il

4 7

1B HAH I [.
2L N0 M -
LSRN
“HO DML =0
10 BRL T =1
2HNHMKE T
)L e H T
JILImO N H ¢
IMEUE0OM!
(AR I T OOl
T NETBFR UL
2= 0B H< 6
lJnmvzmb <t
1AM O S
) HCHU M=
1B OAHMNIE
OZ2HOH¢
ZOMLBEHD
1 dHL S HC
> < O [[[y [T

_| |

ing

Icient Sorti

E

4 November 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25)

Philipps-Univer:

sitat Marburg

version 2024-11-04 18:30 H

Learning Outcomes

Unit 4: Efficient Sorting

SN A

Know principles and implementation of mergesort and quicksort.

Know properties and performance characteristics of mergesort and quicksort.
Know the comparison model and understand the corresponding lower bound.
Understand counting sort and how it circumvents the comparison lower bound.

Know ways how to exploit presorted inputs.

Outline

4 Efficient Sorting

4.1
4.2
4.3
4.4
4.5
4.6

Mergesort

Quicksort

Comparison-Based Lower Bound
Integer Sorting

Adaptive Sorting

Python’s list sort

Why study sorting?
> fundamental problem of computer science that is still not solved

Algorithm with optimal #comparisons in worst case?

» building brick of many more advanced algorithms

» for preprocessing

» as subroutine

> playground of manageable complexity
to practice algorithmic techniques

Here:

> “classic” fast sorting method
> exploit partially sorted inputs

> parallel sorting

Part 1

The Basics

Rules of the game

> Given:
» array A[0..n) = A[0..n — 1] of n objects
> a total order relation < among A[0], ..., A[n — 1]
(a comparison function)
Python: elements support <= operator (__le_ ())
Java: Comparable class (x.compareTo(y) <= 0)

» Goal: rearrange (i. e., permute) elements within A,
so that A is sorted, i.e., A[0] < A[1] < --- < A[n—1]

» for now: A stored in main memory (internal sorting)
single processor (sequential sorting)

4.1 Mergesort

Merging sorted lists

addd

runl run2 result

Merging sorted lists

1L~]

nilll

runl run? result

Mergesort

1 procedure mergesort(A[l..r)) > recursive procedure

2 mi=r-—1

3 if n < 1 return > merging needs

4 m =1+ [%J

5 mergesort(A[l..m)) » temporary storage buf for result

. mergesort(A[nm..r)) (of same size as merged runs)

7 merge(A[l..m), Alm..r), buf) > to read and write each element twice

8 copy buf to A[l..r) (once for merging, once for copying back)

Analysis: count “element visits” (read and/or write)

C(n) = 0 n<l precisely(!) solvable without assumption n = 2k:
C(ln/2])+C(n/2])+2n n=>2 C(n) = 2nlg(n) + (2 — {Ig(n)} — 21~ 1180}H)2p
Simpliﬁcation same for best and worst case! with {x} :=x - | x]

k<0
2-C2"H+2-2F k>1

C(i’l) = 2n lg(n) = @(1’! log Vl) (arbitrary n: C(n) < C(next larger power of 2) < 4nlg(n) +2n = O(nlogn))

c(@2b = = 2.2k 422.0k=1 4 3. 0k=2 4 .. 4okl = Dk .0k

Linear Term of C(n)

Recall:
C(n) = 2nlg(n) + (2 - {Ig(n)} — 21-{I8(})2y

Plot of 2(2 —{lg(n)} - 21—{1g(n)})
0.15:».‘. l

0.10 | 15 |

0.05 -

20 40 60 80 100 120 140

~» Canprove: C(n) < 2nlgn +0.172n

with {x} = x — | x]

0.10

0.05

015“

500

1000

1500

2000

Mergesort — Discussion

ib optimal time complexity of ©(n log 1) in the worst case
[b stable sorting method i.e., retains relative order of equal-key items

[ﬁ memory access is sequential (scans over arrays)

EG) requires O(1n) extra space

there are in-place merging methods,
but they are substantially more complicated
and not (widely) used

4.2 Quicksort

Partitioning around a pivot

Partitioning around a pivot

I

s s s

>p >p

>p >p

> no extra space needed
> visits each element once

> returns rank/position of pivot

Partitioning — Detailed code

[Beware: details easy to get wrong; use this code!] (if you ever have to)

1 procedure partition(4, b)

// input: array A[Q..n), position of pivot b € [0..n)

swap(A[0], A[b])

i:=0, j=n

while true do
doi:=i+1whilei <nand A[i] < A[O]
doj := j —1whilej > 1and A[j] > A[0]
if i > j then break (goto 11)
else swap(A[i], A[j])

end while

swap(A[0], A[j])

return j

Loop invariant (5-10): A | p | <p ?

