il

4 4

1B HEAH [[.
T2 ML N0 -
1ML E R0 E
“HO DML = 0-:
10 BRL T =L
2HNHMKER T
)L M-
JILImOWNM -
1ML E0O!
EAH AT UOL
T NETBE UL
2= 0B H<J6
lnvzmb <t
1AM OZH:
) HLHU M=
1O AHIE
LOZ2HOHEF
OMLBEHRDC
ldHL 2l HC
><C O [[[y [T

_| |

Divide & Conquer

11 November 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25)

Philipps-Univer:

sitat Marburg

version 2024-11-18 21:41H

Learning Outcomes

Unit 5: Divide & Conquer

SN A

Know the steps of the Divide & Conquer paradigm.

Be able to solve simple Divide & Conquer recurrences.

Be able to design and analyze new algorithms using the Divide & Conquer paradigm.
Know the performance characteristics of selection-by-rank algorithms.

Know the divide and conquer approaches for integer multiplication, matrix
multiplication, finding majority elements, and the closest-pair-of-points problem.

Outline

5 Divide & Conquer

5.1 Divide & Conquer Recurrences
5.2 Order Statistics

5.3 Linear-Time Selection

5.4 Fast Multiplication

5.5 Majority

5.6 Closest Pair of Points in the Plane

Divide and conquer

Divide and conquer idiom (Latin: divide et impera)

to make a group of people disagree and fight with one another

so that they will not join together against one (Merriam-Webster Dictionary)

~+ in politics & algorithms, many independent, small problems are better than one big one!

Divide-and-conquer algorithms:
1. Break problem into smaller, independent subproblems. (Divide!)
2. Recursively solve all subproblems. (Conquer!)
3. Assemble solution for original problem from solutions for subproblems.

Examples:

» Mergesort
» Quicksort
» Binary search

» (arguably) Tower of Hanoi

5.1 Divide & Conquer Recurrences

Back-of-the-envelope analysis

» before working out the details of a D&C idea,
it is often useful to get a quick indication of the resulting performance

> don’t want to waste time on something that’s not competitive in the end anyways!

» since D&C is naturally recursive, running time often not obvious
instead: given by a recursive equation

» unfortunately, rigorous analysis often tricky

»> Remember mergesort?

C(n)

0 n <
C(ln/2])+C([n/2])+2n n=>2

2n|lg(n)| +2n —4- olig(m] |,
O(nlogn) =

~ C(n)

» the following method works for many typical cases to give the right order of growth

The Master Method

> Assume a stereotypical D&C algorithm
» 4 recursive calls on (for some constant a > 1)
» subproblems of size 1 /b (for some constant b > 1)

» with non-recursive “conquer” effort f (1) (for some function f : R — R)

» base case effort d (some constant d > 0)
n
a-T(—) + f(n) n>1
~» running time T(n) satisfies | T(n) = b
d n<1

Theorem 5.1 (Master Theorem)
With ¢ := log, (2), we have for the above recurrence:

(@ T(n)=0(n if f(n) = O(n°"¢) for constant ¢ > 0.
(b) T(n) =0O(nlogn) if f(n) = O(n°).
(0 T(n)=0(f(n)) if f(n) = Q(n°**) for constant ¢ > 0 and f satisfies the

regularity condition Jng,a <1Vn>mng : a f(%) < af(n).

Master Theorem — Intuition & Proof Idea

A f(m) f)
/4>\
f(n/b) f(n/b) f(n/b) ————> af(n/b)

a
[log,n] + 1

Sn/b?) f(n/b?)-f(n/b?) f(n/b?) f(n/b?)f(n/b%) f(n/b?) f(n/b?)f(n/b*) —> a®f(n/b?)

