
5 Divide & Conquer
11 November 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25)
Philipps-Universität Marburg

version 2024-11-18 21:41 H

Learning Outcomes

Unit 5: Divide & Conquer

1. Know the steps of the Divide & Conquer paradigm.
2. Be able to solve simple Divide & Conquer recurrences.
3. Be able to design and analyze new algorithms using the Divide & Conquer paradigm.
4. Know the performance characteristics of selection-by-rank algorithms.
5. Know the divide and conquer approaches for integer multiplication, matrix

multiplication, finding majority elements, and the closest-pair-of-points problem.

1

Outline

5 Divide & Conquer
5.1 Divide & Conquer Recurrences
5.2 Order Statistics
5.3 Linear-Time Selection
5.4 Fast Multiplication
5.5 Majority
5.6 Closest Pair of Points in the Plane

Divide and conquer
Divide and conquer idiom (Latin: divide et impera)
to make a group of people disagree and fight with one another
so that they will not join together against one (Merriam-Webster Dictionary)

⇝ in politics & algorithms, many independent, small problems are better than one big one!

Divide-and-conquer algorithms:
1. Break problem into smaller, independent subproblems. (Divide!)

2. Recursively solve all subproblems. (Conquer!)

3. Assemble solution for original problem from solutions for subproblems.

Examples:
▶ Mergesort
▶ Quicksort
▶ Binary search
▶ (arguably) Tower of Hanoi

2

5.1 Divide & Conquer Recurrences

Back-of-the-envelope analysis
▶ before working out the details of a D&C idea,

it is often useful to get a quick indication of the resulting performance
▶ don’t want to waste time on something that’s not competitive in the end anyways!

▶ since D&C is naturally recursive, running time often not obvious
instead: given by a recursive equation

▶ unfortunately, rigorous analysis often tricky
▶ Remember mergesort?

𝐶(𝑛) =

{
0 𝑛 ≤ 1
𝐶(⌊𝑛/2⌋) + 𝐶(⌈𝑛/2⌉) + 2𝑛 𝑛 ≥ 2

⇝ 𝐶(𝑛) = 2𝑛⌊lg(𝑛)⌋ + 2𝑛 − 4 · 2⌊lg(𝑛)⌋

= Θ(𝑛 log 𝑛)

▶ the following method works for many typical cases to give the right order of growth

3

The Master Method
▶ Assume a stereotypical D&C algorithm

▶ 𝑎 recursive calls on (for some constant 𝑎 ≥ 1)
▶ subproblems of size 𝑛/𝑏 (for some constant 𝑏 > 1)
▶ with non-recursive “conquer” effort 𝑓 (𝑛) (for some function 𝑓 : ℝ → ℝ)
▶ base case effort 𝑑 (some constant 𝑑 > 0)

⇝ running time 𝑇(𝑛) satisfies 𝑇(𝑛) =

𝑎 · 𝑇

(
𝑛

𝑏

)
+ 𝑓 (𝑛) 𝑛 > 1

𝑑 𝑛 ≤ 1

Theorem 5.1 (Master Theorem)
With 𝑐 ≔ log𝑏(𝑎), we have for the above recurrence:

(a) 𝑇(𝑛) = Θ(𝑛𝑐) if 𝑓 (𝑛) = 𝑂(𝑛𝑐−𝜀) for constant 𝜀 > 0.

(b) 𝑇(𝑛) = Θ(𝑛𝑐 log 𝑛) if 𝑓 (𝑛) = Θ(𝑛𝑐).
(c) 𝑇(𝑛) = Θ(𝑓 (𝑛)) if 𝑓 (𝑛) = Ω(𝑛𝑐+𝜀) for constant 𝜀 > 0 and 𝑓 satisfies the

regularity condition ∃𝑛0 , 𝛼 < 1 ∀𝑛 ≥ 𝑛0 : 𝑎 · 𝑓
(
𝑛

𝑏

)
≤ 𝛼 𝑓 (𝑛).

4

Master Theorem – Intuition & Proof Idea

Figure 4.3 of Cormen et al. Introduction to Algorithms 4th ed.

