
4 Efficient Sorting
4 November 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25)
Philipps-Universität Marburg

version 2024-11-04 18:30 H



Learning Outcomes

Unit 4: Efficient Sorting

1. Know principles and implementation of mergesort and quicksort.
2. Know properties and performance characteristics of mergesort and quicksort.
3. Know the comparison model and understand the corresponding lower bound.
4. Understand counting sort and how it circumvents the comparison lower bound.
5. Know ways how to exploit presorted inputs.

1



Outline

4 Efficient Sorting
4.1 Mergesort
4.2 Quicksort
4.3 Comparison-Based Lower Bound
4.4 Integer Sorting
4.5 Adaptive Sorting
4.6 Python’s list sort



Why study sorting?
▶ fundamental problem of computer science that is still not

Algorithm with optimal #comparisons in worst case?

solved

▶ building brick of many more advanced algorithms
▶ for preprocessing
▶ as subroutine

▶ playground of manageable complexity
to practice algorithmic techniques

Here:

▶ “classic” fast sorting method

▶ exploit partially sorted inputs

▶ parallel sorting

2



Part I
The Basics



Rules of the game
▶ Given:

▶ array 𝐴[0..𝑛) = 𝐴[0..𝑛 − 1] of 𝑛 objects
▶ a total order relation ≤ among 𝐴[0], . . . , 𝐴[𝑛 − 1]

(a comparison function)
Python: elements support <= operator (__le__())
Java: Comparable class (x.compareTo(y) <= 0)

▶ Goal: rearrange (i. e., permute) elements within 𝐴,
so that 𝐴 is sorted, i. e., 𝐴[0] ≤ 𝐴[1] ≤ · · · ≤ 𝐴[𝑛 − 1]

▶ for now: 𝐴 stored in main memory (internal sorting)
single processor (sequential sorting)

3



4.1 Mergesort



Merging sorted lists

⇝

run1 run2 result

4



Merging sorted lists

⇝

run1 run2 result

4



Mergesort
1 procedure mergesort(𝐴[𝑙..𝑟))
2 𝑛 := 𝑟 − 𝑙

3 if 𝑛 ≤ 1 return
4 𝑚 := 𝑙 +

⌊
𝑛
2
⌋

5 mergesort(𝐴[𝑙..𝑚))
6 mergesort(𝐴[𝑚..𝑟))
7 merge(𝐴[𝑙..𝑚), 𝐴[𝑚..𝑟), buf )
8 copy buf to 𝐴[𝑙..𝑟)

▶ recursive procedure

▶ merging needs
▶ temporary storage buf for result

(of same size as merged runs)
▶ to read and write each element twice

(once for merging, once for copying back)

Analysis: count “element visits” (read and/or write)

𝐶(𝑛) =

{
0 𝑛 ≤ 1
𝐶(⌊𝑛/2⌋) + 𝐶(⌈𝑛/2⌉) + 2𝑛 𝑛 ≥ 2

same for best and worst case!Simplification 𝑛 = 2𝑘

𝐶(2𝑘) =

{
0 𝑘 ≤ 0

2 · 𝐶(2𝑘−1) + 2 · 2𝑘 𝑘 ≥ 1
= 2 · 2𝑘 + 22 · 2𝑘−1 + 23 · 2𝑘−2 + · · · + 2𝑘 · 21 = 2𝑘 · 2𝑘

𝐶(𝑛) = 2𝑛 lg(𝑛) = Θ(𝑛 log 𝑛) (arbitrary 𝑛: 𝐶(𝑛) ≤ 𝐶(next larger power of 2) ≤ 4𝑛 lg(𝑛) + 2𝑛 = Θ(𝑛 log 𝑛))

©«
precisely(!) solvable without assumption 𝑛 = 2𝑘 :

𝐶(𝑛) = 2𝑛 lg(𝑛) +
(
2 − {lg(𝑛)} − 21−{lg(𝑛)})2𝑛

with {𝑥} ≔ 𝑥 − ⌊𝑥⌋

ª®®¬

5



Linear Term of 𝐶(𝑛)
Recall:
𝐶(𝑛) = 2𝑛 lg(𝑛) +

(
2 − {lg(𝑛)} − 21−{lg(𝑛)})2𝑛 with {𝑥} ≔ 𝑥 − ⌊𝑥⌋

Plot of 2
(
2 − {lg(𝑛)} − 21−{lg(𝑛)})