Quicksort

1 procedure quicksort(A[l..r))
2 if r — { < 1 then return

3 b := choosePivot(A[l..r))
4 j := partition(A[l..r), b)
5 quicksort(A[l..j))

6 quicksort(A[j + 1..7))

» recursive procedure

» choice of pivot can be
» fixed position ~» dangerous!
» random

»> more sophisticated, e. g., median of 3

10

Quicksort & Binary Search Trees

Quicksort

Binary Search Tree (BST)

|[7]4]2]9]1]3]8]5]6]

l4]2]1]3]5]6]7[9]8] (7)

[2]1]3]4 15 6 |

0:0) -0

1 3

3]0 @

7

8 OO
L @ @

> recursion tree of quicksort = binary search tree from successive insertion

» comparisons in quicksort

» comparisons in quicksort

~

8

comparisons to built BST

comparisons to search each element in BST

742913856

11

Quicksort — Worst Case

» Problem: BSTs can degenerate
» Cost to search for kis k — 1
(n-1) 1,

n
~ TotalcostZ(k—l) = nT ~ 5n
k=1

~~ quicksort worst-case running time is in ©(1%)
terribly slow!
But, we can fix this:
Randomized quicksort:
» choose a random pivot in each step

~ same as randomly shuffling input before sorting

12

Randomized Quicksort — Analysis

> cost measure: element visits (as for mergesort)
» C(n) = #element visits when sorting # randomly permuted elements

= cost of searching every element in BST build from input

~~ quicksort needs ~ 2In(2) - nlgn =~ 1.39n Ig n in expectation
(see analysis of C,, in Unit 3!)

» also: very unlikely to be much worse:
e.g., one can prove: Pr[cost > 10nlgn] = O(n~2°)

distribution of costs is “concentrated around mean”

» intuition: have to be constantly unlucky with pivot choice

13

Quicksort — Discussion

ib fastest general-purpose method
[ﬁ O(n log n) average case
|ﬁ works in-place (no extra space required)

@ memory access is sequential (scans over arrays)

@ ©(n?) worst case (although extremely unlikely)

E@ not a stable sorting method

Open problem: Simple algorithm that is fast, stable and in-place.

14

4.3 Comparison-Based Lower Bound

Lower Bounds

> Lower bound: mathematical proof that o algorithm can do better.

> very powerful concept: bulletproof impossibility result
~ conservation of energy in physics

»> (unique?) feature of computer science:
for many problems, solutions are known that (asymptotically) achieve the lower bound

~~ can speak of “optimal algorithms”

» To prove a statement about all algorithms, we must precisely define what that is!

» already know one option: the word-RAM model

» Here: use a simpler, more restricted model.

15

The Comparison Model

» In the comparison model data can only be accessed in two ways:

>
>

| 2

comparing two elements

moving elements around (e. g. copying, swapping)

Cost: number of comparisons. That's good!
Keeps algorithms general!

» This makes very few assumptions on the kind of objects we are sorting.

» Mergesort and Quicksort work in the comparison model.

~+ Every comparison-based sorting algorithm corresponds to a decision tree.

>

vV vy Vvyy

only model comparisons ~- ignore data movement

nodes = comparisons the algorithm does

child links = outcomes of comparison

leaf = unique initial input permutation compatible with comparison outcomes

next comparisons can depend on outcomes ~- child subtrees can look different

16

Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:

»> Execution = follow a path in
comparison tree.

~> height of comparison tree =
worst-case # comparisons

» comparison trees are binary trees

~ (leaves ~- height > [Ig(¢)]

» comparison trees for sorting
= > £ > method must have > 7! leaves

~ height > Ig(n!) ~ nlgn
| 1,3,2| |2,3,1 | |2,1,3| |3,1,2|

more precisely: 1g(n!) = nlgn —lg(e)n + O(logn)
» Mergesort achieves ~ 1 lg n comparisons ~+ asymptotically comparison-optimal!

» Open (theory) problem: Sorting algorithm with 1 lgn —lg(e)n + o(n) comparisons?

