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Learning Outcomes

Unit 7: Text Compression

1. Understand the necessity for encodings and know ASCII and UTF-8 character encodings.

2. Understand (qualitatively) the limits of compressibility.

3. Know and understand the algorithms (encoding and decoding) for Huffman codes, RLE,
Elias codes, LZW, MTF, and BWT, including their properties like running time complexity.

4. Select and adapt (slightly) a compression pipeline for a specific type of data.
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7.1 Context



Overview
▶ Unit 6&13: How to work with strings

▶ finding substrings
▶ finding approximate matches ⇝ Unit 13
▶ finding repeated parts ⇝ Unit 13
▶ . . .
▶ assumed character array (random access)!

▶ Unit 7&8: How to store/transmit strings
▶ computer memory: must be binary
▶ how to compress strings (save space)
▶ how to robustly transmit over noisy channels ⇝ Unit 8
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Terminology
▶ source text: string 𝑆 ∈ Σ★

𝑆
to be stored / transmitted

Σ𝑆 is some alphabet

▶ coded text: encoded data 𝐶 ∈ Σ★
𝐶
that is actually stored / transmitted

usually use Σ𝐶 = {0, 1}
▶ encoding: algorithm mapping source texts to coded texts

▶ decoding: algorithm mapping coded texts back to original source text

▶ Lossy vs. Lossless
▶ lossy compression can only decode approximately;

the exact source text 𝑆 is lost
▶ lossless compression always decodes 𝑆 exactly

▶ For media files, lossy, logical compression is useful (e. g. JPEG, MPEG)

▶ We will concentrate on lossless compression algorithms.
These techniques can be used for any application.
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What is a good encoding scheme?
▶ Depending on the application, goals can be

▶ efficiency of encoding/decoding
▶ resilience to errors/noise in transmission
▶ security (encryption)
▶ integrity (detect modifications made by third parties)
▶ size

▶ Focus in this unit: size of coded text
Encoding schemes that (try to) minimize the size of coded texts perform data
compression.

▶ We will measure the compression ratio:
|𝐶| · lg |Σ𝐶 |
|𝑆| · lg |Σ𝑆|

Σ𝐶={0,1}
=

|𝐶|
|𝑆| · lg |Σ𝑆|

< 1 means successful compression
= 1 means no compression
> 1 means “compression” made it bigger!? (yes, that happens . . . )
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Limits of algorithmic compression
Is this image compressible?

▶ Clearly a complex
visualization of Mandelbrot set

shape!
▶ Will not compress (too) well using, say, PNG.
▶ but:

▶ completely defined by mathematical formula

⇝ can be generated by a very small program!

⇝ Kolmogorov complexity
▶ 𝐶 = any program

self-extracting archives!

that outputs 𝑆

▶ Kolmogorov complexity = length of smallest such program
needs fixed machine model, but compilers transfer results

▶ Problem: finding smallest such program is uncomputable.

⇝ No optimal encoding algorithm is possible!
⇝ must be inventive to get efficient methods

5



What makes data compressible?
▶ Lossless compression methods mainly exploit

two types of redundancies in source texts:

1. uneven character frequencies
some characters occur more often than others → Part I

2. repetitive texts
different parts in the text are (almost) identical → Part II

There is no such thing as a free lunch!

Not everything is compressible (→ tutorials)
⇝ focus on versatile methods that often work
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Part I
Exploiting character frequencies



7.2 Character Encodings



Character encodings
▶ Simplest form of encoding: Encode each source character individually

⇝ encoding function 𝐸 : Σ𝑆 → Σ★
𝐶

▶ typically, |Σ𝑆| ≫ |Σ𝐶 |, so need several bits per character
▶ for 𝑐 ∈ Σ𝑆 , we call 𝐸(𝑐) the codeword of 𝑐

▶ fixed-length code: |𝐸(𝑐)| is the same for all 𝑐 ∈ Σ𝐶

▶ variable-length code: not all codewords of same length
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Fixed-length codes
▶ fixed-length codes are the simplest type of character encodings

▶ Example: ASCII (American Standard Code for Information Interchange, 1963)