20 40 60 80 100 120 140

0.05

0.10

0.15

500 1000 1500 2000

0.05

0.10

0.15

⇝ Can prove: 𝐶(𝑛) ≤ 2𝑛 lg 𝑛 + 0.172𝑛

6



Mergesort – Discussion

optimal time complexity of Θ(𝑛 log 𝑛) in the worst case

stable sorting method i. e., retains relative order of equal-key items

memory access is sequential (scans over arrays)

requires
there are in-place merging methods,
but they are substantially more complicated
and not (widely) used

Θ(𝑛) extra space

7



4.2 Quicksort



Partitioning around a pivot

⇝

𝑝

▶ no extra space needed

▶ visits each element once

▶ returns rank/position of pivot

8



Partitioning around a pivot

⇝

<𝑝 >𝑝<𝑝 >𝑝<𝑝 <𝑝 >𝑝>𝑝<𝑝

▶ no extra space needed

▶ visits each element once

▶ returns rank/position of pivot

8



Partitioning – Detailed code
Beware: details easy to get wrong; use this code! (if you ever have to)

1 procedure partition(𝐴, 𝑏)
2 // input: array 𝐴[0..𝑛), position of pivot 𝑏 ∈ [0..𝑛)
3 swap(𝐴[0], 𝐴[𝑏])
4 𝑖 := 0, 𝑗 := 𝑛

5 while true do
6 do 𝑖 := 𝑖 + 1 while 𝑖 < 𝑛 and 𝐴[𝑖] < 𝐴[0]
7 do 𝑗 := 𝑗 − 1 while 𝑗 ≥ 1 and 𝐴[𝑗] > 𝐴[0]
8 if 𝑖 ≥ 𝑗 then break (goto 11)
9 else swap(𝐴[𝑖], 𝐴[𝑗])

10 end while
11 swap(𝐴[0], 𝐴[𝑗])
12 return 𝑗

Loop invariant (5–10): 𝐴 𝑝 ≤ 𝑝 ≥ 𝑝?
𝑖 𝑗

9



Quicksort
1 procedure quicksort(𝐴[𝑙..𝑟))
2 if 𝑟 − ℓ ≤ 1 then return
3 𝑏 := choosePivot(𝐴[𝑙..𝑟))
4 𝑗 := partition(𝐴[𝑙..𝑟), 𝑏)
5 quicksort(𝐴[𝑙.. 𝑗))
6 quicksort(𝐴[𝑗 + 1..𝑟))

▶ recursive procedure

▶ choice of pivot can be
▶ fixed position ⇝ dangerous!
▶ random
▶ more sophisticated, e. g., median of 3

10



Quicksort & Binary Search Trees

Quicksort Binary Search Tree (BST)

7 4 2 9 1 3 8 5 6

4 2 1 3 5 6 9 87

2 1 3 5 64 8 9

1 3 62 5 8

1 3 6

7 4 2 9 1 3 8 5 6

7

4

2

9

1 3

85

6

▶ recursion tree of quicksort = binary search tree from successive insertion

▶ comparisons in quicksort = comparisons to built BST

▶ comparisons in quicksort ≈ comparisons to search each element in BST

11



Quicksort – Worst Case
▶ Problem: BSTs can degenerate 1

2

3

4

5

6

▶ Cost to search for 𝑘 is 𝑘 − 1

⇝ Total cost
𝑛∑

𝑘=1
(𝑘 − 1) =

𝑛(𝑛 − 1)
2 ∼ 1

2𝑛
2

⇝ quicksort worst-case running time is in Θ(𝑛2)
terribly slow!

But, we can fix this:

Randomized quicksort:

▶ choose a random pivot in each step

⇝ same as randomly shuffling input before sorting

12



Randomized Quicksort – Analysis
▶ cost measure: element visits (as for mergesort)

▶ 𝐶(𝑛) = #element visits when sorting 𝑛 randomly permuted elements
= cost of searching every element in BST build from input

⇝ quicksort needs ∼ 2 ln(2) · 𝑛 lg 𝑛 ≈ 1.39𝑛 lg 𝑛 in expectation
(see analysis of 𝐶𝑛 in Unit 3!)

▶ also: very unlikely to be much worse:
e. g., one can prove: Pr[cost > 10𝑛 lg 𝑛] = 𝑂(𝑛−2.5)
distribution of costs is “concentrated around mean”

▶ intuition: have to be constantly unlucky with pivot choice

13



Quicksort – Discussion

fastest general-purpose method

Θ(𝑛 log 𝑛) average case

works in-place (no extra space required)

memory access is sequential (scans over arrays)

Θ(𝑛2) worst case (although extremely unlikely)

not a stable sorting method

Open problem: Simple algorithm that is fast, stable and in-place.

14



4.3 Comparison-Based Lower Bound



Lower Bounds
▶ Lower bound: mathematical proof that no algorithm can do better.