\
~ 1.4427
17

4.4 Integer Sorting

How to beat a lower bound

» Does the above lower bound mean, sorting always takes time Q(n log 1)?

» Not necessarily; only in the comparison model!

~> Lower bounds show where to change the model!

» Here: sortn integers

» can do a lot with integers: add them up, compute averages, . ..

~+ we are not working in the comparison model

~~ above lower bound does not apply!

» but: a priori unclear how much arithmetic helps for sorting .. .

(full power of word-RAM)

18

Counting sort

» Important parameter: size/range of numbers

» numbers in range [0..U) = {0,..., U — 1} typically U = 2" ~~ b-bit binary numbers
» We can sort n integers in ©@(n + U) time and ©(UI) space when :

Counting sort word size

1 procedure countingSort(A[0..1))

2 // A contains integers in range [0..U). > count how often each possible

3 C[0..U) := new integer array, initialized to 0 value occurs
Count
: : ?un B » produce sorted result directly
5 fori :=0,...,n—1 ; t
6 CI[A[i]] := C[A[i]] +1 rom counts

7 i := 0 // Produce sorted list
8 fork :=0,...U-1

9 forj :=1,...C[k]
10 Ali]l = k; i:=

» circumvents lower bound by
using integers as array index /

) pointer offset
i+1

~+ | Can sort n integers in range [0..U) with U = O(n) in time and space ®(1n).

19

Larger Universes: Radix Sort

» MSD Radix Sort:

» split numbers into base-R “digits”

» Use counting sort on most significant digit

(with variant of counting sort that moves full number)
~» integers sorted with respect to first digit

> recurse on sublist for each digit value, using next digit for counting sort

~ After [log,(U)] + 1 levels of counting sort, fully sorted!

» For R < 2%, all counting sort calls on same level cost total of O (1) time

(requires care to avoid reinitialization cost of array C)

. _ log(U)
~ total time O(n log(U)) = O(” log(R))

~» O(n) time sorting possible for numbers in range U = O(n°) for constant c.

20

Integer Sorting — State of the art
Algorithm theory
> integer sorting on the w-bit word-RAM
» suppose U = 2%, but w can be an arbitrary function of n

» how fast can we sort 7 such w-bit integers on a w-bit word-RAM?
» for w = O(logn): linear time (radix/counting sort)
> for w = Q(log?*¢ n): linear time (signature sort)

» for w in between: can do O(n+/lglgn) (very complicated algorithm)
don’t know if that is best possible!

... for the rest of this unit: back to the comparisons model!

21

Part 11

Exploiting presortedness

4.5 Adaptive Sorting

Adaptive sorting
» Comparison lower bound also holds for the average case ~~ |lg(n!)] cmps necessary

» Mergesort and Quicksort from above use ~ 71 1g n cmps even in best case

Can we do better if the input is already “almost sorted”?

Scenarios where this may arise naturally:

> Append new data as it arrives, regularly sort entire list (e. g., log files, database tables)

» Compute summary statistics of time series of measurements that change slowly over
time (e. g., weather data)

» Merging locally sorted data from different servers (e. g., map-reduce frameworks)

~+ Ideally, algorithms should adapt to input: the more sorted the input, the faster the algorithm

... but how to do that!?
2

Warmup: check for sorted inputs

» Any method could first check if input already completely in order!
[& Best case becomes ©(11) with n — 1 comparisons!
Usually n — 1 extra comparisons and pass over data “wasted”

l@ Only catches a single, extremely special case . . .

» For divide & conquer algorithms, could check in each recursive call!
[& Potentially exploits partial sortedness!
@ usually adds Q(n log 1) extra comparisons
N ! 4

-O- For Mergesort, can instead check

4 \ . . .
= before merge with a single comparison

1 procedure mergesortCheck(A[l..r))
2 ni=r-—1
3 if n < 1 return

» If last element of first run < first element . mo=1+ |2

of second run, skip merge 5 mergesortCheck(A[l..1m))

6 mergesortCheck(A[m..r))
7 (if Alm —1] > Alm])
8 merge(All..m), A[m..r), buf)
9 copy buf to A[l..r)

How effective is this idea?