[a5 [| a) || a) /| a) || a) || a) [| a) || a) [a5
Pl oeee\ 00 see e Pl osee 00 ses 51 oeesn R [IEETR

Y @(Il) ®£1) ®£1) @('1) (")(Il) (")(Il) ®(Il) ®£1) (")(Il) (")(Il) (")(‘1) @(Il) ®(Il)—> O(n'e)

a Llogp n]+1
Llogj,]

Total: ®(n'% %) + Z a’ f(n/b’)
Figure 4.3 of Cormen et al. Introduction to Algorithms 4th ed. =0

When it’s fine to ignore floors and ceilings

The polynomial-growth condition
> f:R.o — R satisfies the polynomial-growth condition if

IngVC>13D>1 VYn>ngV¥ce[l,C] : Lf(n) < f(cn) < Df(n)

» intuitively: increasing n by up to a factor C (and anywhere in between!)
changes the function value by at most a factor D = D(C)

(for sufficiently large 1) zero allowed

> examples: f(n) = O(n" logﬁ(n) loglog” (n)) for constants «, f,
~ f satisfies the polynomial-growth condition

Lemma 5.2 (Polynomial-growth master method)

If the toll function f(n) satisfies the polynomial-growth condition,
then the O-class of the solution of a D&C recurrence remains the same
when ignoring floors and ceilings on subproblem sizes.

A Rigorous and Stronger Meta Theorem

Theorem 5.3 (Roura’s Discrete Master Theorem)
Let T'(n) be recursively defined as

by, 0<n <ny,
T(n) = D ;
f(n)+dz_;ud~T(a+rn/d) n > nop,

where D €N, a5 >0,b; > 1,ford =1,...,D are constants, functions r,, 4 satisfy |7, 4| = O(1) as
n — oo, and function f(n) satisfies f(n) ~ B - n®(Inn)” for constants B > 0, «,).
SetH=1- ZdDzl ay (1/b7)%; then we have:

(@) If H <0, then T(n) = O(n%), for & the unique value of « that would make H = 0.

() If H=0and y > -1, then T(n) ~ f(n)In(1)/H with constant H = (y + 1) ZdDzl agb;% In(bg).
() If H=0and y = -1, then T(n) ~ f(n)ln(n)ln(ln(n))/I:I with constant H = 25:1 ag b;"‘ In(by).
(d) If H =0and y < -1, then T(n) = O(n®).

(e) IfH >0, thenT(n) ~ f(n)/H.

5.2 Order Statistics

Selection by Rank

» Standard data summary of numerical data: (Data scientists, listen up!)

» mean, standard deviation
»> min/max (range) easy to compute in ©(n) time
» histograms

257 ?
» median, quartiles, other quantiles ? & 2 computable in @ (1) time?
(a.k.a. order statistics)

General form of problem: Selection by Rank

. but 0-based &
» Given: array A[0..nn) of numbers and number k € [0..n). counting dups

» Goal: find element that would be in position k if A was sorted (kth smallest element).

» k=|n/2] ~ median; k=|n/4] ~ lower quartile
k=0 ~» minimum; k=n-{ ~» (thlargest

Quickselect

> Key observation: Finding the element of rank k seems hard.
But computing the rank of a given element is easy!

count smaller elements

~+ Pick any element A[b] and find its rank ;.
» j=k? ~» Lucky Duck! Return chosen element and stop
» j<k? ~» ...notdone yet. But: The j + 1 elements smaller than < A[b] can be excluded!

> j>k? ~» similarly exclude the n — j elements > A[b]

> partition function from Quicksort: | procedure quickselect(A[l..r), k)
> returns the rank of pivot 2 if r — [< 1 then return A[/]
b := choosePivot(A[l..r))

> separates elements into smaller/larger \ i 1= partition(A[L..), b)

~» can use same building blocks 5 if j ==
6 return A[j]
7 elseif j < k
8 quickselect(A[j + 1..r), k)

9 else//j >k
10 quickselect(A[l..f), k)

Quickselect — Iterative Code

Recursion can be replaced by loop (tail-recursion eliminatiorn)

procedure quickselect(A[l..r), k) 1 procedure quickselectIterative(A[0..n), k)

if r — 1 < 1 then return A[/] 2 1:=0;, ri=mn

b := choosePivot(A[l..r)) 3 whiler —[> 1

j = partition(A[l..r), b) 4 b := choosePivot(A[l..r))

ifj==k 5 j := partition(A[l..r), b)
return Al[j] 6 ifj > kthenr :=j-1

elseif j < k 7 ifj<kthen/ :=j+1
quickselect(A[j + 1..r), k) 8 return A[k]|

else//j >k

quickselect(A[!..f), k)