0000000 NUL 0010000 DLE 0100000 0110000 0 1000000 @ 1010000 P 1100000 ‘ 1110000 p
0000001 SOH 0010001 DC1 0100001 ! 0110001 1 1000001 A 1010001 Q 1100001 a 1110001 q
0000010 STX 0010010 DC2 0100010 " 0110010 2 1000010 B 1010010 R 1100010 b 1110010 r
0000011 ETX 0010011 DC3 0100011 # 0110011 3 1000011 C 1010011 S 1100011 c 1110011 s
0000100 EOT 0010100 DC4 0100100 $ 0110100 4 1000100 D 1010100 T 1100100 d 1110100 t
0000101 ENQ 0010101 NAK 0100101 % 0110101 5 1000101 E 1010101 U 1100101 e 1110101 u
0000110 ACK 0010110 SYN 0100110 & 0110110 6 1000110 F 1010110 V 1100110 f 1110110 v
0000111 BEL 0010111 ETB 0100111 ’ 0110111 7 1000111 G 1010111 W 1100111 g 1110111 w
0001000 BS 0011000 CAN 0101000 ( 0111000 8 1001000 H 1011000 X 1101000 h 1111000 x
0001001 HT 0011001 EM 0101001 ) 0111001 9 1001001 I 1011001 Y 1101001 i 1111001 y
0001010 LF 0011010 SUB 0101010 * 0111010 : 1001010 J 1011010 Z 1101010 j 1111010 z
0001011 VT 0011011 ESC 0101011 + 0111011 ; 1001011 K 1011011 [ 1101011 k 1111011 {
0001100 FF 0011100 FS 0101100 , 0111100 < 1001100 L 1011100 \ 1101100 l 1111100 |
0001101 CR 0011101 GS 0101101 - 0111101 = 1001101 M 1011101 ] 1101101 m 1111101 }
0001110 SO 0011110 RS 0101110 . 0111110 > 1001110 N 1011110 ^ 1101110 n 1111110 ~
0001111 SI 0011111 US 0101111 / 0111111 ? 1001111 O 1011111 _ 1101111 o 1111111 DEL

▶ 7 bit per character

▶ just enough for English letters and a few symbols (plus control characters)

▶ Example: Hello ↦→ 10010001100101110110011011001101111
8



Fixed-length codes – Discussion
Encoding & Decoding as fast as it gets

Unless all characters equally likely, it wastes a lot of space

inflexible (how to support adding a new character?)
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Variable-length codes
▶ to gain more flexibility, have to allow different lengths for codewords

▶ actually an old idea: Morse Code

https://commons.wikimedia.org/wiki/File:
International_Morse_Code.svg

https://commons.wikimedia.org/wiki/File:Morse-code-tree.svg
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Variable-length codes – UTF-8
▶ Modern example: UTF-8

default encoding for text-files, XML, HTML since 2009

encoding of Unicode:

▶ Encodes any Unicode character (154 998 as of Nov 2024, and counting)

▶ uses 1 – 4 bytes (codeword lengths: 8, 16, 24, or 32 bits)

▶ Every ASCII character is encoded in 1 byte with leading bit 0, followed by the 7 bits for ASCII
▶ Non-ASCII characters start with 1 – 4 1s indicating the total number of bytes,

followed by a 0 and 3–5 bits.
The remaining bytes each start with 10 followed by 6 bits.

Char. number range UTF-8 octet sequence
(hexadecimal) (binary)

0000 0000 – 0000 007F 0xxxxxxx
0000 0080 – 0000 07FF 110xxxxx 10xxxxxx
0000 0800 – 0000 FFFF 1110xxxx 10xxxxxx 10xxxxxx
0001 0000 – 0010 FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

For English text, most characters use only 8 bit,
but we can include any Unicode character, as well.
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Pitfall in variable-length codes

▶ Suppose we have the following code:
𝑐 a n b s

𝐸(𝑐) 0 10 110 100

▶ Happily encode text 𝑆 = bananawith the coded text 𝐶 = 110
b
0
a
10
n
0
a
10
n
0
a

� 𝐶 = 1100100100 decodes both to banana and to bass: 110
b
0
a
100
s
100
s

⇝ not a valid code . . . (cannot tolerate ambiguity)

but how should we have known?

𝐸(n) = 10 is a (proper) prefix of 𝐸(s) = 100

⇝ Leaves decoder wondering whether to stop after reading 10 or continue!

⇝ Usually require a prefix-free code: No codeword is a prefix of another.

prefix-free =⇒ instantaneously decodable =⇒ uniquely decodable
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Code tries
▶ From now on only consider prefix-free codes 𝐸:

𝐸(𝑐) is not a proper prefix of 𝐸(𝑐′) for any 𝑐, 𝑐′ ∈ Σ𝑆.

▶ Example:
𝑐 A E N O T ␣

𝐸(𝑐) 01 101 001 100 11 000

Any prefix-free code corresponds to a (code) trie
see also Unit 13

:

▶ binary tree

▶ one leaf for each characters of Σ𝑆

▶ path from root to leave = codeword
left child = 0; right child = 1 ␣

0

N
1

0

A
1

0

O
0

E
1

0

T
1

1

▶ Example for using the code trie:
▶ Encode AN␣ANT→ 010010000100111

▶ Decode 111000001010111→ TO␣EAT
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The Codeword Supermarket

0

1

00

01

10

11

000

001

010

011

100

101

110

111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
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00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
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10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

to
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ym

bo
lc
od

ew
or
d
bu
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et

▶ Can “spend” at most budget of 1
across all codewords
▶ Codeword with ℓ bits costs 2−ℓ

▶ Kraft-McMillan inequality:
any uniquely decodable code
with codeword lengths ℓ1 , . . . , ℓ𝜎
satisfies
𝜎∑
𝑖=1

2−ℓ𝑖 ≤ 1 and for any such lengths
there is a prefix-free code

␣
0

N
1

0

A
1

0

O
0

E
1

0

T
1

1
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Who decodes the decoder?
▶ Depending on the application, we have to store/transmit the used code!