▶ very powerful concept: bulletproof impossibility result
≈ conservation of energy in physics

▶ (unique?) feature of computer science:
for many problems, solutions are known that (asymptotically) achieve the lower bound

⇝ can speak of “optimal algorithms”

▶ To prove a statement about all algorithms, we must precisely define what that is!

▶ already know one option: the word-RAM model

▶ Here: use a simpler, more restricted model.

15



The Comparison Model
▶ In the comparison model data can only be accessed in two ways:

▶ comparing two elements
▶ moving elements around (e. g. copying, swapping)

▶ Cost: number of comparisons.

▶ This makes very few assumptions on the kind of objects we are

That’s good!
Keeps algorithms general!

sorting.

▶ Mergesort and Quicksort work in the comparison model.

⇝ Every comparison-based sorting algorithm corresponds to a decision tree.
▶ only model comparisons ⇝ ignore data movement
▶ nodes = comparisons the algorithm does
▶ child links = outcomes of comparison
▶ leaf = unique initial input permutation compatible with comparison outcomes
▶ next comparisons can depend on outcomes ⇝ child subtrees can look different

16



Comparison Lower Bound
Example: Comparison tree for a sorting method for 𝐴[0..2]:

𝐴[0] : 𝐴[1]

𝐴[1] : 𝐴[2] 𝐴[1] : 𝐴[2]

𝐴[0] : 𝐴[2] 𝐴[0] : 𝐴[2]1,2,3 3,2,1

1,3,2 2,3,1 2,1,3 3,1,2

≤ >

≤ >

≤ >

>≤

≤ >

1,2,3
1,3,2
2,1,3
2,3,1
3,1,2
3,2,1

1,2,3
1,3,2
2,3,1

2,1,3
3,1,2
3,2,1

1,3,2
2,3,1

2,1,3
3,1,2

▶ Execution = follow a path in
comparison tree.

⇝ height of comparison tree =

worst-case # comparisons

▶ comparison trees are binary trees
⇝ ℓ leaves ⇝ height ≥ ⌈lg(ℓ )⌉

▶ comparison trees for sorting
method must have ≥ 𝑛! leaves

⇝ height ≥ lg(𝑛!)

more precisely: lg(𝑛!) = 𝑛 lg 𝑛 − lg(𝑒)𝑛 + 𝑂(log 𝑛)

∼ 𝑛 lg 𝑛

▶ Mergesort achieves ∼ 𝑛 lg 𝑛 comparisons ⇝ asymptotically comparison-optimal!

▶ Open (theory) problem: Sorting algorithm with 𝑛 lg 𝑛 − lg(𝑒)
≈ 1.4427

𝑛 + 𝑜(𝑛) comparisons?

17



4.4 Integer Sorting



How to beat a lower bound
▶ Does the above lower bound mean, sorting always takes time Ω(𝑛 log 𝑛)?

▶ Not necessarily; only in the comparison model!
⇝ Lower bounds show where to change the model!

▶ Here: sort 𝑛 integers
▶ can do a lot with integers: add them up, compute averages, . . . (full power of word-RAM)

⇝ we are not working in the comparison model
⇝ above lower bound does not apply!

▶ but: a priori unclear how much arithmetic helps for sorting . . .

18



Counting sort
▶ Important parameter: size/range of numbers

▶ numbers in range [0..𝑈) = {0, . . . , 𝑈 − 1} typically 𝑈 = 2𝑏 ⇝ 𝑏-bit binary numbers

▶ We can sort 𝑛 integers in Θ(𝑛 +𝑈) time and Θ(𝑈) space when 𝑏 ≤ 𝑤

word size

:

Counting sort

1 procedure countingSort(𝐴[0..𝑛))
2 // 𝐴 contains integers in range [0..𝑈).
3 𝐶[0..𝑈) := new integer array, initialized to 0
4 // Count occurrences
5 for 𝑖 := 0, . . . , 𝑛 − 1
6 𝐶[𝐴[𝑖]] := 𝐶[𝐴[𝑖]] + 1
7 𝑖 := 0 // Produce sorted list
8 for 𝑘 := 0, . . . 𝑈 − 1
9 for 𝑗 := 1, . . . 𝐶[𝑘]

10 𝐴[𝑖] := 𝑘; 𝑖 := 𝑖 + 1

▶ count how often each possible
value occurs

▶ produce sorted result directly
from counts

▶ circumvents lower bound by
using integers as array index /
pointer offset

⇝ Can sort 𝑛 integers in range [0..𝑈) with 𝑈 = 𝑂(𝑛) in time and space Θ(𝑛).