5

When it’s fine to ignore floors and ceilings
The polynomial-growth condition
▶ 𝑓 : ℝ>0 → ℝ satisfies the polynomial-growth condition if

∃𝑛0 ∀𝐶 ≥ 1 ∃𝐷 > 1 ∀𝑛 ≥ 𝑛0 ∀𝑐 ∈ [1, 𝐶] : 1
𝐷 𝑓 (𝑛) ≤ 𝑓 (𝑐𝑛) ≤ 𝐷 𝑓 (𝑛)

▶ intuitively: increasing 𝑛 by up to a factor 𝐶 (and anywhere in between!)
changes the function value by at most a factor 𝐷 = 𝐷(𝐶)
(for sufficiently large 𝑛)

▶ examples: 𝑓 (𝑛) = Θ(𝑛𝛼 log𝛽(𝑛) log log𝛾(𝑛)) for constants

zero allowed

𝛼, 𝛽, 𝛾
⇝ 𝑓 satisfies the polynomial-growth condition

Lemma 5.2 (Polynomial-growth master method)
If the toll function 𝑓 (𝑛) satisfies the polynomial-growth condition,
then the Θ-class of the solution of a D&C recurrence remains the same
when ignoring floors and ceilings on subproblem sizes. ◀

6

A Rigorous and Stronger Meta Theorem

Theorem 5.3 (Roura’s Discrete Master Theorem)
Let 𝑇(𝑛) be recursively defined as

𝑇(𝑛) =

𝑏𝑛 0 ≤ 𝑛 < 𝑛0 ,

𝑓 (𝑛) +
𝐷∑
𝑑=1

𝑎𝑑 · 𝑇
(
𝑛

𝑏𝑑
+ 𝑟𝑛,𝑑

)
𝑛 ≥ 𝑛0 ,

◀

where 𝐷 ∈ ℕ, 𝑎𝑑 > 0, 𝑏𝑑 > 1, for 𝑑 = 1, . . . , 𝐷 are constants, functions 𝑟𝑛,𝑑 satisfy |𝑟𝑛,𝑑| = 𝑂(1) as
𝑛 → ∞, and function 𝑓 (𝑛) satisfies 𝑓 (𝑛) ∼ 𝐵 · 𝑛𝛼(ln 𝑛)𝛾 for constants 𝐵 > 0, 𝛼, 𝛾.
Set 𝐻 = 1 −∑𝐷

𝑑=1 𝑎𝑑 (1/𝑏𝑑)
𝛼 ; then we have:

(a) If 𝐻 < 0, then 𝑇(𝑛) = 𝑂(𝑛 �̃�), for �̃� the unique value of 𝛼 that would make 𝐻 = 0.

(b) If 𝐻 = 0 and 𝛾 > −1, then 𝑇(𝑛) ∼ 𝑓 (𝑛) ln(𝑛)/�̃� with constant �̃� = (𝛾 + 1)∑𝐷
𝑑=1 𝑎𝑑 𝑏

−𝛼
𝑑

ln(𝑏𝑑).

(c) If 𝐻 = 0 and 𝛾 = −1, then 𝑇(𝑛) ∼ 𝑓 (𝑛) ln(𝑛) ln(ln(𝑛))/�̂� with constant �̂� =
∑𝐷

𝑑=1 𝑎𝑑 𝑏
−𝛼
𝑑

ln(𝑏𝑑).
(d) If 𝐻 = 0 and 𝛾 < −1, then 𝑇(𝑛) = 𝑂(𝑛𝛼).
(e) If 𝐻 > 0, then 𝑇(𝑛) ∼ 𝑓 (𝑛)/𝐻.

7

5.2 Order Statistics

Selection by Rank
▶ Standard data summary of numerical data: (Data scientists, listen up!)

▶ mean, standard deviation
▶ min/max (range)

 easy to compute in Θ(𝑛) time
▶ histograms
▶ median, quartiles, other quantiles computable in Θ(𝑛) time?

(a.k.a. order statistics)

General form of problem: Selection by Rank

▶ Given: array 𝐴[0..𝑛) of numbers and number 𝑘 ∈ [0..𝑛).

▶ Goal: find element that would be in position 𝑘 if 𝐴 was sorted (𝑘th smallest

but 0-based &
counting dups

element).

▶ 𝑘 = ⌊𝑛/2⌋ ⇝ median; 𝑘 = ⌊𝑛/4⌋ ⇝ lower quartile
𝑘 = 0 ⇝ minimum; 𝑘 = 𝑛 − ℓ ⇝ ℓ th largest

8

Quickselect
▶ Key observation: Finding the element of rank 𝑘 seems hard.

But computing the rank
count smaller elements
of a given element is easy!

