

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25) Philipps-Universität Marburg version 2024-11-18 21:41 H

Learning Outcomes

Unit 5: Divide & Conquer

- 1. Know the steps of the Divide & Conquer paradigm.
- 2. Be able to solve simple Divide & Conquer recurrences.
- 3. Be able to design and analyze new algorithms using the Divide & Conquer paradigm.
- 4. Know the performance characteristics of selection-by-rank algorithms.
- 5. Know the divide and conquer approaches for integer multiplication, matrix multiplication, finding majority elements, and the closest-pair-of-points problem.

Outline

5 Divide & Conquer

- 5.1 Divide & Conquer Recurrences
- 5.2 Order Statistics
- 5.3 Linear-Time Selection
- 5.4 Fast Multiplication
- 5.5 Majority
- 5.6 Closest Pair of Points in the Plane

Divide and conquer

Divide and conquer *idiom* (Latin: *divide et impera*) to make a group of people disagree and fight with one another so that they will not join together against one

(Merriam-Webster Dictionary)

→ in politics & algorithms, many independent, small problems are better than one big one!

Divide-and-conquer algorithms:

- 1. Break problem into smaller, independent subproblems. (Divide!)
- 2. Recursively solve all subproblems. (Conquer!)
- 3. Assemble solution for original problem from solutions for subproblems.

Examples:

- Mergesort
- Quicksort
- Binary search
- ► (arguably) Tower of Hanoi

5.1 Divide & Conquer Recurrences

Back-of-the-envelope analysis

- before working out the details of a D&C idea, it is often useful to get a quick indication of the resulting performance
 - don't want to waste time on something that's not competitive in the end anyways!
- since D&C is naturally recursive, running time often not obvious instead: given by a recursive equation
- unfortunately, rigorous analysis often tricky

▶ the following method works for many typical cases to give the right **order of growth**

The Master Method

- Assume a stereotypical D&C algorithm
 - *a* recursive calls on (for some constant $a \ge 1$)
 - subproblems of size n/b (for some constant b > 1)
 - with non-recursive "conquer" effort f(n) (for some function $f : \mathbb{R} \to \mathbb{R}$)
 - base case effort d (some constant d > 0)

 \rightsquigarrow running time T(n) satisfies 7

$$T(n) = \begin{cases} a \cdot T\left(\frac{n}{b}\right) + f(n) & n > 1 \\ d & n \le 1 \end{cases}$$

Theorem 5.1 (Master Theorem)

With $c := \log_b(a)$, we have for the above recurrence:

(a) $T(n) = \Theta(n^c)$ if $f(n) = O(n^{c-\varepsilon})$ for constant $\varepsilon > 0$.

(b)
$$T(n) = \Theta(n^c \log n)$$
 if $f(n) = \Theta(n^c)$.

(c) $T(n) = \Theta(f(n))$ if $f(n) = \Omega(n^{c+\varepsilon})$ for constant $\varepsilon > 0$ and f satisfies the regularity condition $\exists n_0, \alpha < 1 \ \forall n \ge n_0 : a \cdot f\left(\frac{n}{h}\right) \le \alpha f(n)$.

Master Theorem – Intuition & Proof Idea

When it's fine to ignore floors and ceilings

The polynomial-growth condition

•
$$f : \mathbb{R}_{>0} \to \mathbb{R}$$
 satisfies the *polynomial-growth condition* if

 $\exists n_0 \ \forall C \ge 1 \ \exists D > 1 \quad \forall n \ge n_0 \ \forall c \in [1, C] : \frac{1}{D} f(n) \le f(cn) \le Df(n)$

intuitively: increasing *n* by up to a factor *C* (and anywhere in between!) changes the function value by at most a factor *D* = *D*(*C*) (for sufficiently large *n*) zero allowed

• examples: $f(n) = \Theta(n^{\alpha} \log^{\beta}(n) \log \log^{\gamma}(n))$ for constants α, β, γ $\rightsquigarrow f$ satisfies the polynomial-growth condition

Lemma 5.2 (Polynomial-growth master method)

If the toll function f(n) satisfies the polynomial-growth condition, then the Θ -class of the solution of a D&C recurrence remains the same when ignoring floors and ceilings on subproblem sizes.