19



Larger Universes: Radix Sort
▶ MSD Radix Sort:

▶ split numbers into base-𝑅 “digits”
▶ Use counting sort on most significant digit

(with variant of counting sort that moves full number)

⇝ integers sorted with respect to first digit
▶ recurse on sublist for each digit value, using next digit for counting sort

⇝ After ⌊log𝑅(𝑈)⌋ + 1 levels of counting sort, fully sorted!
▶ For 𝑅 ≤ 2𝑤 , all counting sort calls on same level cost total of 𝑂(𝑛) time

(requires care to avoid reinitialization cost of array 𝐶)

⇝ total time 𝑂(𝑛 log𝑅(𝑈)) = 𝑂
(
𝑛

log(𝑈)
log(𝑅)

)
⇝ 𝑂(𝑛) time sorting possible for numbers in range 𝑈 = 𝑂(𝑛𝑐) for constant 𝑐.

20



Integer Sorting – State of the art
Algorithm theory

▶ integer sorting on the 𝑤-bit word-RAM

▶ suppose 𝑈 = 2𝑤 , but 𝑤 can be an arbitrary function of 𝑛

▶ how fast can we sort 𝑛 such 𝑤-bit integers on a 𝑤-bit word-RAM?
▶ for 𝑤 = 𝑂(log 𝑛): linear time (radix/counting sort)
▶ for 𝑤 = Ω(log2+𝜀 𝑛): linear time (signature sort)
▶ for 𝑤 in between: can do 𝑂(𝑛

√
lg lg 𝑛) (very complicated algorithm)

don’t know if that is best possible!

∗ ∗ ∗

. . . for the rest of this unit: back to the comparisons model!

21



Part II
Exploiting presortedness



4.5 Adaptive Sorting



Adaptive sorting
▶ Comparison lower bound also holds for the average case ⇝ ⌊lg(𝑛!)⌋ cmps necessary

▶ Mergesort and Quicksort from above use ∼ 𝑛 lg 𝑛 cmps even in best case

Can we do better if the input is already “almost sorted”?

Scenarios where this may arise naturally:
▶ Append new data as it arrives, regularly sort entire list (e. g., log files, database tables)

▶ Compute summary statistics of time series of measurements that change slowly over
time (e. g., weather data)

▶ Merging locally sorted data from different servers (e. g., map-reduce frameworks)

⇝ Ideally, algorithms should adapt to input: the more sorted the input, the faster the algorithm

. . . but how to do that!?
22



Warmup: check for sorted inputs
▶ Any method could first check if input already completely in order!

Best case becomes Θ(𝑛) with 𝑛 − 1 comparisons!
Usually 𝑛 − 1 extra comparisons and pass over data “wasted”
Only catches a single, extremely special case . . .

▶ For divide & conquer algorithms, could check in each recursive call!
Potentially exploits partial sortedness!
usually adds Ω(𝑛 log 𝑛) extra comparisons

For Mergesort, can instead check
before merge with a single comparison
▶ If last element of first run ≤ first element

of second run, skip merge

How effective is this idea?

1 procedure mergesortCheck(𝐴[𝑙..𝑟))
2 𝑛 := 𝑟 − 𝑙

3 if 𝑛 ≤ 1 return
4 𝑚 := 𝑙 +

⌊
𝑛
2
⌋

5 mergesortCheck(𝐴[𝑙..𝑚))
6 mergesortCheck(𝐴[𝑚..𝑟))
7 if 𝐴[𝑚 − 1] > 𝐴[𝑚]
8 merge(𝐴[𝑙..𝑚), 𝐴[𝑚..𝑟), buf )
9 copy buf to 𝐴[𝑙..𝑟)

23



Mergesort with sorted check – Analysis
▶ Simplified cost measure: merge cost = size of output of merges

≈ number of comparisons
≈ number of memory transfers / cache misses

▶ Example input: 𝑛 = 64 numbers in sorted runs of 16 numbers each:

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Merge costs:
384 Standard Mergesort

128 with sorted check

Sorted check can help a lot!
24



Alignment issues
▶ In previous example, each run of length ℓ saved us ℓ lg(ℓ ) in merge cost.

= exactly the cost of creating this run in mergesort had it not already existed
⇝ best savings we can hope for!

⇝ Are overall merge costs H(ℓ1 , . . . , ℓ𝑟) ≔ 𝑛 lg(𝑛)︸ ︷︷ ︸
mergesort

−
𝑟∑

𝑖=1
ℓ𝑖

ℓ𝑖 = length of 𝑖th run

lg(ℓ𝑖)︸       ︷︷       ︸
savings from runs

?