» implementations should usually prefer iterative version

» analysis more intuitive with recursive version

10

Quickselect — Analysis

1
2
3
4
5
6
7
8
9

10

procedure quickselect(A[!..r), k)

if r — [< 1 then return A[/] > cost = #cmps
b := choosePivot(A[l..r))
j := partition(A[l..r), b) > costs depend on n and k
ifj==k
return A] > worst case: k =0, butalwaysj=n—2
elseif j < k .
Slickecleet Al IR ~ each recursive call makes 7 one smaller at cost © (1)
else//j >k ~ T(n, k) = ©(n?) worst case cost

quickselect(A[l..f), k)

average case:

» let T(n, k) expected cost when we choose a pivot uniformly from A[0..n)

~+ formulate recurrence for T (1, k) similar to BST/Quicksort recurrence
n-1

T(n,k) = n + ;;[r:k]-o +lk<r]-T(r,k) + [k>r] - Tln-r—1,k—r—1)

11

Quickselect — Average Case Analysis

=

2[r2k]-0 + [k<r]-T(r,k) + [k>r] - Tn—-r—-1,k—r—-1)
r=0

» T(n,k) = n +

Q|-

> SetT(n) = maxe[o..n) T (1, k)

A

n—1
~ T(n) < n+ %;max{"f(r),f(n—r—l)}

» analyze hypothetical, worse algorithm:
if ¢ [1n, 2n), discard pivot and repeat with new one!

~ T(n) < T(n) defined by T(n) < n + 3T(n) + $T(3n)
~ T(n) < 2n + T(3n)

» Master Theorem Case 3: T(n) = ©(n)

12

Quickselect Discussion
EG) O(n?) worst case (like Quicksort)
[ﬁ expected cost ©(n) (best possible)

[ﬁ no extra space needed

[ﬁ adaptations possible to find several order statistics at once

[ﬁ expected cost can be further improved by choosing pivot from a small sorted sample

~~ asymptotically optimal randomized cost: # + min{k, n — k} comparisons in expectation
achieved asymptotically by the Floyd-Rivest algorithm

13

5.3 Linear-Time Selection

Interlude — A recurring conversation

Cast of Characters:

Hi! I'm a computer science practitioner.

I'love algorithms for the sometimes miraculous applications they enable.
I care for things I can implement and that actually work in practice.

Hi! I'm a theoretical computer science researcher.
I find beauty in elegant and definitive answers to questions about complexity.
I care for eternal truths and mathematically proven facts;

m asymptotically optimal is what counts! (Constant factors are secondary:.)

14

Quickselect Disagreements

e.g. used in C++ STL std: :nth_element

Yeah ... maybe. But can we select by rank in O(n) deterministic worst case time?

58

15

Better Pivots

It turns out, we can!
> All we need is better pivots!

> If pivot was the exact median,
we would at least halve #elements in each step

» Then the total cost of all partitioning steps is < 2n = ©(n).

But: finding medians is (basically) our original problem!

Aeont totally suffices to find an element of rank an for @ € (¢,1 — ¢)
/Q\ to get overall costs O(n)!

16

The Median-of-Medians Algorithm

1
2
3
4
5
6
7
8
9

procedure choosePivotMoM(A[!..r))
m := |n/5]
fori :=0,..., m—1
sort(A[5i..5i + 4])
// collect median of 5
Swap A[i] and A[5i + 2]

return quickselectMoM(A[0..m), | % 1))

procedure quickselectMoM(A[l..r), k)
if r — [< 1 then return A[!]
b := choosePivotMoM(A[!..r))
j = partition(A[l..r), b)
ifj==
return A[j]
elseif j < k
quickselectMoM(A[j + 1..7), k)
else//j >k
quickselectMoM(A[!..j), k)

Analysis:

> Note: 2 mutually recursive procedures

~ effectively 2 recursive calls!