A Rigorous and Stronger Meta Theorem

Theorem 5.3 (Roura's Discrete Master Theorem)

Let T(n) be recursively defined as

$$T(n) = \begin{cases} b_n & 0 \le n < n_0, \\ \\ f(n) + \sum_{d=1}^{D} a_d \cdot T\left(\frac{n}{b_d} + r_{n,d}\right) & n \ge n_0, \end{cases}$$

where $D \in \mathbb{N}$, $a_d > 0$, $b_d > 1$, for d = 1, ..., D are constants, functions $r_{n,d}$ satisfy $|r_{n,d}| = O(1)$ as $n \to \infty$, and function f(n) satisfies $f(n) \sim B \cdot n^{\alpha} (\ln n)^{\gamma}$ for constants B > 0, α , γ . Set $H = 1 - \sum_{d=1}^{D} a_d (1/b_d)^{\alpha}$; then we have:

- (a) If H < 0, then $T(n) = O(n^{\tilde{\alpha}})$, for $\tilde{\alpha}$ the unique value of α that would make H = 0.
- **(b)** If H = 0 and $\gamma > -1$, then $T(n) \sim f(n) \ln(n) / \tilde{H}$ with constant $\tilde{H} = (\gamma + 1) \sum_{d=1}^{D} a_d b_d^{-\alpha} \ln(b_d)$.
- (c) If H = 0 and $\gamma = -1$, then $T(n) \sim f(n) \ln(n) \ln(\ln(n)) / \hat{H}$ with constant $\hat{H} = \sum_{d=1}^{D} a_d b_d^{-\alpha} \ln(b_d)$.
- (d) If H = 0 and $\gamma < -1$, then $T(n) = O(n^{\alpha})$.
- (e) If H > 0, then $T(n) \sim f(n)/H$.

5.2 Order Statistics

Selection by Rank

- Standard data summary of numerical data:
 - mean, standard deviation
 - min/max (range)
 - histograms
 - median, quartiles, other quantiles (a.k.a. order statistics)

(Data scientists, listen up!)

easy to compute in $\Theta(n)$ time

?
$$(n)$$
 computable in $\Theta(n)$ time?

General form of problem: Selection by Rank

• **Given:** array A[0..n) of numbers and number $k \in [0..n)$.

but 0-based & / counting dups

- ▶ Goal: find element that would be in position *k* if *A* was sorted (*k*th smallest element).
- ► $k = \lfloor n/2 \rfloor$ \rightsquigarrow median; $k = \lfloor n/4 \rfloor$ \rightsquigarrow lower quartile k = 0 \rightsquigarrow minimum; $k = n \ell$ \rightsquigarrow ℓ th largest

Quickselect

Key observation: Finding the element of rank k seems hard. But computing the rank of a given element is easy!

 \rightsquigarrow Pick any element A[b] and find its rank *j*.

▶ j = k? \rightarrow Lucky Duck! Return chosen element and stop

▶ j < k? \rightarrow ... not done yet. But: The j + 1 elements smaller than $\leq A[b]$ can be excluded!

count smaller elements

▶ j > k? \rightsquigarrow similarly exclude the n - j elements $\ge A[b]$

partition function from Quicksort:

- returns the rank of pivot
- separates elements into smaller/larger

→ can use same building blocks

```
1 procedure quickselect(A[l..r), k)
      if r - l \leq 1 then return A[l]
2
   b := choosePivot(A[l..r))
3
    j := partition(A[l..r), b)
4
    if i = k
5
           return A[i]
6
      else if j < k
7
           quickselect(A[i + 1..r), k)
8
      else // i > k
9
           quickselect(A[1..i), k)
10
```