⇝ Pick any element 𝐴[𝑏] and find its rank 𝑗.
▶ 𝑗 = 𝑘? ⇝ Lucky Duck! Return chosen element and stop
▶ 𝑗 < 𝑘? ⇝ . . . not done yet. But: The 𝑗 + 1 elements smaller than ≤ 𝐴[𝑏] can be excluded!
▶ 𝑗 > 𝑘? ⇝ similarly exclude the 𝑛 − 𝑗 elements ≥ 𝐴[𝑏]

▶ partition function from Quicksort:
▶ returns the rank of pivot
▶ separates elements into smaller/larger

⇝ can use same building blocks

1 procedure quickselect(𝐴[𝑙..𝑟), 𝑘)
2 if 𝑟 − 𝑙 ≤ 1 then return 𝐴[𝑙]
3 𝑏 := choosePivot(𝐴[𝑙..𝑟))
4 𝑗 := partition(𝐴[𝑙..𝑟), 𝑏)
5 if 𝑗 == 𝑘

6 return 𝐴[𝑗]
7 else if 𝑗 < 𝑘

8 quickselect(𝐴[𝑗 + 1..𝑟), 𝑘)
9 else // 𝑗 > 𝑘

10 quickselect(𝐴[𝑙.. 𝑗), 𝑘)

9

Quickselect – Iterative Code
Recursion can be replaced by loop (tail-recursion elimination)

1 procedure quickselect(𝐴[𝑙..𝑟), 𝑘)
2 if 𝑟 − 𝑙 ≤ 1 then return 𝐴[𝑙]
3 𝑏 := choosePivot(𝐴[𝑙..𝑟))
4 𝑗 := partition(𝐴[𝑙..𝑟), 𝑏)
5 if 𝑗 == 𝑘

6 return 𝐴[𝑗]
7 else if 𝑗 < 𝑘

8 quickselect(𝐴[𝑗 + 1..𝑟), 𝑘)
9 else // 𝑗 > 𝑘

10 quickselect(𝐴[𝑙.. 𝑗), 𝑘)

1 procedure quickselectIterative(𝐴[0..𝑛), 𝑘)
2 𝑙 := 0; 𝑟 := 𝑛

3 while 𝑟 − 𝑙 > 1
4 𝑏 := choosePivot(𝐴[𝑙..𝑟))
5 𝑗 := partition(𝐴[𝑙..𝑟), 𝑏)
6 if 𝑗 ≥ 𝑘 then 𝑟 := 𝑗 − 1
7 if 𝑗 ≤ 𝑘 then 𝑙 := 𝑗 + 1
8 return 𝐴[𝑘]

▶ implementations should usually prefer iterative version

▶ analysis more intuitive with recursive version

10

Quickselect – Analysis

1 procedure quickselect(𝐴[𝑙..𝑟), 𝑘)
2 if 𝑟 − 𝑙 ≤ 1 then return 𝐴[𝑙]
3 𝑏 := choosePivot(𝐴[𝑙..𝑟))
4 𝑗 := partition(𝐴[𝑙..𝑟), 𝑏)
5 if 𝑗 == 𝑘

6 return 𝐴[𝑗]
7 else if 𝑗 < 𝑘

8 quickselect(𝐴[𝑗 + 1..𝑟), 𝑘)
9 else // 𝑗 > 𝑘

10 quickselect(𝐴[𝑙.. 𝑗), 𝑘)

▶ cost = #cmps

▶ costs depend on 𝑛 and 𝑘

▶ worst case: 𝑘 = 0, but always 𝑗 = 𝑛 − 2
⇝ each recursive call makes 𝑛 one smaller at cost Θ(𝑛)
⇝ 𝑇(𝑛, 𝑘) = Θ(𝑛2) worst case cost

average case:

▶ let 𝑇(𝑛, 𝑘) expected cost when we choose a pivot uniformly from 𝐴[0..𝑛)

⇝ formulate recurrence for 𝑇(𝑛, 𝑘) similar to BST/Quicksort recurrence

𝑇(𝑛, 𝑘) = 𝑛 + 1
𝑛

𝑛−1∑
𝑟=0

[𝑟 = 𝑘] · 0 + [𝑘 < 𝑟] · 𝑇(𝑟, 𝑘) + [𝑘 > 𝑟] · 𝑇(𝑛 − 𝑟 − 1, 𝑘 − 𝑟 − 1)

11

Quickselect – Average Case Analysis

▶ 𝑇(𝑛, 𝑘) = 𝑛 + 1
𝑛

𝑛−1∑
𝑟=0

[𝑟 = 𝑘] · 0 + [𝑘 < 𝑟] · 𝑇(𝑟, 𝑘) + [𝑘 > 𝑟] · 𝑇(𝑛 − 𝑟 − 1, 𝑘 − 𝑟 − 1)

▶ Set �̂�(𝑛) = max𝑘∈[0..𝑛) 𝑇(𝑛, 𝑘)

⇝ �̂�(𝑛) ≤ 𝑛 + 1
𝑛

𝑛−1∑
𝑟=0

max{�̂�(𝑟), �̂�(𝑛 − 𝑟 − 1)}

▶ analyze hypothetical, worse algorithm:
if 𝑟 ∉ [1

4𝑛,
3
4𝑛), discard pivot and repeat with new one!