Unfortunately, not quite:

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Merge costs:
384 Standard Mergesort

216 with sorted check

127.8 H(15, 15, 17, 17)

25



Bottom-Up Mergesort
▶ Can we do better by explicitly detecting runs?

1 procedure bottomUpMergesort(𝐴[0..𝑛))
2 𝑄 := new Queue // runs to merge
3 // Phase 1: Enqueue singleton runs
4 for 𝑖 = 0, . . . , 𝑛 − 1 do
5 𝑄.enqueue((𝑖 , 𝑖 + 1))
6 // Phase 2: Merge runs level−wise
7 while 𝑄.size() ≥ 2
8 𝑄′ := new Queue
9 while 𝑄.size() ≥ 2

10 (𝑖1 , 𝑗1) := 𝑄.dequeue()
11 (𝑖2 , 𝑗2) := 𝑄.dequeue()
12 merge(𝐴[𝑖1.. 𝑗1), 𝐴[𝑖2.. 𝑗2), buf )
13 copy buf to 𝐴[𝑖1.. 𝑗2)
14 𝑄′.enqueue((𝑖1 , 𝑗2))
15 if ¬𝑄.isEmpty() // lonely run
16 𝑄′.enqueue(𝑄.dequeue())
17 𝑄 := 𝑄′

1 procedure naturalMergesort(𝐴[0..𝑛))
2 𝑄 := new Queue; 𝑖 := 0
3 while 𝑖 < 𝑛

4 𝑗 := 𝑖 + 1
5 while 𝐴[𝑗] ≥ 𝐴[𝑗 − 1] do 𝑗 := 𝑗 + 1
6 𝑄.enqueue((𝑖 , 𝑗)); 𝑖 := 𝑗

7 while 𝑄.size() ≥ 2
8 𝑄′ := new Queue
9 while 𝑄.size() ≥ 2

10 (𝑖1 , 𝑗1) := 𝑄.dequeue()
11 (𝑖2 , 𝑗2) := 𝑄.dequeue()
12 merge(𝐴[𝑖1.. 𝑗1), 𝐴[𝑖2.. 𝑗2), buf )
13 copy buf to 𝐴[𝑖1.. 𝑗2)
14 𝑄′.enqueue((𝑖1 , 𝑗2))
15 if ¬𝑄.isEmpty() // lonely run
16 𝑄′.enqueue(𝑄.dequeue())
17 𝑄 := 𝑄′

find run 𝐴[𝑖.. 𝑗)
starting at 𝑖

26



Natural Bottom-Up Mergesort – Analysis
▶ Works well for runs of roughly equal size, regardless of alignment . . .

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Merge costs:
384 Standard mergesort

216 Standard mergesort with sorted check

127.8 H(15, 15, 17, 17)

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

128 Natural bottom-up mergesort

27



Natural Bottom-Up Mergesort – Analysis [2]
▶ . . . but less so for widely varying run lengths

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 24 25 26 21 22 23 18 19 20 15 16 17 12 13 14 9 10 11 6 7 8 3 4 5 1 2

246 Natural bottom-up mergesort

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 24 25 26 21 22 23 18 19 20 15 16 17 12 13 14 9 10 11 6 7 8 3 4 5 1 2

196 Standard mergesort with sorted check

. . . can’t we have both at the same time?!
28



Good merge orders
Let’s take a step back and breathe.

▶ Conceptually, there are two tasks:
1. Detect and use existing runs in the input ⇝ ℓ1 , . . . , ℓ𝑟 (easy)✓
2. Determine a favorable order of merges of runs (“automatic” in top-down mergesort)

2 32 2 6 2 6

15 17 12 19 2 9 13 7 11 1 4 8 10 14 23 5 21 3 6 16 18 20 22

Merge cost = total area of
= total length of paths to all array entries
=

∑
𝑤 leaf

weight(𝑤) · depth(𝑤)

⇝ optimal merge tree
= optimal binary search tree

well-understood problem
with known algorithms

for leaf weights ℓ1 , . . . , ℓ𝑟
(optimal expected search cost)

29



Nearly-Optimal Mergesort

Nearly-Optimal Mergesorts:
Fast, Practical Sorting Methods That
Optimally Adapt to Existing Runs
J. Ian Munro
University of Waterloo, Canada
imunro@uwaterloo.ca

https://orcid.org/0000-0002-7165-7988

Sebastian Wild
University of Waterloo, Canada
wild@uwaterloo.ca

https://orcid.org/0000-0002-6061-9177

Abstract
We present two stable mergesort variants, “peeksort” and “powersort”, that exploit existing runs
and find nearly-optimal merging orders with negligible overhead. Previous methods either require
substantial effort for determining the merging order (Takaoka 2009; Barbay & Navarro 2013) or
do not have an optimal worst-case guarantee (Peters 2002; Auger, Nicaud & Pivoteau 2015; Buss
& Knop 2018). We demonstrate that our methods are competitive in terms of running time with
state-of-the-art implementations of stable sorting methods.