Quickselect – Iterative Code

Recursion can be replaced by loop (tail-recursion elimination)

```
procedure quickselect(A[l..r), k)
           if r - l \le 1 then return A[l]
2
           b := choosePivot(A[l..r))
3
           i := partition(A[l..r), b)
4
           if j == k
5
               return A[j]
6
           else if j < k
7
               quickselect(A[i + 1..r), k)
8
           else // i > k
9
               quickselect(A[l..j), k)
10
```

```
1 procedure quickselectIterative(A[0..n), k)

2 l := 0; r := n

3 while r - l > 1

4 b := choosePivot(A[l..r))

5 j := partition(A[l..r), b)

6 if j \ge k then r := j - 1

7 if j \le k then l := j + 1

8 return A[k]
```

implementations should usually prefer iterative version

analysis more intuitive with recursive version

Quickselect – Analysis

```
procedure quickselect(A[l..r), k)
1
       if r - l \le 1 then return A[l]
2
       b := choosePivot(A[l..r))
3
      j := \text{partition}(A[1..r), b)
4
       if i = k
5
            return A[j]
 6
       else if j < k
7
            quickselect(A[i + 1..r), k)
8
       else // j > k
9
            quickselect(A[1..j), k)
10
```

- cost = #cmps
- costs depend on n and k
- worst case: k = 0, but always j = n − 2
 ⇔ each recursive call makes n one smaller at cost Θ(n)
 → T(n, k) = Θ(n²) worst case cost

average case:

- let T(n, k) expected cost when we choose a pivot uniformly from A[0..n)
- \rightsquigarrow formulate recurrence for T(n, k) similar to BST/Quicksort recurrence

$$T(n,k) = n + \frac{1}{n} \sum_{r=0}^{n-1} [r=k] \cdot 0 + [k < r] \cdot T(r,k) + [k > r] \cdot T(n-r-1,k-r-1)$$

Quickselect – Average Case Analysis

$$T(n,k) = n + \frac{1}{n} \sum_{r=0}^{n-1} [r=k] \cdot 0 + [k < r] \cdot T(r,k) + [k > r] \cdot T(n-r-1,k-r-1)$$

• Set
$$\hat{T}(n) = \max_{k \in [0..n]} T(n, k)$$

$$\rightsquigarrow \hat{T}(n) \leq n + \frac{1}{n} \sum_{r=0}^{n-1} \max\{\hat{T}(r), \hat{T}(n-r-1)\}$$

► analyze hypothetical, worse algorithm: if $r \notin [\frac{1}{4}n, \frac{3}{4}n)$, discard pivot and repeat with new one!

 $\stackrel{\sim}{\longrightarrow} \hat{T}(n) \leq \tilde{T}(n) \text{ defined by} \qquad \tilde{T}(n) \leq n + \frac{1}{2}\tilde{T}(n) + \frac{1}{2}\tilde{T}(\frac{3}{4}n)$ $\stackrel{\sim}{\longrightarrow} \tilde{T}(n) \leq 2n + \tilde{T}(\frac{3}{4}n)$

• Master Theorem Case 3: $\tilde{T}(n) = \Theta(n)$

Quickselect Discussion

 $\bigcirc \Theta(n^2)$ worst case (like Quicksort)

expected cost $\Theta(n)$ (best possible)

no extra space needed

adaptations possible to find several order statistics at once

expected cost can be further improved by choosing pivot from a small sorted sample

 \rightsquigarrow asymptotically optimal randomized cost: $n + \min\{k, n - k\}$ comparisons in expectation achieved asymptotically by the *Floyd-Rivest algorithm*

5.3 Linear-Time Selection

Interlude – A recurring conversation

Cast of Characters:

Hi! I'm a computer science practitioner.

I love algorithms for the sometimes miraculous applications they enable. I care for **things** I can implement and **that actually work in practice**.

Hi! I'm a *theoretical computer science researcher*.I find beauty in elegant and **definitive** answers to questions about complexity.I care for **eternal truths** and mathematically proven facts;**asymptotically optimal** is what counts! (Constant factors are secondary.)

Quickselect Disagreements

For practical purposes, (randomized) Quickselect is perfect.

e.g. used in C++ STL std::nth_element

Yeah . . . maybe. But can we select by rank in O(n) deterministic **worst case** time?

Better Pivots

It turns out, we can!

- All we need is better pivots!
 - If pivot was the exact median, we would at least halve #elements in each step
 - Then the total cost of all partitioning steps is $\leq 2n = \Theta(n)$.