▶ We distinguish:
▶ fixed coding: code agreed upon in advance, not transmitted (e. g., Morse, UTF-8)

▶ static coding: code depends on message, but stays same for entire message;
it must be transmitted (e. g., Huffman codes → next)

▶ adaptive coding: code depends on message and changes during encoding;
implicitly stored withing the message (e. g., LZW → below)
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7.3 Huffman Codes



Character frequencies
▶ Goal: Find character encoding that produces short coded text

▶ Convention here: fix Σ𝐶 = {0, 1} (binary codes), abbreviate Σ = Σ𝑆,

▶ Observation: Some letters occur more often than others.

Typical English prose:

e 12.70% d 4.25% p 1.93%
t 9.06% l 4.03% b 1.49%
a 8.17% c 2.78% v 0.98%
o 7.51% u 2.76% k 0.77%
i 6.97% m 2.41% j 0.15%
n 6.75% w 2.36% x 0.15%
s 6.33% f 2.23% q 0.10%
h 6.09% g 2.02% z 0.07%
r 5.99% y 1.97%

⇝ Want shorter codes for more frequent characters!
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Huffman coding

▶ Given: Σ and weights

e. g. frequencies / probabilities

𝑤 : Σ → ℝ≥0

▶ Goal: prefix-free code 𝐸 (= code trie) for Σ that minimizes coded text length

i. e., a code trie minimizing
∑
𝑐∈Σ

𝑤(𝑐) · |𝐸(𝑐)|

▶ Let’s abbreviate |𝑆|𝑐 = #occurrences of 𝑐 in 𝑆

▶ If we use 𝑤(𝑐) = |𝑆|𝑐 ,
this is the character encoding with smallest possible |𝐶|

⇝ best possible character-wise encoding

▶ Quite ambitious! Is this efficiently possible?
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Huffman’s algorithm
▶ Actually, yes! A greedy/myopic approach succeeds here.

Huffman’s algorithm:

1. Find two characters a, bwith lowest weights.
▶ We will encode them with the same prefix, plus one distinguishing bit,

i. e., 𝐸(a) = 𝑢0 and 𝐸(b) = 𝑢1 for a bitstring 𝑢 ∈ {0, 1}★ (𝑢 to be determined)

2. (Conceptually) replace a and b by a single character “ ab”
with 𝑤( ab ) = 𝑤(a) + 𝑤(b).

3. Recursively apply Huffman’s algorithm on the smaller alphabet.
This in particular determines 𝑢 = 𝐸( ab ).

▶ efficient implementation using a (min-oriented) priority queue
▶ start by inserting all characters with their weight as key
▶ step 1 uses two deleteMin calls
▶ step 2 inserts a new character with the sum of old weights as key
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Huffman’s algorithm – Example
▶ Example text: 𝑆 = LOSSLESS ⇝ Σ𝑆 = {E, L, O, S}

▶ Character frequencies: E : 1, L : 2, O : 1, S : 4

8

E
0

O
1

0

L
1

0
S

1

⇝ Huffman tree (code trie for Huffman code)

LOSSLESS→ 01001110100011 compression ratio: 14
8·log 4 = 14

16 ≈ 88%
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Huffman tree – tie breaking
▶ The above procedure is ambiguous:

▶ which characters to choose when weights are equal?
▶ which subtree goes left, which goes right?

▶ For CS 566: always use the following rule:

1. To break ties when selecting the two characters,
first use the smallest letter according to the alphabetical order,
or the tree containing the smallest alphabetical letter.

2. When combining two trees of different values,
place the lower-valued tree on the left (corresponding to a 0-bit).

3. When combining trees of equal value,
place the one containing the smallest letter to the left.

⇝ practice in tutorials
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Encoding with Huffman code
▶ The overall encoding procedure is as follows:

▶ Pass 1: Count character frequencies in 𝑆

▶ Construct Huffman code 𝐸 (as above)
▶ Store the Huffman code in 𝐶 (details omitted)

▶ Pass 2: Encode each character in 𝑆 using 𝐸 and append result to 𝐶

▶ Decoding works as follows:
▶ Decode the Huffman code 𝐸 from 𝐶. (details omitted)

▶ Decode 𝑆 character by character from 𝐶 using the code trie.

▶ Note: Decoding is much simpler/faster!
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Huffman code – Optimality
Theorem 7.1 (Optimality of Huffman’s Algorithm)
Given Σ and 𝑤 : Σ → ℝ≥0, Huffman’s Algorithm computes codewords 𝐸 : Σ → {0, 1}★ with
minimal expected codeword length ℓ (𝐸) = ∑

𝑐∈Σ 𝑤(𝑐) · |𝐸(𝑐)| among all prefix-free codes
for Σ. ◀

Proof sketch: by induction over 𝜎 = |Σ|
▶ Given any optimal prefix-free code 𝐸∗ (as its code trie).

▶ code trie ⇝ ∃ two sibling leaves 𝑥, 𝑦 at largest depth 𝐷

▶ swap characters in leaves to have two lowest-weight characters a, b in 𝑥, 𝑦
(that can only make ℓ smaller, so still optimal)

▶ any optimal code for Σ′ = Σ \ {a, b} ∪ { ab} yields optimal code for Σ
by replacing leaf ab by internal node with children a and b.