⇝ �̂�(𝑛) ≤ �̃�(𝑛) defined by �̃�(𝑛) ≤ 𝑛 + 1
2 �̃�(𝑛) + 1

2 �̃�(3
4𝑛)

⇝ �̃�(𝑛) ≤ 2𝑛 + �̃�(3
4𝑛)

▶ Master Theorem Case 3: �̃�(𝑛) = Θ(𝑛)

12

Quickselect Discussion
Θ(𝑛2) worst case (like Quicksort)

expected cost Θ(𝑛) (best possible)

no extra space needed

adaptations possible to find several order statistics at once

expected cost can be further improved by choosing pivot from a small sorted sample
⇝ asymptotically optimal randomized cost: 𝑛 + min{𝑘, 𝑛 − 𝑘} comparisons in expectation

achieved asymptotically by the Floyd-Rivest algorithm

13

5.3 Linear-Time Selection

Interlude – A recurring conversation
Cast of Characters:

Hi! I’m a computer science practitioner.
I love algorithms for the sometimes miraculous applications they enable.
I care for things I can implement and that actually work in practice.

Hi! I’m a theoretical computer science researcher.
I find beauty in elegant and definitive answers to questions about complexity.
I care for eternal truths and mathematically proven facts;
asymptotically optimal is what counts! (Constant factors are secondary.)

14

Quickselect Disagreements

For practical purposes, (randomized) Quickselect is perfect.

e. g. used in C++ STL std::nth_element

Yeah . . . maybe. But can we select by rank in 𝑂(𝑛) deterministic worst case time?

15

Better Pivots
It turns out, we can!
▶ All we need is better pivots!

▶ If pivot was the exact median,
we would at least halve #elements in each step

▶ Then the total cost of all partitioning steps is ≤ 2𝑛 = Θ(𝑛).

1

1
2 1

4

1
8

1
16

1
32 1

64

1
128

1
256

But: finding medians is (basically) our original problem!

It totally suffices to find an element of rank 𝛼𝑛 for 𝛼 ∈ (𝜀, 1 − 𝜀)
to get overall costs Θ(𝑛)!

16

The Median-of-Medians Algorithm

1 procedure choosePivotMoM(𝐴[𝑙..𝑟))
2 𝑚 := ⌊𝑛/5⌋
3 for 𝑖 := 0, . . . , 𝑚 − 1
4 sort(𝐴[5𝑖..5𝑖 + 4])
5 // collect median of 5
6 Swap 𝐴[𝑖] and 𝐴[5𝑖 + 2]
7 return quickselectMoM(𝐴[0..𝑚), ⌊𝑚−1

2 ⌋)
8

9 procedure quickselectMoM(𝐴[𝑙..𝑟), 𝑘)
10 if 𝑟 − 𝑙 ≤ 1 then return 𝐴[𝑙]
11 𝑏 := choosePivotMoM(𝐴[𝑙..𝑟))
12 𝑗 := partition(𝐴[𝑙..𝑟), 𝑏)
13 if 𝑗 == 𝑘

14 return 𝐴[𝑗]
15 else if 𝑗 < 𝑘

16 quickselectMoM(𝐴[𝑗 + 1..𝑟), 𝑘)
17 else // 𝑗 > 𝑘

18 quickselectMoM(𝐴[𝑙.. 𝑗), 𝑘)

Analysis:
▶ Note: 2 mutually recursive procedures

⇝ effectively 2 recursive calls!

1. recursive call inside choosePivotMoM
on 𝑚 ≤ 𝑛

5 elements
2. recursive call inside quickselectMoM

≤𝑝

≥𝑝
≤

≤
≤

≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤
≤

≤

𝑝

⇝ partition excludes ∼ 3 · 𝑚
2 ∼ 3

10𝑛 elem.

⇝ 𝐶(𝑛) ≤ Θ(𝑛) + 𝐶(1
5𝑛) + 𝐶(7

10𝑛)
≤ansatz: overall

cost linear

Θ(𝑛) + 𝐶(1
5𝑛 + 7

10𝑛)
= Θ(𝑛) + 𝐶(9

10𝑛) ⇝ 𝐶(𝑛) = Θ(𝑛)
17

5.4 Fast Multiplication

Integer Multiplication
▶ What’s the cost of computing 𝑥 · 𝑦 for two integers 𝑥 and 𝑦?
⇝ depends on how big the numbers are!