1. recursive call inside choosePivotMoM

onm < % elements

2. recursive call inside quickselectMoM

O
O
Q
O

ole
0 O
O O
O O
O O

O
©
O
O

©)

Q
O

OO0 00

OO0 00

~~ partition excludes ~ 3 - % ~
~ C(n) < ©(n) +C(3n) + C(gn
< O(n)+ C(%n 4 %n)
= ©(n)+C(gn) ~ C(n)=0(n

ansatz: overall 7

cost linear

o O
O O
O O
O
O
=0
1—30nelem.

17

5.4 Fast Multiplication

Integer Multiplication

» What's the cost of computing x - i for two integers x and y?
~ depends on how big the numbers are!

» If x and y have O(w) bits, multiplication takes O(1) time on word-RAM

» otherwise, need a dedicated algorithm!

Long multiplication (»Schulmethode«)

n-1 n-1 2n-1
» Given x = Z xi2' and y = Z yi2', want z = Z w5
i=0 i=0 i=0

fori :=0,...,n—1 . .
or! " > O(n?) bit operations

1

2 c:=0

3 forj:=0,...,n-1 » could work with base 2%

4 Zigj = Zij O+ Xp Y instead of 2

> ¢ = |zivj/2] ~ @((n/w)z) time

6 Zi+]’ o= Z,'+j mod 2

7 end for » here: count bit operations
8 Hpp = G for simplicity

9 end for can be generalized

Example:
easier in binary!
(“shift and add”)

1001010101 * 101101
1001010101
0000000000
1001010101
1001010101
0000000000
1001010101

110100011110001

18

Divide & Conquer Multiplication

> assume n is power of 2 (fill up with 0-bits otherwise)

» We can write
> x =422+ 45 and
> y=012"2+b,

» for ay, ap, by, by integers with 1/2 bits

M XY = (a12”/2 + 112) . (b12”/2 + bz) = a1b12” + (albz + u2b1)2”/2 + azbz
» recursively compute 4 smaller products

» combine with shifts and additions (O(n) bit operations)

» ...butis this any good?
» T(n) = 4-T(n/2) + O(n)
~ Master Theorem Case 1: T(n) = O(n?) .. . just like the primary school method!?

» but Master Theorem gives us a hint: cost is dominated by the leaves
~ try to do more work in conquer step!

19

Karatsuba Multiplication

>

L2
;Q\

how can we do “less divide and more conquer”?

Recall: x-y = a1b12" + (a1b2 + azbl)Z”/z + ayby

Let’s do some algebra.

c = (a1 +a)- (b1 +b)
= lllbl + ({11172 + {lzbl) + azbz
(aibz + azb1) = c—aiby —azxby

this can be computed with 3 recursive multiplications
a1 + ap and by + by still have roughly 7 /2 bits

1 procedure karatsuba(x, y):

2 /] Assume x and y are n = 2k bit integers

3 a1 := [x/2"2]; ay := x mod 2"/? // implemented by shifts
4 by = |_y/2”/2J; by := y mod 2n/2

5 ¢1 := karatsuba(ai, b)

6 ¢p := karatsuba(ay, by)

7 ¢ := karatsuba(aj + ap, by + bp) —c1 — 2

8 return ¢12" + c2""/2 + ¢, // shifts and additions

Analysis:

> nonrecursive cost: only
additions and shifts

» all numbers O(n) bits

~~ conquer cost f(n) = ©(n)
Recurrence:

» T(n) = 3T(n/2) + O(n)

» Master Theorem Case 1

s T(n) = ©(n'83) = O(n1-585)

much cheaper (for large 1)!

20

Integer Multiplication

» until 1960, integer multiplication was conjectured to take (Q)(1?) bit operations

~+ Karatsuba’s algorithm was a big breakthrough

» which he discovered as a student!

> idea can be generalized to breaking numbers into k > 2 parts (Toom-Cook algorithm)

» asymptotically much better algorithms are now known!