23

Mergesort with sorted check — Analysis

» Simplified cost measure: merge cost = size of output of merges
number of comparisons

number of memory transfers / cache misses

QR

» Example input: 7 = 64 numbers in sorted runs of 16 numbers each:

Q - Q Q - O Q - Q O - Q
O O O O O O O O O O O () rQH rQH

Sleleelelele]e () Q () Q () Q () () () Q () Q () Q () Q () Q () () QROQ
FEEEEEEL L EFEEEEEFE PR P L PR LB E L L L L L

Merge costs:

) 384 Standard Mergesort
OO 128 with sorted check

Sorted check can help a lot!

24

Alignment issues

» In previous example, each run of length ¢ saved us {1g(¢) in merge cost.
= exactly the cost of creating this run in mergesort had it not already existed
~~ best savings we can hope for! & length of ith run
~> Are overall merge costs H(l1,...,¢) = n lg(n) Z 7 lg(l’)?

mergesort e
Unfortunately, not quite: savings from runs

Merge costs:

384 Standard Mergesort

216 with sorted check
777777777777 7777777 7777777777777 - 127.8 3(15,15,17,17)

25

Bottom-Up Mergesort

» Can we do better by explicitly detecting runs?

1 procedure bottomUpMergesort(A[0..n))

Q := new Queue // runs to merge
// Phase 1: Enqueue singleton runs
fori=0,...,n—1do
Q.enqueue((i, i + 1))
// Phase 2: Merge runs level —wise
while Q.size() > 2
Q’ := new Queue
while Q.size() > 2
(i1, j1) :== Q.dequeue()
(i, j2) = Q.dequeue()
merge(A[i1..j1), Aliz..j2), buf)
copy buf to Alijy..j2)
Q' .enqueue((i1, jo))
if =Q.isEmpty() // lonely run
Q' .enqueue(Q.dequeue())
Q:=Q’

1 procedure naturalMergesort(A[0..1))

2 Q := new Queue; i:=0 findrunA[i.j)
5 wifle i < @ /starting ati

4 j=i+1

5 while A[j] > A[j—1]doj :=j+1
6 Q.enqueue((i, j)); 1:=j

26

Natural Bottom-Up Mergesort — Analysis

»> Works well for runs of roughly equal size, regardless of alignment . ..

Merge costs:

384 Standard mergesort

216 Standard mergesort with sorted check

Wizzzzzzzzz777700000rrrr7zzzzzzzzzzzzzzzz - 127.8 1(15,15,17,17)

())
L X |

((@)) (@))
» - » -

[] s 1
(305 5 5 58 5 5% 5 5% 5 60 6l 62 6 64)(35 %6 ¥ 3 N 0 4 £ 8 4 65 % 4 8 Y B YDA DB YUD5%T BB NNRNB U1 23 45 67 890U DDB UL

) 128 Natural bottom-up mergesort

27

Natural Bottom-Up Mergesort — Analysis [2]

> ...but less so for widely varying run lengths

((@))
X
((@))
IS X 1
((@))((@))
L = t%
(Q))| G

'}
)) O) O IO
ﬁT
T zo 0355 5% %5 8% 800058 5 &5 8505505 %5 %5 %5 06 06 a)xs s 2 s)nsmns v)rs 5o ok 7 s)E ¢ 512

I 246 Natural bottom-up mergesort

((@))
X |
())
IS X 1
((@) J())

t%
((@) J(Q) X (@))
f%
Q))CO OO)

P39 %3 2 % 3% % %% %% 4040845460859 05 255 55%7 5506060025 8)u2s)sva)ssv)esuyloasr s)ss)ie

) 196 Standard mergesort with sorted check

... can’t we have both at the same time?!
28

Good merge orders

« Let’s take a step back and breathe.

» Conceptually, there are two tasks:

1. Detect and use existing runs in the input ~» #,..., ¢ (easy) \/

2. Determine a favorable order of merges of runs (“automatic” in top-down mergesort)

Iﬁ ﬁ well-understood problem
2 2 3 2 6) 3 with known algorithms

Merge cost = totalareaof () ~~ | optimal merge tree j
= total length of paths to all array entries = optimal binary search tree
= Zweight(w) - depth(w) for leaf weights ¢4, ..., ¢,
w leaf (optimal expected search cost)

29

Nearly-Optimal Mergesort

Nearly-Optimal Mergesorts:
Fast, Practical Sorting Methods That
Optimally Adapt to Existing Runs

J. Ta
v

» In 2018, with Ian Munro, I combined research
on nearly-optimal BSTs with mergesort

~» 2new algorithms: Peeksort and Powersort

» both adapt provably optimal to existing runs
even in worst case:
mergecost < H(y,..., ¢)

» both are lightweight extensions of existing
methods with negligible overhead

» both fast in practice

30

https://www.wild-inter.net/publications/munro-wild-2018

Peeksort

» based on top-down mergesort

> “peek” at middle of array -
& find closest run boundary

~~ split there and recurse

(instead of at midpoint)

» can avoid scanning runs repeatedly:
» find full run straddling midpoint

» remember length of known runs at boundaries

|] (]
{ I+ r+A, r

~» with clever recursion, scan each run only once.