▶ If 𝑥 and 𝑦 have 𝑂(𝑤) bits, multiplication takes 𝑂(1) time on word-RAM
▶ otherwise, need a dedicated algorithm!

Long multiplication (»Schulmethode«)

▶ Given 𝑥 =

𝑛−1∑
𝑖=0

𝑥𝑖2𝑖 and 𝑦 =

𝑛−1∑
𝑖=0

𝑦𝑖2𝑖 , want 𝑧 =

2𝑛−1∑
𝑖=0

𝑧𝑖2𝑖

1 for 𝑖 := 0, . . . , 𝑛 − 1
2 𝑐 := 0
3 for 𝑗 := 0, . . . , 𝑛 − 1
4 𝑧𝑖+𝑗 := 𝑧𝑖+𝑗 + 𝑐 + 𝑥𝑖 · 𝑦𝑗
5 𝑐 := ⌊𝑧𝑖+𝑗/2⌋
6 𝑧𝑖+𝑗 := 𝑧𝑖+𝑗 mod 2
7 end for
8 𝑧𝑖+𝑛 := 𝑐

9 end for

▶ Θ(𝑛2) bit operations
▶ could work with base 2𝑤

instead of 2
⇝ Θ

(
(𝑛/𝑤)2

)
time

▶ here: count bit operations
for simplicity
can be generalized

Example:
easier in binary!
(“shift and add”)

1001010101 * 101101

1001010101
0000000000
1001010101
1001010101
0000000000
1001010101

110100011110001

18

Divide & Conquer Multiplication
▶ assume 𝑛 is power of 2 (fill up with 0-bits otherwise)

▶ We can write
▶ 𝑥 = 𝑎12𝑛/2 + 𝑎2 and
▶ 𝑦 = 𝑏12𝑛/2 + 𝑏2
▶ for 𝑎1, 𝑎2, 𝑏1, 𝑏2 integers with 𝑛/2 bits

⇝ 𝑥 · 𝑦 = (𝑎12𝑛/2 + 𝑎2) · (𝑏12𝑛/2 + 𝑏2) = 𝒂1𝒃12𝑛 + (𝒂1𝒃2 + 𝒂2𝒃1)2𝑛/2 + 𝒂2𝒃2

▶ recursively compute 4 smaller products
▶ combine with shifts and additions (𝑂(𝑛) bit operations)

▶ . . . but is this any good?
▶ 𝑇(𝑛) = 4 · 𝑇(𝑛/2) + Θ(𝑛)
⇝ Master Theorem Case 1: 𝑇(𝑛) = Θ(𝑛2) . . . just like the primary school method!?

▶ but Master Theorem gives us a hint: cost is dominated by the leaves
⇝ try to do more work in conquer step!

19

Karatsuba Multiplication
▶ how can we do “less divide and more conquer”?

Recall: 𝑥 · 𝑦 = 𝒂1𝒃12𝑛 + (𝒂1𝒃2 + 𝒂2𝒃1)2𝑛/2 + 𝒂2𝒃2

Let’s do some algebra.
𝑐 ≔ (𝑎1 + 𝑎2) · (𝑏1 + 𝑏2)

= 𝑎1𝑏1 + (𝑎1𝑏2 + 𝑎2𝑏1) + 𝑎2𝑏2

⇝ (𝒂1𝒃2 + 𝒂2𝒃1) = 𝑐 − 𝑎1𝑏1 − 𝑎2𝑏2
this can be computed with 3 recursive multiplications
𝑎1 + 𝑎2 and 𝑏1 + 𝑏2 still have roughly 𝑛/2 bits

1 procedure karatsuba(𝑥, 𝑦):
2 // Assume 𝑥 and 𝑦 are 𝑛 = 2𝑘 bit integers
3 𝑎1 := ⌊𝑥/2𝑛/2⌋; 𝑎2 := 𝑥 mod 2𝑛/2 // implemented by shifts
4 𝑏1 := ⌊𝑦/2𝑛/2⌋; 𝑏2 := 𝑦 mod 2𝑛/2

5 𝑐1 := karatsuba(𝑎1, 𝑏1)
6 𝑐2 := karatsuba(𝑎2, 𝑏2)
7 𝑐 := karatsuba(𝑎1 + 𝑎2, 𝑏1 + 𝑏2) − 𝑐1 − 𝑐2
8 return 𝑐12𝑛 + 𝑐2𝑛/2 + 𝑐2 // shifts and additions

Analysis:
▶ nonrecursive cost: only

additions and shifts

▶ all numbers 𝑂(𝑛) bits

⇝ conquer cost 𝑓 (𝑛) = Θ(𝑛)

Recurrence:

▶ 𝑇(𝑛) = 3𝑇(𝑛/2) + Θ(𝑛)

▶ Master Theorem Case 1

⇝ 𝑇(𝑛) = Θ(𝑛lg 3) = 𝑂(𝑛1.585)

much cheaper (for large 𝑛)!