> e.g., the Schonhage-Strassen algorithm with O(n log n loglog 1) bit operations (!)
» these are based on the Fast Fourier Transform (FFT) algorithm

» numbers = polynomials evaluated at base (e. g., z = 2)

~» multiplication of numbers = convolution of polynomials

» FFT makes computation of this convolution cheap by computing the polynomial via interpolation
» Schonhage-Strassen adds careful finite-field algebra to make computations efficient

21

Matrix Multiplication

» The same trick can also be used for faster matrix multiplication

entry of A in row i and column k
n

» Recall: For A, B € R™" we defineC = A-Bviac;; = Z ik by, j
k=1

~ Naive cost: 72 sums with 7 terms each ~» ©(n%) arithmetic operations

» Can use D&C as follows (assuming 7 is a power of 2 again)

» Decompose A= (;\1,1 ﬁl,z) B = (1131,1 gl,z) Cc- (21,1 gl,z)
(cut in half hor. & vert.) 2 272 2,1 2,2 2,1 2,2
~ We get C as C]/] = Al,l o B]J +A1[2 . BZ,]
Cip=A11"B1p2+A12-B2s (note”” and “+” operate on matrices here)
Con1=A21-B11+A22-Bay
Cop=A21-Bip+A25 B

4 matrix sums with (%)2 entries each

%
> 8 recursive matrix multiplications on two % X 4 matrices + ©(n?) summations
> #operations T(n) = 8T (1/2) + ©(n?)

~~ Master Theorem Case 1: T(?’l) = @(7’[3) = (but: still useful for better memory locality!)

22

Strassen Algorithm for Matrix Multiplication

> Observation (again): Can do more conquer for less divide!

» We recursively compute the following 7 products:

M
My
M;
My
Ms

Mg =
M7 g

(A12 — A22)* (Ba,1 + B2p)

(A1 + Az2) - (By11 + Bp) Analysis:

(A11 = A1)+ (B1a + B1p) > conquer step: larger but still

(A11+ A1) Bop O(1) #matrix add/subtract

A1+ (Bio —Bap)

Az (B21—B1)

(A21+A22)Big ~> total #arithmetic operations
T(n) = 7T(n/2) + ©(n?)

~~ ©(n?) operations for conquer

~~ We then obtain the 4 parts of C as

Ci1
Cip
Ca
Copo

My + Ms = My + Me ~» Master Thelorem Case 1:
My + Ms T(n) = O(n'87) = O(n28%)
Mg + My

My — M3 + Ms — My

(Proof: left as exercise %)

23

Open Problems

Multiplication is extremely fundamental, but its computational complexity is an open problem
and subject of active research!

Integer multiplication:

> conjectured to require (Q(n log 1) bit operations (no proof known!)
» Harvey & van der Hoeven 2021: O(n log 1) algorithm possible!

Matrix multiplication (MM):

> more relevant than it might seem since complexity identical to [P hree]
> computing inverse matrices, determinants TP e
» Gaussian elimination (~+ solving systems of linear equations) e 270 o ool
> recognition of context free languages i st

~~ best exponent even has standard notation: o p*

smallest w € [2,3) so that MM takes O(n“’) operations o
> Big open question: Ts @ > 2? o el e
» best known bound: @ < 2.371339 (from 2024!)] L N [T

15, Xu, Xu, and Zhou
2024 | 2371339 Alman, Duan, Wiliams, Xu, Xu, and Zhou**

J

24

5.5 Majority

Majority

» Given: Array A[0..n) of objects

» Goal: Check of there is an object x that occurs at > 5 positions in A
if so, return x

» Naive solution: check each A[i] whether it is a majority ~~ ©(n?) time

25

Majority — Divide & Conquer

Can be solved faster using a simple Divide & Conquer approach:

procedure majority(A[0..17))
if n == 1 then return A[0] end if
k=14
My := majority(A[0..k))

» If A has a majority, that element must alsobe
2
3
4
5 M, := majority(A[k..n))
6
7
8
9

a majority of at least one half of A.

~ Can find majority (if it exists) of left half and

right half recursivel
gt all recursively if My == M, then return M/, end if

mp :=0; m, =0
fori:=0,...,n-1
if Ali] == My then my = my + 1 end if

~» Check these < 2 candidates.

» Costs similar to mergesort ©(n log 1) 10 if Ai] == M, then m, = m, + 1 end if
1 end for
12 ifmy > k+1
13 return M,
14 elseif m, > k+1
15 return M,
16 else

17 return NO MAJORITY ELEMENT

Majority — Linear Time

We can actually do much better!