2012 ACM Subject Classification Theory of computation → Sorting and searching

Keywords and phrases adaptive sorting, nearly-optimal binary search trees, Timsort

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.63

Related Version arXiv: 1805.04154 (extended version with appendices)

Supplement Material zenodo: 1241162 (code to reproduce running time study)

Funding This work was supported by the Natural Sciences and Engineering Research Council of
Canada and the Canada Research Chairs Programme.

1 Introduction

Sorting is a fundamental building block for numerous tasks and ubiquitous in both the
theory and practice of computing. While practical and theoretically (close-to) optimal
comparison-based sorting methods are known, instance-optimal sorting, i.e., methods that
adapt to the actual input and exploit specific structural properties if present, is still an area
of active research. We survey some recent developments in Section 1.1.

Many different structural properties have been investigated in theory. Two of them have
also found wide adoption in practice, e.g., in Oracle’s Java runtime library: adapting to the
presence of duplicate keys and using existing sorted segments, called runs. The former is
achieved by a so-called fat-pivot partitioning variant of quicksort [8], which is also used in the
OpenBSD implementation of qsort from the C standard library. It is an unstable sorting
method, though, i.e., the relative order of elements with equal keys might be destroyed in
the process. It is hence used in Java solely for primitive-type arrays.

© J. Ian Munro and Sebastian Wild;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 63; pp. 63:1–63:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

▶ In 2018, with Ian Munro, I combined research
on nearly-optimal BSTs with mergesort

⇝ 2 new algorithms: Peeksort and Powersort
▶ both adapt provably optimal to existing runs

even in worst case:
mergecost ≤ H(ℓ1 , . . . , ℓ𝑟 ) + 2𝑛

▶ both are lightweight extensions of existing
methods with negligible overhead

▶ both fast in practice

30

https://www.wild-inter.net/publications/munro-wild-2018


Peeksort

▶ based on top-down mergesort

▶ “peek” at middle of array
& find closest run boundary

⇝ split there and recurse
(instead of at midpoint)

1⁄2

1⁄2 1⁄2

▶ can avoid scanning runs repeatedly:
▶ find full run straddling midpoint
▶ remember length of known runs at boundaries

ℓ 𝑟ℓ+Δℓ 𝑟+Δ𝑟

⇝ with clever recursion, scan each run only once.

31



Peeksort – Code

1 procedure peeksort(𝐴[ℓ ..𝑟), Δℓ , Δ𝑟 )
2 if 𝑟 − ℓ ≤ 1 then return
3 if ℓ + Δℓ == 𝑟 ∨ ℓ == 𝑟 + Δ𝑟 then return
4 𝑚 := ℓ + ⌊(𝑟 − ℓ )/2⌋

5 𝑖 :=

{
ℓ + Δℓ if ℓ + Δℓ ≥ 𝑚

extendRunLeft(𝐴, 𝑚) else

6 𝑗 :=

{
𝑟 + Δ𝑟 ≤ 𝑚 if 𝑟 + Δ𝑟 ≤ 𝑚 ≤ 𝑚

extendRunRight(𝐴, 𝑚) else

7 𝑔 :=

{
𝑖 if 𝑚 − 𝑖 < 𝑗 − 𝑚

𝑗 else

8 Δ𝑔 :=

{
𝑗 − 𝑖 if 𝑚 − 𝑖 < 𝑗 − 𝑚

𝑖 − 𝑗 else
9 peeksort(𝐴[ℓ ..𝑔), Δℓ , Δ𝑔)

10 peeksort(𝐴[𝑔, 𝑟), Δ𝑔 , Δ𝑟 )
11 merge(𝐴[ℓ , 𝑔), 𝐴[𝑔..𝑟), buf )
12 copy buf to 𝐴[ℓ ..𝑟)

▶ Parameters:

ℓ 𝑟ℓ+Δℓ 𝑟+Δ𝑟

▶ initial call:
peeksort(𝐴[0..𝑛), Δ0, Δ𝑛) with
Δ0 = extendRunRight(𝐴, 0)
Δ𝑛 = 𝑛 − extendRunLeft(𝐴, 𝑛)

