
	 Random Access Machines
	 RAM-Program Example
	 Pseudocode
	 Pseudocode – Example
	 Memory management & Pointers

	Asymptotics & Big-Oh
	 Why asymptotics?
	 Asymptotic tools – Formal & definitive definition
	 Asymptotic tools – Intuition
	 Asymptotics – Example 1
	 Asymptotics – Basic facts
	 Asymptotics – Frequently encountered classes
	 Asymptotics – Example 2
	 Asymptotics with several variables

	Teaser: Maximum subarray problem
	 Bring on the puzzles!
	 Template for Describing an Algorithm
	 Brute force approach
	 Reusing sums
	 A subquadratic solution
	 A subquadratic solution – Pseudocode & Correctness
	 A subquadratic solution – Analysis
	 A lower bound
	 An optimal algorithm