But: finding medians is (basically) our original problem!

It totally suffices to find an element of rank αn for $\alpha \in (\varepsilon, 1 - \varepsilon)$ to get overall costs $\Theta(n)$!

The Median-of-Medians Algorithm

```
<sup>1</sup> procedure choosePivotMoM(A[l..r))
       m := |n/5|
2
       for i := 0, ..., m - 1
3
           sort(A[5i..5i+4])
4
           // collect median of 5
5
           Swap A[i] and A[5i+2]
6
       return quickselectMoM(A[0..m), \lfloor \frac{m-1}{2} \rfloor)
7
8
9 procedure quickselectMoM(A[l..r), k)
       if r - l \le 1 then return A[l]
10
       b := choosePivotMoM(A[l..r))
11
      j := partition(A[l..r), b)
12
       if i = k
13
           return A[j]
14
       else if j < k
15
           quickselectMoM(A[i + 1..r), k)
16
       else // i > k
17
           quickselectMoM(A[l..i), k)
18
```

Analysis:

~

cost

ansatz: o

- Note: 2 mutually recursive procedures

 effectively 2 recursive calls!
- **1.** recursive call inside choosePivotMoM on $m \le \frac{n}{5}$ elements
- 2. recursive call inside quickselectMoM

5.4 Fast Multiplication

Integer Multiplication

▶ What's the cost of computing *x* · *y* for two integers *x* and *y*?

 $\rightsquigarrow \$ depends on how big the numbers are!

- If x and y have O(w) bits, multiplication takes O(1) time on word-RAM
- otherwise, need a dedicated algorithm!

Long multiplication (»Schulmethode«)

• Given
$$x = \sum_{i=0}^{n-1} x_i 2^i$$
 and $y = \sum_{i=0}^{n-1} y_i 2^i$, want $z = \sum_{i=0}^{2n-1} z_i 2^i$

1 for
$$i := 0, ..., n - 1$$

2 $c := 0$
3 for $j := 0, ..., n - 1$
4 $z_{i+j} := z_{i+j} + c + x_i \cdot y_j$
5 $c := \lfloor z_{i+j}/2 \rfloor$
6 $z_{i+j} := z_{i+j} \mod 2$
7 end for
8 $z_{i+n} := c$
9 end for

- $\Theta(n^2)$ bit operations
- could work with base 2^w instead of 2

 $\rightsquigarrow \Theta((n/w)^2)$ time

here: count bit operations for simplicity can be generalized

Example:

easier in binary!
("shift and add")

Divide & Conquer Multiplication

- assume *n* is power of 2 (fill up with 0-bits otherwise)
- We can write
 - $x = a_1 2^{n/2} + a_2$ and
 - ► $y = b_1 2^{n/2} + b_2$
 - for a_1 , a_2 , b_1 , b_2 integers with n/2 bits

 $\implies x \cdot y = (a_1 2^{n/2} + a_2) \cdot (b_1 2^{n/2} + b_2) = a_1 b_1 2^n + (a_1 b_2 + a_2 b_1) 2^{n/2} + a_2 b_2$

- recursively compute 4 smaller products
- combine with shifts and additions (O(n) bit operations)
- ... but is this any good?
 - $\blacktriangleright T(n) = \mathbf{4} \cdot T(n/2) + \Theta(n)$
 - \rightsquigarrow Master Theorem Case 1: $T(n) = \Theta(n^2)$... just like the primary school method!?
 - but Master Theorem gives us a hint: cost is dominated by the leaves
 - \rightsquigarrow try to do more work in conquer step!

Karatsuba Multiplication

how can we do "less divide and more conquer"?