20

Integer Multiplication
▶ until 1960, integer multiplication was conjectured to take Ω(𝑛2) bit operations

⇝ Karatsuba’s algorithm was a big breakthrough
▶ which he discovered as a student!

▶ idea can be generalized to breaking numbers into 𝑘 ≥ 2 parts (Toom-Cook algorithm)

▶ asymptotically much better algorithms are now known!
▶ e. g., the Schönhage-Strassen algorithm with 𝑂(𝑛 log 𝑛 log log 𝑛) bit operations (!)
▶ these are based on the Fast Fourier Transform (FFT) algorithm

▶ numbers = polynomials evaluated at base (e. g., 𝑧 = 2)
⇝ multiplication of numbers = convolution of polynomials
▶ FFT makes computation of this convolution cheap by computing the polynomial via interpolation
▶ Schönhage-Strassen adds careful finite-field algebra to make computations efficient

21

Matrix Multiplication
▶ The same trick can also be used for faster matrix multiplication

▶ Recall: For 𝐴, 𝐵 ∈ ℝ𝑛×𝑛 we define 𝐶 = 𝐴 · 𝐵 via 𝑐𝑖 , 𝑗 =

𝑛∑
𝑘=1

𝑎

entry of 𝐴 in row 𝑖 and column 𝑘

𝑖,𝑘 𝑏𝑘,𝑗

⇝ Naive cost: 𝑛2 sums with 𝑛 terms each ⇝ Θ(𝑛3) arithmetic operations

▶ Can use D&C as follows (assuming 𝑛 is a power of 2 again)

▶ Decompose
(cut in half hor. & vert.)

𝐴 =

(
𝐴1,1 𝐴1,2
𝐴2,1 𝐴2,2

)
, 𝐵 =

(
𝐵1,1 𝐵1,2
𝐵2,1 𝐵2,2

)
, 𝐶 =

(
𝐶1,1 𝐶1,2
𝐶2,1 𝐶2,2

)
⇝ We get 𝐶 as 𝐶1,1 = 𝐴1,1 · 𝐵1,1 + 𝐴1,2 · 𝐵2,1

𝐶1,2 = 𝐴1,1 · 𝐵1,2 + 𝐴1,2 · 𝐵2,2 (note “·” and “+” operate on matrices here)
𝐶2,1 = 𝐴2,1 · 𝐵1,1 + 𝐴2,2 · 𝐵2,1
𝐶2,2 = 𝐴2,1 · 𝐵1,2 + 𝐴2,2 · 𝐵2,2

▶ 8 recursive matrix multiplications on two 𝑛
2 × 𝑛

2 matrices + Θ(𝑛2) summations

4 matrix sums with (𝑛2)2 entries each

▶ # operations 𝑇(𝑛) = 8𝑇(𝑛/2) + Θ(𝑛2)
⇝ Master Theorem Case 1: 𝑇(𝑛) = Θ(𝑛3) (but: still useful for better memory locality!)

22

Strassen Algorithm for Matrix Multiplication
▶ Observation (again): Can do more conquer for less divide!

▶ We recursively compute the following 7 products:
𝑀1 ≔ (𝐴1,2 − 𝐴2,2) · (𝐵2,1 + 𝐵2,2)
𝑀2 ≔ (𝐴1,1 + 𝐴2,2) · (𝐵1,1 + 𝐵2,2)
𝑀3 ≔ (𝐴1,1 − 𝐴2,1) · (𝐵1,1 + 𝐵1,2)
𝑀4 ≔ (𝐴1,1 + 𝐴1,2) · 𝐵2,2

𝑀5 ≔ 𝐴1,1 · (𝐵1,2 − 𝐵2,2)
𝑀6 ≔ 𝐴2,2 · (𝐵2,1 − 𝐵1,1)
𝑀7 ≔ (𝐴2,1 + 𝐴2,2) · 𝐵1,1

⇝ We then obtain the 4 parts of 𝐶 as
𝐶1,1 = 𝑀1 + 𝑀2 − 𝑀4 + 𝑀6

𝐶1,2 = 𝑀4 + 𝑀5

𝐶2,1 = 𝑀6 + 𝑀7

𝐶2,2 = 𝑀2 − 𝑀3 + 𝑀5 − 𝑀7

(Proof: left as exercise)

Analysis:

▶ conquer step: larger but still
𝑂(1) # matrix add/subtract

⇝ Θ(𝑛2) operations for conquer

⇝ total # arithmetic operations
𝑇(𝑛) = 7𝑇(𝑛/2) + Θ(𝑛2)

⇝ Master Theorem Case 1:
𝑇(𝑛) = Θ(𝑛lg 7) = 𝑂(𝑛2.808)

23

Open Problems
Multiplication is extremely fundamental, but its computational complexity is an open problem
and subject of active research!