1 def MJRTY(A[0..1n))

2 c:=0

3 fori:=1,...,n-1

4 it @ ==

5 x = Ali]; c:=1 ’ ’
6 else

7 if Al[i] ==xthenc :=c+1lelsec :=c—-1

8 return x

NN
» MJRTY(A[O..n)) returns candidate majority element

» either that candidate is the majority element or none exists(!)

[ﬁ Clearly ©(n) time

27

5.6 Closest Pair of Points in the Plane

Closest Pair of Points in the Plane
» Given: Array P[0..n) of points in the plane (R?)
each has x and y coordinates: P[i].x and P[i].y
» Goal: Find pair P[7], P[j] that is closest in (Euclidean) distance
i.e., i and j that minimize \/(P[i].x — P[jl.x)* + (P[i].y - P[jl.y)°

> Naive solution: compute distance of each pair ~ ©(n?) time

» cost here = #arithmetic operations

» ignore numerical accuracy

~ formally work on the real RAM

» like word-RAM, but words contain exact real numbers
» support arithmetic operations and comparisons,
but not bitwise operations or | -] and [-]

28

Closest Pair — Divide & Conquer

29

Closest Pair — Refined Conquer

30

Closest Pair — Code

1
2
3
4
5
6
7
8
9

procedure closestDist(P[0..N), byX[0..n), byY[0..n))

// P contains all N > n points
// P[byX[0]].x < P[byX[1]].x < --- < P[byX[n]].x
// PlbyY[0]].y < PlbyY[1]l.y < --- < PlbyY[n]].y
if n == 2 return do(P[byX[0]], P[byX[1]])
if n == 3 return min{d, (P[byX[0]], P[byX[1]]),
dy(PlbyX[1]], PlbyX[2])),
dy(PlbyX[01], PlbyxI2])}
// 1. Split by median x and recurse
k:=|n/2];
m = PlbyX[k]]
byX; = byX[0..k); byXy := byX[k..n)
byY;,byY = new empty array list
fori :=0,...,n—1
if P[byY[i]] < m // breaking ties as in byX
by .append(byY[i])
else
byY g .append(byY[i])
end if
end for

/=

41

// ... closestDist continued
0, := closestDist(P, byX;, byY)
OR := closestDist(P, byXpy, byYy)
6 := min{odr, Or}
// 2. Check straddling pairs
// Find points close to dividing line
fori :=0,...,n-1
if |P[byY[i]]l.x —m.x| <0
C.append(byY[i])
end if
end for
// Distance < 6 implies within 8 positions in C
fori :=0,...,C.size()
forj:=i+1,...,i+7
6 = min{0, d2(P[C[i]], P[C[j]])}
end for
end for
return 0

procedure d>(P, Q)

return /(P.x — Q.x)2 + (P.y — Q.y)?

31

	Divide & Conquer
	 Learning Outcomes
	 Divide and conquer
	Divide & Conquer Recurrences
	 Back-of-the-envelope analysis
	 The Master Method
	 Master Theorem – Intuition & Proof Idea
	 When it's fine to ignore floors and ceilings
	 A Rigorous and Stronger Meta Theorem

	Order Statistics
	 Selection by Rank
	 Quickselect
	 Quickselect – Iterative Code
	 Quickselect – Analysis
	 Quickselect – Average Case Analysis
	 Quickselect Discussion

	Linear-Time Selection
	 Interlude – A recurring conversation
	 Quickselect Disagreements
	 Better Pivots
	 The Median-of-Medians Algorithm

	Fast Multiplication
	 Integer Multiplication
	 Divide & Conquer Multiplication
	 Karatsuba Multiplication
	 Integer Multiplication
	 Matrix Multiplication
	 Strassen Algorithm for Matrix Multiplication
	 Open Problems

	Majority
	 Majority
	 Majority – Divide & Conquer
	 Majority – Linear Time

	Closest Pair of Points in the Plane
	 Closest Pair of Points in the Plane
	 Closest Pair – Divide & Conquer
	 Closest Pair – Refined Conquer
	 Closest Pair – Code