Recall: $x \cdot y = a_1b_12^n + (a_1b_2 + a_2b_1)2^{n/2} + a_2b_2$

-🔆 Let's do some algebra.

$$c := (a_1 + a_2) \cdot (b_1 + b_2) = a_1b_1 + (a_1b_2 + a_2b_1) + a_2b_2$$

 $\rightsquigarrow (\mathbf{a_1b_2} + \mathbf{a_2b_1}) = c - a_1b_1 - a_2b_2$

this can be computed with **3** recursive multiplications $a_1 + a_2$ and $b_1 + b_2$ still have roughly n/2 bits

procedure karatsuba(x, y): 2 // Assume x and y are $n = 2^k$ bit integers $a_1 := \lfloor x/2^{n/2} \rfloor; a_2 := x \mod 2^{n/2}$ // implemented by shifts $b_1 := \lfloor y/2^{n/2} \rfloor; b_2 := y \mod 2^{n/2}$ $c_1 := \text{karatsuba}(a_1, b_1)$ $c_2 := \text{karatsuba}(a_2, b_2)$ $c := \text{karatsuba}(a_1 + a_2, b_1 + b_2) - c_1 - c_2$ **return** $c_1 2^n + c2^{n/2} + c_2$ // shifts and additions

Analysis:

- nonrecursive cost: only additions and shifts
- ▶ all numbers *O*(*n*) bits

 \rightsquigarrow conquer cost $f(n) = \Theta(n)$

Recurrence:

- $\blacktriangleright T(n) = 3T(n/2) + \Theta(n)$
- Master Theorem Case 1

 $\rightsquigarrow T(n) = \Theta(n^{\lg 3}) = O(n^{1.585})$

much cheaper (for large *n*)!

Integer Multiplication

- until 1960, integer multiplication was conjectured to take $\Omega(n^2)$ bit operations
- → Karatsuba's algorithm was a big breakthrough
 - which he discovered as a student!
- idea can be generalized to breaking numbers into $k \ge 2$ parts (*Toom-Cook algorithm*)
- asymptotically *much* better algorithms are now known!
 - e.g., the *Schönhage-Strassen algorithm* with $O(n \log n \log \log n)$ bit operations (!)
 - ▶ these are based on the Fast Fourier Transform (FFT) algorithm
 - numbers = polynomials evaluated at base (e. g., z = 2)
 - → multiplication of numbers = convolution of polynomials
 - ▶ FFT makes computation of this convolution cheap by computing the polynomial via interpolation
 - Schönhage-Strassen adds careful finite-field algebra to make computations efficient

Matrix Multiplication

• The same trick can also be used for faster matrix multiplication

entry of A in row i and column k

• Recall: For $A, B \in \mathbb{R}^{n \times n}$ we define $C = A \cdot B$ via $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$

- \rightsquigarrow Naive cost: n^2 sums with *n* terms each $\rightsquigarrow \Theta(n^3)$ arithmetic operations
- Can use D&C as follows (assuming *n* is a power of 2 again)
 - Decompose $A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix}, B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix}, C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$

$$\begin{array}{ll} \underset{C_{1,2} = A_{1,1} \cdot B_{1,1} + A_{1,2} \cdot B_{2,1} \\ C_{1,2} = A_{1,1} \cdot B_{1,2} + A_{1,2} \cdot B_{2,2} \\ C_{2,1} = A_{2,1} \cdot B_{1,1} + A_{2,2} \cdot B_{2,1} \\ C_{2,2} = A_{2,1} \cdot B_{1,2} + A_{2,2} \cdot B_{2,2} \end{array}$$
 (note "." and "+" operate on matrices here)
$$\begin{array}{l} c_{2,1} = A_{2,1} \cdot B_{1,1} + A_{2,2} \cdot B_{2,1} \\ C_{2,2} = A_{2,1} \cdot B_{1,2} + A_{2,2} \cdot B_{2,2} \end{array}$$
 4 matrix sums with $(\frac{\pi}{2})^2$ entries each

- ▶ 8 recursive matrix multiplications on two $\frac{n}{2} \times \frac{n}{2}$ matrices + $\Theta(n^2)$ summations
- # operations $T(n) = 8T(n/2) + \Theta(n^2)$
- → Master Theorem Case 1: $T(n) = \Theta(n^3)$ 😒

(but: still useful for better memory locality!)