Integer multiplication:
▶ conjectured to require Ω(𝑛 log 𝑛) bit operations (no proof known!)
▶ Harvey & van der Hoeven 2021: 𝑂(𝑛 log 𝑛) algorithm possible!

Matrix multiplication (MM):
▶ more relevant than it might seem since complexity identical to

▶ computing inverse matrices, determinants
▶ Gaussian elimination (⇝ solving systems of linear equations)
▶ recognition of context free languages

⇝ best exponent even has standard notation:
smallest 𝜔 ∈ [2, 3) so that MM takes 𝑂(𝑛𝜔) operations

▶ Big open question: Is 𝜔 > 2?
▶ best known bound: 𝜔 ≤ 2.371339 (from 2024!)

24

5.5 Majority

Majority
▶ Given: Array 𝐴[0..𝑛) of objects
▶ Goal: Check of there is an object 𝑥 that occurs at > 𝑛

2 positions in 𝐴

if so, return 𝑥

▶ Naive solution: check each 𝐴[𝑖] whether it is a majority ⇝ Θ(𝑛2) time

25

Majority – Divide & Conquer
Can be solved faster using a simple Divide & Conquer approach:

▶ If 𝐴 has a majority, that element must also be
a majority of at least one half of 𝐴.

⇝ Can find majority (if it exists) of left half and
right half recursively

⇝ Check these ≤ 2 candidates.

▶ Costs similar to mergesort Θ(𝑛 log 𝑛)

1 procedure majority(𝐴[0..𝑛))
2 if 𝑛 == 1 then return 𝐴[0] end if
3 𝑘 := ⌊ 𝑛

2 ⌋
4 𝑀ℓ := majority(𝐴[0..𝑘))
5 𝑀𝑟 := majority(𝐴[𝑘..𝑛))
6 if 𝑀ℓ == 𝑀𝑟 then return 𝑀ℓ end if
7 𝑚ℓ := 0; 𝑚𝑟 := 0
8 for 𝑖 := 0, . . . , 𝑛 − 1
9 if 𝐴[𝑖] == 𝑀ℓ then 𝑚ℓ = 𝑚ℓ + 1 end if

10 if 𝐴[𝑖] == 𝑀𝑟 then 𝑚𝑟 = 𝑚𝑟 + 1 end if
11 end for
12 if 𝑚ℓ ≥ 𝑘 + 1
13 return 𝑀ℓ

14 else if 𝑚𝑟 ≥ 𝑘 + 1
15 return 𝑀𝑟

16 else
17 return NO_MAJORITY_ELEMENT

26

Majority – Linear Time
We can actually do much better!

1 def MJRTY(𝐴[0..𝑛))
2 𝑐 := 0
3 for 𝑖 := 1, . . . , 𝑛 − 1
4 if 𝑐 == 0
5 𝑥 := 𝐴[𝑖]; 𝑐 := 1
6 else
7 if 𝐴[𝑖] == 𝑥 then 𝑐 := 𝑐 + 1 else 𝑐 := 𝑐 − 1
8 return 𝑥

▶ MJRTY(𝐴[0..𝑛)) returns candidate majority element

▶ either that candidate is the majority element or none exists(!)

Clearly Θ(𝑛) time

27

5.6 Closest Pair of Points in the Plane

Closest Pair of Points in the Plane
▶ Given: Array 𝑃[0..𝑛) of points in the plane (ℝ2)

each has 𝑥 and 𝑦 coordinates: 𝑃[𝑖].𝑥 and 𝑃[𝑖].𝑦
▶ Goal: Find pair 𝑃[𝑖], 𝑃[𝑗] that is closest in (Euclidean) distance

i. e., 𝑖 and 𝑗 that minimize
√(

𝑃[𝑖].𝑥 − 𝑃[𝑗].𝑥
)2 +

(
𝑃[𝑖].𝑦 − 𝑃[𝑗].𝑦

)2

▶ Naive solution: compute distance of each pair ⇝ Θ(𝑛2) time
▶ cost here = # arithmetic operations
▶ ignore numerical accuracy