▶ helper procedure

1 procedure extendRunRight(𝐴[0..𝑛), 𝑖)
2 𝑗 := 𝑖 + 1
3 while 𝑗 < 𝑛 ∧ 𝐴[𝑗 − 1] ≤ 𝐴[𝑗]
4 𝑗 := 𝑗 + 1
5 return 𝑗

(extendRunLeft similar)

32



Peeksort – Analysis
▶ Consider tricky input from before again:

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 24 25 26 21 22 23 18 19 20 15 16 17 12 13 14 9 10 11 6 7 8 3 4 5 1 2

147 Peeksort

144.5 H(38, 3, 3, 3, 3, 3, 3, 3, 3, 2)
246 Natural bottom-up mergesort

196 Standard mergesort with sorted check

▶ One can prove: Mergecost always ≤ H(ℓ1 , . . . , ℓ𝑟) + 2𝑛

⇝ We can have the best of both worlds!

33



4.6 Python’s list sort



Sorting in Python
▶ CPython

▶ Python is only a specification of a programming language
▶ The Python Foundation maintains CPython as the official reference implementation of the

Python programming language
▶ If you don’t specifically install something else, python will be CPython

▶ part of Python are list.sort resp. sorted built-in functions
▶ implemented in C
▶ use Timsort,

custom Mergesort variant by Tim Peters

Sept 2021: Python uses Powersort!
since CPython 3.11 and PyPy 7.3.6

34

https://bugs.python.org/issue34561


Timsort (original version)
1 procedure Timsort(𝐴[0..𝑛))
2 𝑖 := 0; runs := new Stack()
3 while 𝑖 < 𝑛

4 𝑗 := ExtendRunRight(𝐴, 𝑖)
5 runs.push(𝑖 , 𝑗); 𝑖 := 𝑗

6 while rule A/B/C/D applicable
7 merge corresponding runs
8 while runs.size() ≥ 2
9 merge topmost 2 runs

𝑍

𝑌

𝑋

𝑊

...

top
runs Rule A: 𝒁 > 𝑿 ⇝merge(𝑿 ,𝒀 )

𝑍

𝑌

𝑋
...

𝑍

𝑋+Y
...

Rule B: 𝒁 ≥ 𝒀 ⇝merge(𝒀 , 𝒁)

¬ A 𝑍

𝑌
...

𝑌+Z
...

Rule C: 𝒀 + 𝒁 ≥ 𝑿 ⇝merge(𝒀 , 𝒁)

¬ A, ¬ B
𝑍

𝑌

𝑋

𝑍

...

𝑌+Z

𝑋
...

Rule D: 𝑿 + 𝒀 ≥ 𝑾 ⇝merge(𝒀 , 𝒁)

¬ A, ¬ B, ¬ C

𝑍

𝑌

𝑋

𝑊

𝑌

...

𝑌+Z

𝑋

𝑊
...

▶ above shows the core algorithm;
many more algorithm engineering tricks

▶ Advantages:
▶ profits from existing runs
▶ locality of reference for merges

▶ But: not optimally adaptive! (next slide)
Reason: Rules A–D (Why exactly these?!)

35



Timsort bad case
▶ On certain inputs, Timsort’s merge rules don’t work well:

63 64 62 61 58 59 60 57 54 55 56 52 53 50 51 49 46 47 48 44 45 42 43 39 40 41 37 38 36 34 35 33 30 31 32 28 29 26 27 23 24 25 21 22 20 18 19 15 16 17 13 14 11 12 8 9 10 6 7 5 4 2 3 1

371 Timsort

316.0 H

321 Peeksort

▶ As 𝑛 increases, Timsort’s cost approach 1.5 ·H, i. e., 50% more merge costs than
necessary
▶ intuitive problem: regularly very unbalanced merges

36



Powersort
⇝ Timsort’s merge rules aren’t great, but overall algorithm has appeal . . . can we keep that?

1 procedure Powersort(𝐴[0..𝑛))
2 𝑖 := 0; runs := new Stack()
3 𝑗 := ExtendRunRight(𝐴, 𝑖)
4 runs.push((𝑖 , 𝑗), 0); 𝑖 := 𝑗

5 while 𝑖 < 𝑛

6 𝑗 := ExtendRunRight(𝐴, 𝑖)
7 𝑝 := power(runs.top(), (𝑖 , 𝑗), 𝑛)
8 while 𝑝 ≤ runs.top().power
9 merge topmost 2 runs