⇝ recursive call yields optimal code for Σ′ by inductive hypothesis,
so Huffman’s algorithm finds optimal code for Σ.

◀
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7.4 Entropy



Entropy
Definition 7.2 (Entropy)
Given probabilities 𝑝1 , . . . , 𝑝𝑛 (for outcomes 1, . . . , 𝑛 of a random variable), the entropy of the
distribution is defined as

H(𝑝1 , . . . , 𝑝𝑛) = −
𝑛∑
𝑖=1

𝑝𝑖 lg 𝑝𝑖 =

𝑛∑
𝑖=1

𝑝𝑖 lg
(

1
𝑝𝑖

)
◀

▶ entropy is a measure of information content of a distribution
▶ “20 Questions on [0, 1)”: Land inside my interval by halving.

0 11
2

3
4

5
8

11
16

1
2
3
4

𝑝𝑖 =
3
4 − 11

16 = 1
16

⇝ lg(1/𝑝𝑖) = 4

⇝ Need to cut [0, 1) in half lg(1/𝑝𝑖) times
▶ more precisely: the expected number of bits (Yes/No questions) required

to nail down the random value
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Entropy and Huffman codes
▶ would ideally encode value 𝑖 using lg(1/𝑝𝑖) bits

not always possible; cannot use codeword of 1.5 bits

not as length of single codeword that is;
but can be possible on average!

. . . but:

Theorem 7.3 (Entropy bounds for Huffman codes)
For any probabilities 𝑝1 , . . . , 𝑝𝜎 for Σ = {𝑎1 , . . . , 𝑎𝜎}, the Huffman code 𝐸 for Σwith weights
𝑝(𝑎𝑖) = 𝑝𝑖 satisfies H ≤ ℓ (𝐸) ≤ H + 1 whereH = H(𝑝1 , . . . , 𝑝𝜎). ◀

Proof sketch:

▶ ℓ (𝐸) ≥ H

Any prefix-free code 𝐸 induces weights 𝑞𝑖 = 2−|𝐸(𝑎𝑖 )|.
By Kraft’s Inequality, we have 𝑞1 + · · · + 𝑞𝜎 ≤ 1.
Hence we can apply Gibb’s Inequality to get

H =

𝜎∑
𝑖=1

𝑝𝑖 lg
(

1
𝑝𝑖

)
≤

𝜎∑
𝑖=1

𝑝𝑖 lg
(

1
𝒒𝒊

)
= ℓ (𝐸).
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Entropy and Huffman codes [2]
Proof sketch (continued):

▶ ℓ (𝐸) ≤ H + 1

Set 𝑞𝑖 = 2−⌈lg(1/𝑝𝑖 )⌉. We have
𝜎∑
𝑖=1

𝑝𝑖 lg
(

1
𝑞𝑖

)
=

𝜎∑
𝑖=1

𝑝𝑖⌈lg(1/𝑝𝑖)⌉ ≤ H + 1.

We construct a code 𝐸′ for Σwith |𝐸′(𝑎𝑖)| ≤ lg(1/𝑞𝑖) as follows;
w.l.o.g. assume 𝑞1 ≤ 𝑞2 ≤ · · · ≤ 𝑞𝜎

▶ If 𝜎 = 2, 𝐸′ uses a single bit each.
Here, 𝑞𝑖 ≤ 1/2, so lg(1/𝑞𝑖) ≥ 1 = |𝐸′(𝑎𝑖)| ✓

▶ If 𝜎 ≥ 3, we merge 𝑎1 and 𝑎2 to 𝑎1𝑎2 , assign it weight 2𝑞2 and recurse.
If 𝑞1 = 𝑞2, this is like Huffman; otherwise, 𝑞1 is a unique smallest value and
𝑞2 + 𝑞2 + · · · + 𝑞𝜎 ≤ 1.

By the inductive hypothesis, we have
��𝐸′( 𝑎1𝑎2 )

�� ≤ lg
(

1
2𝑞2

)
= lg

(
1
𝑞2

)
− 1.

By construction, |𝐸′(𝑎1)| = |𝐸′(𝑎2)| =
��𝐸′( 𝑎1𝑎2 )

�� + 1, so |𝐸′(𝑎1)| ≤ lg( 1
𝑞1
) and |𝐸′(𝑎2)| ≤ lg( 1

𝑞2
).