⇝ formally work on the real RAM
▶ like word-RAM, but words contain exact real numbers
▶ support arithmetic operations and comparisons,

but not bitwise operations or ⌊·⌋ and ⌈·⌉

28

Closest Pair – Divide & Conquer

29

Closest Pair – Refined Conquer

30

Closest Pair – Code

1 procedure closestDist(𝑃[0..𝑁), byX[0..𝑛), byY[0..𝑛))
2 // 𝑃 contains all 𝑁 ≥ 𝑛 points
3 // 𝑃[byX[0]].𝑥 ≤ 𝑃[byX[1]].𝑥 ≤ · · · ≤ 𝑃[byX[𝑛]].𝑥
4 // 𝑃[byY[0]].𝑦 ≤ 𝑃[byY[1]].𝑦 ≤ · · · ≤ 𝑃[byY[𝑛]].𝑦
5 if 𝑛 == 2 return 𝑑2(𝑃[byX[0]], 𝑃[byX[1]])
6 if 𝑛 == 3 return min

{
𝑑2(𝑃[byX[0]], 𝑃[byX[1]]),

7 𝑑2(𝑃[byX[1]], 𝑃[byX[2]]),
8 𝑑2(𝑃[byX[0]], 𝑃[byX[2]])

}
9 // 1. Split by median 𝑥 and recurse

10 𝑘 := ⌊𝑛/2⌋;
11 𝑚 := 𝑃[byX[𝑘]]
12 byX𝐿 := byX[0..𝑘); byX𝑅 := byX[𝑘..𝑛)
13 byY𝐿 , byY𝑅 := new empty array list
14 for 𝑖 := 0, . . . , 𝑛 − 1
15 if 𝑃[byY[𝑖]] ≤ 𝑚 // breaking ties as in byX
16 byY𝐿 .append(byY[𝑖])
17 else
18 byY𝑅 .append(byY[𝑖])
19 end if
20 end for
21 // ...

22 // ... closestDist continued
23 𝛿𝐿 := closestDist(𝑃, byX𝐿, byY𝐿)
24 𝛿𝑅 := closestDist(𝑃, byX𝑅 , byY𝑅)
25 𝛿 := min{𝛿𝐿 , 𝛿𝑅}
26 // 2. Check straddling pairs
27 // Find points close to dividing line
28 for 𝑖 := 0, . . . , 𝑛 − 1
29 if |𝑃[byY[𝑖]].𝑥 − 𝑚.𝑥| ≤ 𝛿
30 𝐶.append(byY[𝑖])
31 end if
32 end for
33 // Distance ≤ 𝛿 implies within 8 positions in 𝐶

34 for 𝑖 := 0, . . . , 𝐶.size()
35 for 𝑗 := 𝑖 + 1, . . . , 𝑖 + 7
36 𝛿 := min

{
𝛿, 𝑑2

(
𝑃[𝐶[𝑖]], 𝑃[𝐶[𝑗]]

)}
37 end for
38 end for
39 return 𝛿
40

41 procedure 𝑑2(𝑃, 𝑄)
42 return

√
(𝑃.𝑥 −𝑄.𝑥)2 + (𝑃.𝑦 −𝑄.𝑦)2

31

	Divide & Conquer
	 Learning Outcomes
	 Divide and conquer
	Divide & Conquer Recurrences
	 Back-of-the-envelope analysis
	 The Master Method
	 Master Theorem – Intuition & Proof Idea
	 When it's fine to ignore floors and ceilings
	 A Rigorous and Stronger Meta Theorem

	Order Statistics
	 Selection by Rank
	 Quickselect
	 Quickselect – Iterative Code
	 Quickselect – Analysis
	 Quickselect – Average Case Analysis
	 Quickselect Discussion

	Linear-Time Selection
	 Interlude – A recurring conversation
	 Quickselect Disagreements
	 Better Pivots
	 The Median-of-Medians Algorithm

	Fast Multiplication
	 Integer Multiplication
	 Divide & Conquer Multiplication
	 Karatsuba Multiplication
	 Integer Multiplication
	 Matrix Multiplication
	 Strassen Algorithm for Matrix Multiplication
	 Open Problems

	Majority
	 Majority
	 Majority – Divide & Conquer
	 Majority – Linear Time

	Closest Pair of Points in the Plane
	 Closest Pair of Points in the Plane
	 Closest Pair – Divide & Conquer
	 Closest Pair – Refined Conquer
	 Closest Pair – Code