Strassen Algorithm for Matrix Multiplication

- Observation (again): Can do more conquer for less divide!
- We recursively compute the following 7 products:

$$\begin{split} M_1 &\coloneqq (A_{1,2} - A_{2,2}) \cdot (B_{2,1} + B_{2,2}) \\ M_2 &\coloneqq (A_{1,1} + A_{2,2}) \cdot (B_{1,1} + B_{2,2}) \\ M_3 &\coloneqq (A_{1,1} - A_{2,1}) \cdot (B_{1,1} + B_{1,2}) \\ M_4 &\coloneqq (A_{1,1} + A_{1,2}) \cdot B_{2,2} \\ M_5 &\coloneqq A_{1,1} \cdot (B_{1,2} - B_{2,2}) \\ M_6 &\coloneqq A_{2,2} \cdot (B_{2,1} - B_{1,1}) \\ M_7 &\coloneqq (A_{2,1} + A_{2,2}) \cdot B_{1,1} \end{split}$$

 \rightsquigarrow We then obtain the 4 parts of *C* as

$$C_{1,1} = M_1 + M_2 - M_4 + M_6$$

$$C_{1,2} = M_4 + M_5$$

$$C_{2,1} = M_6 + M_7$$

$$C_{2,2} = M_2 - M_3 + M_5 - M_7$$

Analysis:

- conquer step: larger but still O(1) # matrix add/subtract
- $\rightsquigarrow~\Theta(n^2)$ operations for conquer
- \rightarrow total # arithmetic operations $T(n) = 7T(n/2) + \Theta(n^2)$
- → Master Theorem Case 1: $T(n) = \Theta(n^{\lg 7}) = O(n^{2.808})$

(Proof: left as exercise 😢)

Open Problems

Multiplication is extremely fundamental, but its computational complexity is an open problem and subject of active research!

Integer multiplication:

- **conjectured** to require $\Omega(n \log n)$ bit operations (no proof known!)
- Harvey & van der Hoeven **2021**: $O(n \log n)$ algorithm possible!

Matrix multiplication (MM):

- more relevant than it might seem since complexity identical to
 - computing inverse matrices, determinants
 - ► Gaussian elimination (~→ solving systems of linear equations)
 - recognition of context free languages
- → best exponent even has standard notation: smallest $\omega \in [2,3)$ so that MM takes $O(n^{\omega})$ operations
- Big open question: Is $\omega > 2$?
- best known bound: $\omega \le 2.371339$ (from 2024!)

Timeline of matrix multiplication exponent		
Year	Bound on omega	Authors
1969	2.8074	Strassen ^[1]
1978	2.796	Pan ^[10]
1979	2.780	Bini, Capovani (it), Romani ^[11]
1981	2.522	Schönhage ^[12]
1981	2.517	Romani ^[13]
1981	2.496	Coppersmith, Winograd ^[14]
1986	2.479	Strassen ^[15]
1990	2.3755	Coppersmith, Winograd ^[16]
2010	2.3737	Stothers ^[17]
2012	2.3729	Williams ^{[18][19]}
2014	2.3728639	Le Gall ^[20]
2020	2.3728596	Alman, Williams ^{[21][22]}
2022	2.371866	Duan, Wu, Zhou ^[23]
2024	2.371552	Williams, Xu, Xu, and Zhou ^[2]
2024	2.371339	Alman, Duan, Williams, Xu, Xu, and Zhou ^[24]

5.5 Majority

Majority

- ► **Given:** Array *A*[0..*n*) of objects
- ► **Goal:** Check of there is an object *x* that occurs at $> \frac{n}{2}$ positions in *A* if so, return *x*
- ▶ Naive solution: check each A[i] whether it is a majority $\rightsquigarrow \Theta(n^2)$ time

Majority – Divide & Conquer

Can be solved faster using a simple Divide & Conquer approach:

- If A has a majority, that element must also be a majority of at least one half of A.
- ~> Can find majority (if it exists) of left half and right half recursively
- \rightsquigarrow Check these \leq 2 candidates.
- Costs similar to mergesort $\Theta(n \log n)$

```
1 procedure majority(A[0..n))
        if n == 1 then return A[0] end if
 2
        k := \lfloor \frac{n}{2} \rfloor
 3
        M_{\ell} := \text{majority}(A[0..k))
 4
        M_r := majority(A[k..n])
 5
        if M_{\ell} == M_r then return M_{\ell} end if
 6
        m_{\ell} := 0; m_r := 0
 7
        for i := 0, ..., n - 1
 8
             if A[i] == M_{\ell} then m_{\ell} = m_{\ell} + 1 end if
 9
             if A[i] == M_r then m_r = m_r + 1 end if
10
        end for
11
        if m_{\ell} \ge k+1
12
             return M_{\ell}
13
        else if m_r > k+1
14
             return M_r
15
        else
16
             return NO MAJORITY ELEMENT
17
```

Majority – Linear Time

We can actually do much better!

```
1 def MJRTY(A[0..n))

2 c := 0

3 for i := 1, ..., n - 1

4 if c := 0

5 x := A[i]; c := 1

6 else

7 if A[i] := x then c := c + 1 else c := c - 1

8 return x
```


- ▶ MJRTY(*A*[0..*n*)) returns *candidate* majority element
- either that candidate is the majority element or none exists(!)

 \checkmark Clearly $\Theta(n)$ time

5.6 Closest Pair of Points in the Plane

Closest Pair of Points in the Plane

► Given: Array P[0..n) of points in the plane (ℝ²) each has x and y coordinates: P[i].x and P[i].y

► **Goal:** Find pair P[i], P[j] that is closest in (Euclidean) distance i. e., *i* and *j* that minimize $\sqrt{(P[i].x - P[j].x)^2 + (P[i].y - P[j].y)^2}$

▶ Naive solution: compute distance of each pair $\rightsquigarrow \Theta(n^2)$ time

- cost here = # arithmetic operations
- ignore numerical accuracy
- → formally work on the *real RAM*
 - ▶ like word-RAM, but words contain **exact** real numbers
 - support arithmetic operations and comparisons, but not bitwise operations or [.] and [.]

Closest Pair – Divide & Conquer

Closest Pair – Refined Conquer

Closest Pair – Code

1 **procedure** closestDist(P[0..N), byX[0..n), byY[0..n)) // *P* contains all $N \ge n$ points 2 $// P[byX[0]].x \le P[byX[1]].x \le \dots \le P[byX[n]].x$ 3 $// P[byY[0]].y \le P[byY[1]].y \le \cdots \le P[byY[n]].y$ 4 **if** n = 2 **return** $d_2(P[byX[0]], P[byX[1]])$ 5 **if** n == 3 **return** min{ $d_2(P[byX[0]], P[byX[1]])$, 6 $d_2(P[byX[1]], P[byX[2]]),$ 7 $d_2(P[byX[0]], P[byX[2]])$ 8 *// 1. Split by median x and recurse* 9 $k := \lfloor n/2 \rfloor;$ 10 m := P[byX[k]]11 $byX_I := byX[0..k); byX_R := byX[k..n)$ 12 $byY_L, byY_R :=$ new empty array list 13 **for** i := 0, ..., n - 114 **if** $P[byY[i]] \le m$ // breaking ties as in byX 15 byY_{I} .append(byY[i]) 16 else 17 byY_{R} .append(byY[i]) 18 end if 19 end for 20 // ... 21

22	// closestDist continued
23	$\delta_L := \text{closestDist}(P, byX_L, byY_L)$
24	$\delta_R := \text{closestDist}(P, byX_R, byY_R)$
25	$\delta := \min\{\delta_L, \delta_R\}$
26	// 2. Check straddling pairs
27	// Find points close to dividing line
28	for $i := 0,, n - 1$
29	$\mathbf{if} P[byY[i]].x - m.x \le \delta$
30	C.append(byY[i])
31	end if
32	end for
33	// Distance $\leq \delta$ implies within 8 positions in C
34	for $i := 0,, C.size()$
35	for $j := i + 1, \dots, i + 7$
36	$\delta := \min\{\delta, d_2(P[C[i]], P[C[j]])\}$
37	end for
38	end for
39	return δ
40	
41	procedure $d_2(P, Q)$
42	return $\sqrt{(P.x - Q.x)^2 + (P.y - Q.y)^2}$