By optimality of 𝐸, we have ℓ (𝐸) ≤ ℓ (𝐸′) ≤
𝜎∑
𝑖=1

𝑝𝑖 lg
(

1
𝑞𝑖

)
≤ H + 1.
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Empirical Entropy
▶ Theorem ?? works for any character probabilities 𝑝1 , . . . , 𝑝𝜎

. . . but we only have a string 𝑆! (nothing random about it!)

use relative frequencies: 𝑝𝑖 =
|𝑆|𝑎𝑖
|𝑆| =

#occurences of 𝑎𝑖 in string 𝑆

length of 𝑆

▶ Recall: For 𝑆[0..𝑛) over Σ = {𝑎1 , . . . , 𝑎𝜎},
length of Huffman-coded text is

|𝐶| =

𝜎∑
𝑖=1

|𝑆|𝑎𝑖 · |𝐸(𝑎𝑖)| = 𝑛

𝜎∑
𝑖=1

=𝑝𝑖

|𝑆|𝑎𝑖
𝑛

· |𝐸(𝑎𝑖)| = 𝑛ℓ (𝐸)

⇝ Theorem ?? tells us rather precisely how well Huffman compresses:
H0(𝑆) · 𝑛 ≤ |𝐶| ≤ (H0(𝑆) + 1)𝑛

▶ H0(𝑆) = H

( |𝑆|𝑎1

𝑛
, . . . ,

|𝑆|𝑎𝜎
𝑛

)
=

𝜎∑
𝑖=1

𝑛

|𝑆|𝑎𝑖
log2

( |𝑆|𝑎𝑖
𝑛

)
is called the empirical

zero-th order empirical entropy

entropy of 𝑆
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Huffman coding – Discussion
▶ running time complexity: 𝑂(𝜎 log 𝜎) to construct code

▶ build PQ + 𝜎 · (2 deleteMins and 1 insert)
▶ can do Θ(𝜎) time when characters already sorted by weight
▶ time for encoding text (after Huffman code done): 𝑂(𝑛 + |𝐶|)

▶ many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, . . . )

optimal prefix-free character encoding

very fast decoding

needs 2 passes over source text for encoding
▶ one-pass variants possible, but more complicated

have to store code alongside with coded text
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Part II
Compressing repetitive texts



Beyond Character Encoding
▶ Many “natural” texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull
boy. All work and no play makes Jack a dull boy. All work and no play makes Jack
a dull boy. All work and no play makes Jack a dull boy. All work and no play makes
Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play
makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no
play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and
no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work
and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All
work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

▶ character-by-character encoding will not capture such repetitions
⇝ Huffman won’t compression this very much

⇝ Have to encode whole phrases of 𝑆 by a single codeword
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7.5 Run-Length Encoding



Run-Length encoding
▶ simplest form of repetition: runs

same character repeated

of characters
00000000000000000000000000000000000000000
00000000000000000000000000000000000000000
00000000000000000000000000000000000000000
00010110010000000001111100000000011111000
00111111111000000111111100000001111111000
00111101101000001110000000000011100000000
00110000000000011100000000000111000000000
00110000000000111000000000001110000000000
00110000000000111000000000001110000000000
00110110000000110011111000001100111110000
00111111110000111111111100001111111111000
00111011111000111110011110001111100111100
00000000011100111000000111001110000001110
00000000011100111000000110001110000001100
00000000001100011000000111000110000001110
00000000001100111000000110001110000001100
00000000011100011000000111000110000001110
00000000011000011100001110000111000011100
00110111111000001111111100000011111111000
01111111110000000111111000000001111110000
00010110000000000010010000000000100100000
00000000000000000000000000000000000000000
00000000000000000000000000000000000000000

▶ here: only consider Σ𝑆 = {0, 1} (work on a binary representation)

▶ can be extended for larger alphabets

⇝ run-length encoding (RLE):
use runs as phrases: 𝑆 = 00000︸︷︷︸ 111︸︷︷︸ 0000︸︷︷︸

⇝ We have to store
▶ the first bit of 𝑆 (either 0 or 1)
▶ the length of each subsequent run
▶ Note: don’t have to store bit for later runs since they must alternate.

▶ Example becomes: 0, 5, 3, 4

▶ Question: How to encode a run length 𝑘 in binary? (𝑘 can be arbitrarily large!)
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Elias codes
▶ Need a prefix-free encoding for ℕ = {1, 2, 3, . . . , }

▶ must allow arbitrarily large integers
▶ must know when to stop reading

▶ But that’s simple! Just use unary encoding!
7 ↦→ 00000001 3 ↦→ 0001 0 ↦→ 1 30 ↦→ 0000000000000000000000000000001

Much too long
▶ (wasn’t the whole point of RLE to get rid of long runs??)

▶ Refinement: Elias gamma code
▶ Store the length ℓ of the binary representation in unary
▶ Followed by the binary digits themselves
▶ little tricks:

▶ always have ℓ ≥ 1, so store ℓ − 1 instead
▶ binary representation always starts with 1 ⇝ don’t need terminating 1 in unary

⇝ Elias gamma code = ℓ − 1 zeros, followed by binary representation

Examples: 1 ↦→ 1, 3 ↦→ 011, 5 ↦→ 00101, 30 ↦→ 000011110
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Run-length encoding – Examples
▶ Encoding:

𝑆 = 11111110010000000000000000000011111111111

𝑘 =

𝐶 = 10011101010000101000001011

Compression ratio: 26/41 ≈ 63%

▶ Decoding:
𝐶 = 00001101001001010
𝑏 =

ℓ =

𝑘 =

𝑆 = 00000000000001111011
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Run-length encoding – Discussion
▶ extensions to larger alphabets possible (must store next character then)

▶ used in some image formats (e. g. TIFF)

fairly simple and fast

can compress 𝑛 bits to Θ(log 𝑛)!
for extreme case of constant number of runs

negligible compression for many common types of data
▶ No compression until run lengths 𝑘 ≥ 6
▶ expansion for run length 𝑘 = 2 or 6
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7.6 Lempel-Ziv-Welch



Warmup

https://www.flickr.com/photos/quintanaroo/2742726346

https://classic.csunplugged.org/text-compression/
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Lempel-Ziv Compression
▶ Huffman and RLE mostly take advantage of frequent or repeated single characters.