10 runs.push((𝑖 , 𝑗), 𝑝); 𝑖 := 𝑗

11 while runs.size() ≥ 2
12 merge topmost 2 runs

abcdef
0

abcdef – 0
run stack

44

33

44

22

44

33

44

11

44

33

44

22

44

33

44

24 25 26 27 28 21 22 23 18 19 20 4 5 6 7 8 9 10 11 12 13 14 15 16 17 3 1 2

37



Powersort – Run-Boundary Powers
3 4 5 2 1 3 2 4 3

44 45 46 47 48 49 50 41 42 43 40 39 33 34 35 36 37 38 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 11 12 13 14 15 16 10 7 8 9 1 2 3 4 5 6

5

4

5

3

5

4

5

2

5

4

5

3

5

4

5

1

5

4

5

3

5

4

5

2

5

4

5

3

5

4

5

▶ (virtual) perfect balanced binary tree

▶ midpoint intervals “snap” to closest virtual tree node
⇝ assigns each run boundary a depth = its power

⇝ merge tree follows virtual tree

38



Powersort – Run-Boundary Powers are Local
4

44 45 46 47 48 49 50 41 42 43 40 39 33 34 35 36 37 38 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 11 12 13 14 15 16 10 7 8 9 1 2 3 4 5 6

5

4

5

3

5

4

5

2

5

4

5

3

5

4

5

1

5

4

5

3

5

4

5

2

5

4

5

3

5

4

5

Computation of powers only depends on two adjacent runs.

39



Powersort – Computing powers
▶ Computing the power of

(run boundary between) two runs
▶ = normalized midpoint interval
▶ power = min ℓ s.t.

contains 𝑐 · 2−ℓ

𝐵𝑖

0 12−𝑝

𝑎𝑖 𝑏𝑖

ℓ𝑖−1 ℓ𝑖

𝑃𝑖 ≤ 𝑝

1 procedure power((𝑖1 , 𝑗1), (𝑖2 , 𝑗2), 𝑛)
2 𝑛1 := 𝑗1 − 𝑖1
3 𝑛2 := 𝑗2 − 𝑖2

4 𝑎 :=
𝑖1 + 1

2𝑛1 − 1
𝑛

5 𝑏 :=
𝑖2 + 1

2𝑛2 − 1
𝑛

// interval (𝑎, 𝑏]
6 ℓ := 0
7 while ⌊𝑎 · 2ℓ ⌋ == ⌊𝑏 · 2ℓ ⌋
8 ℓ := ℓ + 1
9 return ℓ

▶ with bitwise trickery 𝑂(1) time possible

1⁄2

1⁄21⁄4 3⁄4

1⁄21⁄4 3⁄43⁄8 5⁄81⁄8 7⁄8

1⁄21⁄4 3⁄41⁄8 3⁄8 5⁄81⁄8 7⁄81⁄16 3⁄16 5⁄16 7⁄16 9⁄16 11⁄16 13⁄16 15⁄16

3

2

1

2

4
44

33

44

22

44

33

44

11

44

33

44

22

44

33

44

40



Powersort – Discussion
Retains all advantages of Timsort
▶ good locality in memory accesses
▶ no recursion
▶ all the tricks in Timsort

optimally adapts to existing runs

minimal overhead for finding merge order

41


	Efficient Sorting
	 Learning Outcomes
	 Why study sorting?

	Part 1
	 Rules of the game
	Mergesort
	 Merging sorted lists
	 Mergesort
	 Linear Term of C(n)
	 Mergesort – Discussion

	Quicksort
	 Partitioning around a pivot
	 Partitioning – Detailed code
	 Quicksort
	 Quicksort & Binary Search Trees
	 Quicksort – Worst Case
	 Randomized Quicksort – Analysis
	 Quicksort – Discussion

	Comparison-Based Lower Bound
	 Lower Bounds
	 The Comparison Model
	 Comparison Lower Bound

	Integer Sorting
	 How to beat a lower bound
	 Counting sort
	 Larger Universes: Radix Sort
	 Integer Sorting – State of the art


	Part 2
	Adaptive Sorting
	 Adaptive sorting
	 Warmup: check for sorted inputs
	 Mergesort with sorted check – Analysis
	 Alignment issues
	 Bottom-Up Mergesort
	 Natural Bottom-Up Mergesort – Analysis
	 Natural Bottom-Up Mergesort – Analysis [2]
	 Good merge orders
	 Nearly-Optimal Mergesort
	 Peeksort
	 Peeksort – Code
	 Peeksort – Analysis

	Python's list sort
	 Sorting in Python
	 Timsort (original version)
	 Timsort bad case
	 Powersort
	 Powersort – Run-Boundary Powers
	 Powersort – Run-Boundary Powers are Local
	 Powersort – Computing powers
	 Powersort – Discussion