31

Peeksort — Code

1 procedure peeksort(A[{..r), Ay, Ay) > Parameters:
2 if ¥ — { < 1 then return (] (|
3 ifl +Ap==rV{==r+A, then return { +A¢ r+4, r
4 m:=L0+|(r—10)/2]

' {+ Ay ifl+Ap>m > initial call:
’ LT {extendRunLeft(A, m) else peeksort(A[0..n), Ao, An) with

) r+Ar <m ifr+Ar<m<m Ao = extendRunRight(A, 0)
6 j= {extendRunRight (A m) else A, = n — extendRunLeft(A, 1)
. 5 = ioifm—i<j-m » helper procedure

j else

Ao = j-i fm-i<j-m 1 procedure extendRunRight(A[0..n), 7)
’ £ i—j else 2 j=i+1
9 peeksort(A[{..g), Ay, Ag) 5 while j <n AA[j — 1] < A[j]
10 peeksort(A[g, 1), Ag, Ay) 4 j = j+1
1 merge(A[Y¢,), A[g..r), buf) 5 return j

12 copy buf to A[{..r)

(extendRunLeft similar)

Peeksort — Analysis

» Consider tricky input from before again:

(

(

))
i%

(

(@)

) X

(@)

(

(@)

)

i
(778 303 2 3 3% 5 % ¥ 3 9 0 4 08 4 6464 8495050 %5585 5%5 %5060 66 x5)2 o)ty s r)rs uly ol)z 4 5]

OO 147 Peeksort
Q7777777777777 77777777777 144.5 1(38,3,3,3,3,3,3,3,3,2)

) 246 Natural bottom-up mergesort
) 196 Standard mergesort with sorted check

» One can prove: Mergecost always < (¢, ..., () +2n

~» We can have the best of both worlds!

33

4.6 Python’s list sort

Sorting in Python

» CPython

» Python is only a specification of a programming language

» The Python Foundation maintains CPython as the official reference implementation of the
Python programming language

» If you don't specifically install something else, python will be CPython

» part of Python are list.sort resp. sorted built-in functions

> implemented in C

» use Timsort,
custom Mergesort variant by Tim Peters

BREAKING

EWS

Sept 2021: Python uses Powersort!
since CPython 3.11 and PyPy 7.3.6

Date:
:’Jise%"““ " Author: Tim Peters (tim.peters) * ® 20210901

19:43

I created a PR that implements the powersort merge strategy:
https://github. con/python/cpython/pull/28108

Across all the time this issue report has been open, that strategy continues
to be the top contender. Enough already ;-) It's indeed a more difficult
change to make to the code, but that's in relative terms. In absolute terms,
it's not at all a hard change.

Laurent, if you find that some variant of ShiversSort actually runs faster
than that, let us know here! I'm a big fan of Vincent's innovations too, but
powersort seems to do somewhat better "on average® than even his length-
adaptive ShiversSort (and implementing that too would require changing code
outside of merge collapse()).

34

https://bugs.python.org/issue34561

Timsort (original version)

1 procedure Timsort(A[0..n))

2 i := 0; runs := new Stack()

3 whilei < n

4 j = ExtendRunRight(4, i)

5 runs.push(i, j); i == j

6 while rule A/B/C/D applicable
7 merge corresponding runs

8 while runs.size() > 2

9 merge topmost 2 runs

» above shows the core algorithm;
many more algorithm engineering tricks
»> Advantages:
» profits from existing runs
» locality of reference for merges

» But: not optimally adaptive! (next slide)
Reason: Rules A-D (Why exactly these?!)

runs

«~—top

I

—~A -B

-A-B,-C

Rule A: Z > X ~~ merge(X,Y)

ii
SR IN
=~

+

Rule B: Z > Y ~ merge(Y,Z)

oz []