▶ Observation: Certain substrings are much more frequent than others.
▶ in English text: the, be, to, of, and, a, in, that, have, I
▶ in HTML: “<a href”, “<img src”, “<br/>”

▶ Lempel-Ziv stands for family of adaptive compression algorithms.
▶ Idea: store repeated parts by reference!
⇝ each codeword refers to

▶ either a single character in Σ𝑆,
▶ or a substring of 𝑆 (that both encoder and decoder have seen before).

▶ Variants of Lempel-Ziv compression
▶ “LZ77” Original version (sliding window, overlapping phrases)

Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, . . .
DEFLATE used in (pk)zip, gzip, PNG

▶ “LZ78” Second version (whole-phrase references)
Derivatives: LZW, LZMW, LZAP, LZY, . . .
LZW used in compress, GIF
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Lempel-Ziv-Welch
▶ here: Lempel-Ziv-Welch (LZW) (arguably the “cleanest” variant of Lempel-Ziv)

▶ variable-to-fixed encoding
▶ all codewords have 𝑘 bits (typical: 𝑘 = 12) ⇝ fixed-length
▶ but they represent a variable portion of the source text!

▶ maintain a dictionary 𝐷 with 2𝑘 entries ⇝ codewords = indices in dictionary
▶ initially, first |Σ𝑆| entries encode single characters (rest is empty)
▶ add a new entry to 𝐷 after each step:
▶ Encoding: after encoding a substring 𝑥 of 𝑆,

add 𝑥𝑐 to 𝐷 where 𝑐 is the character that follows 𝑥 in 𝑆.

𝑆 h a n n a h b a n s b a n a n a s
already encoded 𝒄𝒙

encode 𝑥 = ban

add 𝑥𝑐 = bana to dictionary

⇝ new codeword in 𝐷

▶ 𝐷 actually stores codewords for 𝑥 and 𝑐, not the expanded string
35



LZW encoding – Example
Input: YO!␣YOU!␣YOUR␣YOYO! Σ𝑆 = ASCII character set (0–127)

Y O ! ␣ YO U !␣ YOU R ␣Y O YO !
𝐶 = 89 79 33 32 128 85 130 132 82 131 79 128 33

𝐷 =

Code String
. . .

32 ␣
33 !

. . .

79 O
. . .

82 R
. . .

85 U
. . .

89 Y
. . .

Code String

128 YO
129 O!
130 !␣
131 ␣Y
132 YOU
133 U!
134 !␣Y
135 YOUR
136 R␣
137 ␣YO
138 OY
139 YO!

𝑆 h a n n a h b a n s b a n a n a s
already encoded 𝒄𝒙

encode 𝑥 = ban

add 𝑥𝑐 = bana to dictionary
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LZW encoding – Code
1 procedure LZWencode(𝑆[0..𝑛))
2 𝑥 := 𝜀 // previous phrase, initially empty
3 𝐶 := 𝜀 // output, initially empty
4 𝐷 := dictionary, initialized with codes for 𝑐 ∈ Σ𝑆 // stored as trie (⇝ Unit 13)
5 𝑘 := |Σ𝑆| // next free codeword
6 for 𝑖 := 0, . . . , 𝑛 − 1 do
7 𝑐 := 𝑆[𝑖]
8 if 𝐷.containsKey(𝑥𝑐) then
9 𝑥 := 𝑥𝑐

10 else
11 𝐶 := 𝐶 · 𝐷.get(𝑥) // append codeword for 𝑥
12 𝐷.put(𝑥𝑐, 𝑘) // add 𝑥𝑐 to 𝐷, assigning next free codeword
13 𝑘 := 𝑘 + 1; 𝑥 := 𝑐

14 end for
15 𝐶 := 𝐶 · 𝐷.get(𝑥)
16 return 𝐶
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7.7 Lempel-Ziv-Welch Decoding



LZW decoding
▶ Decoder has to replay the process of growing the dictionary!

⇝ Decoding:
after decoding a substring 𝑦 of 𝑆, add 𝑥𝑐 to 𝐷,
where 𝑥 is previously encoded/decoded substring of 𝑆,
and 𝑐 = 𝑦[0] (first character of 𝑦)

𝑆 h a n n a h b a n s b a n a n a s
already decoded 𝒙 𝒚

𝒄

decode 𝑦 = an

add 𝑥𝑐 = bana to dictionary

⇝ Note: only start adding to 𝐷 after second substring of 𝑆 is decoded
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LZW decoding – Example
▶ Same idea: build dictionary while reading string.

▶ Example: 67 65 78 32 66 129 133

𝐷 =

Code # String
. . .

32 ␣
. . .

. . .

65 A
66 B
67 C

. . .

78 N
. . .

83 S
. . .

decodes String String
input to Code # (human) (computer)
67 C
65 A 128 CA 67, A
78 N 129 AN 65, N
32 ␣ 130 N␣ 78, ␣
66 B 131 ␣B 32, B
129 AN 132 BA 66, A
133 ??? 133
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LZW decoding – Bootstrapping
▶ example: Want to decode 133, but not yet in dictionary!

decoder is “one step behind” in creating dictionary

⇝ problem occurs if we want to use a code that we are just about to build.

▶ But then we actually know what is going on!
▶ Situation: decode using 𝑘 in the step that will define 𝑘.
▶ decoder knows last phrase 𝑥, needs phrase 𝑦 = 𝐷[𝑘] = 𝑥𝑐.

C A N ␣ B A N A N A S
done 𝒄𝒙 𝒚

last step 𝑐𝑦=𝐷[𝑘]

𝐷[𝑘] := 𝑥𝑐

A N A
𝒄𝒙

1. en/decode 𝑥.

2. store 𝐷[𝑘] := 𝒙𝒄

3. next phrase 𝑦 equals 𝐷[𝑘]
⇝ 𝐷[𝑘] = 𝒙𝒄 = 𝒙 · 𝒙[0] (all known)
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LZW decoding – Code
1 procedure LZWdecode(𝐶[0..𝑚))
2 𝐷 := dictionary [0..2𝑑) → Σ+

𝑆
, initialized with codes for 𝑐 ∈ Σ𝑆 // stored as array

3 𝑘 := |Σ𝑆| // next unused codeword
4 𝑞 := 𝐶[0] // first codeword
5 𝑦 := 𝐷[𝑞] // lookup meaning of 𝑞 in 𝐷

6 𝑆 := 𝑦 // output, initially first phrase
7 for 𝑗 := 1, . . . , 𝑚 − 1 do
8 𝑥 := 𝑦 // remember last decoded phrase
9 𝑞 := 𝐶[𝑗] // next codeword

10 if 𝑞 == 𝑘 then
11 𝑦 := 𝑥 · 𝑥[0] // bootstrap case
12 else
13 𝑦 := 𝐷[𝑞]
14 𝑆 := 𝑆 · 𝑦 // append decoded phrase
15 𝐷[𝑘] := 𝑥 · 𝑦[0] // store new phrase
16 𝑘 := 𝑘 + 1
17 end for
18 return 𝑆
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LZW decoding – Example continued
▶ Example: 67 65 78 32 66 129 133 83

𝐷 =

Code # String
. . .

32 ␣
. . .

. . .

65 A
66 B
67 C

. . .

78 N
. . .

83 S
. . .

decodes String String
input to Code # (human) (computer)
67 C
65 A 128 CA 67, A
78 N 129 AN 65, N
32 ␣ 130 N␣ 78, ␣
66 B 131 ␣B 32, B
129 AN 132 BA 66, A
133 ANA 133 ANA 129, A
83 S 134 ANAS 133, S

C A N ␣ B A N A N A S
done 𝒄𝒙 𝒚

last step 𝑐𝑦=𝐷[𝑘]

𝐷[𝑘] := 𝑥𝑐

A N A
𝒄𝒙

1. en/decode 𝑥.

2. store 𝐷[𝑘] := 𝒙𝒄

3. next phrase 𝑦 equals 𝐷[𝑘]
⇝ 𝐷[𝑘] = 𝒙𝒄 = 𝒙 · 𝒙[0] (all known)
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LZW – Discussion
▶ As presented, LZW uses coded alphabet Σ𝐶 = [0..2𝑑).

⇝ use another encoding for code numbers ↦→ binary, e. g., Huffman

▶ need a rule when dictionary is full; different options:
▶ increment 𝑑 ⇝ longer codewords
▶ “flush” dictionary and start from scratch ⇝ limits extra space usage
▶ often: reserve a codeword to trigger flush at any time

▶ encoding and decoding both run in linear time (assuming |Σ𝑆| constant)

fast encoding & decoding

works in streaming model (no random access, no backtrack on input needed)

significant compression for many types of data

captures only local repetitions (with bounded dictionary)
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Compression summary

Huffman codes Run-length encoding Lempel-Ziv-Welch

fixed-to-variable variable-to-variable variable-to-fixed

2-pass 1-pass 1-pass

must send dictionary can be worse than ASCII can be worse than ASCII

60% compression
on English text

bad on text 45% compression
on English text

optimal binary
character encopding

good on long runs
(e.g., pictures)

good on English text

rarely used directly rarely used directly frequently used

part of pkzip, JPEG, MP3 fax machines, old picture-formats GIF, part of PDF, Unix compress
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Part III
Text Transforms



Text transformations
▶ compression is effective if we have one the following:

▶ long runs ⇝ RLE
▶ frequently used characters ⇝ Huffman
▶ many (locally) repeated substrings ⇝ LZW

▶ but methods can be frustratingly “blind” to other “obvious” redundancies
▶ LZW: repetition too distant � dictionary already flushed