RuleC: Y +Z > X ~ merge(Y, Z)

-i o vz)
RuleD: X +Y > W ~ merge(Y, Z)
Y+Z
—
v

Timsort bad case

» On certain inputs, Timsort’s merge rules don’t work well:

I~
I
-

))
()
) ((@) ((@) ((@) 0O)
Q)) (@))))
m%ﬁﬂmlﬁ:;ﬁl?ﬂw [T 5 1) Iultl
371 Timsort

7777777777777 7777777777777 777707 7 T T T T 0 0 7 7/ 77777777778 316.0 H

321 Peeksort

» As n increases, Timsort’s cost approach 1.5 - I{, i. e., 50% more merge costs than
necessary

» intuitive problem: regularly very unbalanced merges

36

Powersort

~» Timsort’s merge rules aren’t great, but overall algorithm has appeal . .. can we keep that?

1 procedure Powersort(A[0..n))

[abcdef]

i := 0; runs := new Stack()

j = ExtendRunRight(4, i)
runs.push((i, j),0); i == j run stack
while i < n

j = ExtendRunRight(4, i)
p = power(runs.top(), (i, j), n)
while p < runs.top().power
merge topmost 2 runs
runs.push((i, j), p); i == j
while runs.size() > 2 (
merge topmost 2 runs

T)

—~—
osryuossunsersownnsussup

37

Powersort — Run-Boundary Powers

4 5 2 1 3 2 4

l-u 546 § o8 W m”-n % 4]mm[% M B % 7 38”17 B 19 20 2 2 B 415 2% 27 B 9 0 31 32”11 2 Biu 15 16 ml/
H H Vi H H H H H

» (virtual) perfect balanced binary tree

» midpoint intervals “snap” to closest virtual tree node

~ assigns each run boundary a depth = its power

~ merge tree follows virtual tree

38

Powersort — Run-Boundary Powers are Local

4

Computation of powers only depends on two adjacent runs.

39

Powersort — Computing powers

2 liq i —
» Computing the power of [: —]
(run boundary between) two runs d; Bi p;
» ¢ = normalized midpoint interval ?7 !E
> power = min { s.t. ¢ g Sy i .
contains ¢ - 2~ 0 27— 1
1 procedure power((iy, j1), (i2, j2), 1)
2 ny = j1—1 | 1 |
3 np = jp —ip
g 1
i1+ 511 —1
. g= L2
n
in + %le -1
5 b= — // interval (a,b]
6 {:=0
7 while |a-2¢] == [b- 2]
8 {:=0+1
9 return /

> with bitwise trickery O(1) time possible

40

Powersort — Discussion

ib Retains all advantages of Timsort
» good locality in memory accesses
» no recursion

» all the tricks in Timsort
[b optimally adapts to existing runs

|ﬁ minimal overhead for finding merge order

41

	Efficient Sorting
	 Learning Outcomes
	 Why study sorting?

	Part 1
	 Rules of the game
	Mergesort
	 Merging sorted lists
	 Mergesort
	 Linear Term of C(n)
	 Mergesort – Discussion

	Quicksort
	 Partitioning around a pivot
	 Partitioning – Detailed code
	 Quicksort
	 Quicksort & Binary Search Trees
	 Quicksort – Worst Case
	 Randomized Quicksort – Analysis
	 Quicksort – Discussion

	Comparison-Based Lower Bound
	 Lower Bounds
	 The Comparison Model
	 Comparison Lower Bound

	Integer Sorting
	 How to beat a lower bound
	 Counting sort
	 Larger Universes: Radix Sort
	 Integer Sorting – State of the art

	Part 2
	Adaptive Sorting
	 Adaptive sorting
	 Warmup: check for sorted inputs
	 Mergesort with sorted check – Analysis
	 Alignment issues
	 Bottom-Up Mergesort
	 Natural Bottom-Up Mergesort – Analysis
	 Natural Bottom-Up Mergesort – Analysis [2]
	 Good merge orders
	 Nearly-Optimal Mergesort
	 Peeksort
	 Peeksort – Code
	 Peeksort – Analysis

	Python's list sort
	 Sorting in Python
	 Timsort (original version)
	 Timsort bad case
	 Powersort
	 Powersort – Run-Boundary Powers
	 Powersort – Run-Boundary Powers are Local
	 Powersort – Computing powers
	 Powersort – Discussion