▶ Huffman: changing probabilities (local clusters) � averaged out globally

▶ RLE: run of alternating pairs of characters � not a run

▶ Enter: text transformations
▶ invertible functions of text
▶ do not by themselves reduce the space usage
▶ but help compressors “see” existing redundancy
⇝ use as pre-/postprocessing in compression pipeline
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7.8 Move-to-Front Transformation



Move to Front
▶ Move to Front (MTF) is a heuristic for self-adjusting linked lists

▶ unsorted linked list of objects
▶ whenever an element is accessed, it is moved to the front of the list

(leaving the relative order of other elements unchanged)
⇝ list “learns” probabilities of access to objects

makes access to frequently requested ones cheaper

▶ Here: use such a list for storing source alphabet Σ𝑆

▶ to encode 𝑐, access it in list
▶ encode 𝑐 using its (old) position in list
▶ then apply MTF to the list
⇝ codewords are integers, i. e., Σ𝐶 = [0..𝜎)

⇝ clusters of few characters ⇝ many small numbers
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MTF – Code

▶ Transform (encode):

1 procedure MTF−encode(𝑆[0..𝑛))
2 𝐿 := list containing Σ𝑆 (sorted order)
3 𝐶 := 𝜀
4 for 𝑖 := 0, . . . , 𝑛 − 1 do
5 𝑐 := 𝑆[𝑖]
6 𝑝 := position of 𝑐 in 𝐿

7 𝐶 := 𝐶 · 𝑝
8 Move 𝑐 to front of 𝐿
9 end for
10 return 𝐶

▶ Inverse transform (decode):

1 procedure MTF−decode(𝐶[0..𝑚))
2 𝐿 := list containing Σ𝑆 (sorted order)
3 𝑆 := 𝜀
4 for 𝑗 := 0, . . . , 𝑚 − 1 do
5 𝑝 := 𝐶[𝑗]
6 𝑐 := character at position 𝑝 in 𝐿

7 𝑆 := 𝑆 · 𝑐
8 Move 𝑐 to front of 𝐿
9 end for

10 return 𝑆

▶ Important: encoding and decoding produce same accesses to list
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MTF – Example
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

ZYXWVUTRQPOMLKJHGDBAFNCIES

𝑆 = I N E F F I C I E N C I E S
𝐶 = 8 13 6 7 0 3 6 1 3 4 3 3 3 18

▶ What does a run in 𝑆 encode to in 𝐶?

▶ What does a run in 𝐶 mean about the source 𝑆?
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MTF – Discussion
▶ MTF itself does not compress text (if we store codewords with fixed length)

⇝ used as part of longer pipeline

▶ Intuitively effect:
MTF converts locally low empirical entropy to globally low empirical entropy(!)

⇝ makes Huffman coding much more effective!
▶ cheaper option: Elias gamma code
⇝

smaller numbers gets shorter codewords
works well for text with small “local effective” alphabet

many natural texts do not have locally low empirical entropy

but we can often make it so . . . stay tuned (→ BWT)
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7.9 Burrows-Wheeler Transform



Burrows-Wheeler Transform
▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.

▶ coded text has same letters as source, just in a different order
▶ But: coded text is (typically) more compressible (local char frequencies)

▶ Encoding algorithm needs all of 𝑆 (no streaming possible).
⇝ BWT is a block compression method.

▶ BWT followed by MTF, RLE, and Huffman is the algorithm used by the bzip2 program.
achieves best compression on English text of any algorithm we have seen:

4047392 bible.txt # original
1191071 bible.txt.gz # gzip (0.2s)
888604 bible.txt.7z # 7z (2s)
845635 bible.txt.bz2 # bzip2 (0.3s)

632634 bible.txt.paq8l # paq8l -8 (6min!)
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BWT – Definitions
▶ cyclic shift of a string:

▶ add end-of-word
character $ to 𝑆

(always assumed in
this section!)

⇝ can recover
original string

𝑇 = time␣flies␣quickly␣

t
i

m
e

␣fl
i

e
s
␣
q
u

i c k l
y
␣

t
i

m
e

␣fl
i

e
s
␣
q
u

i c k l
y
␣

⇝ cyclic shift

flies␣quickly␣time␣

▶ The Burrows-Wheeler Transform proceeds in three steps:

0. Append end-of-word character $ to 𝑆.
1. Place all cyclic shifts of 𝑆 in a list 𝐿
2. Sort the strings in 𝐿 lexicographically
3. 𝐵 is the list of trailing characters (last column, top-down) of each string in 𝐿
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BWT – Example

𝑆 = alf␣eats␣alfalfa$

1. Take all cyclic shifts of 𝑆

2. Sort cyclic shifts

3. Extract last column

𝐵 = asff$f␣e␣lllaaata

alf␣eats␣alfalfa$
lf␣eats␣alfalfa$a
f␣eats␣alfalfa$al
␣eats␣alfalfa$alf
eats␣alfalfa$alf␣
ats␣alfalfa$alf␣e
ts␣alfalfa$alf␣ea
s␣alfalfa$alf␣eat
␣alfalfa$alf␣eats
alfalfa$alf␣eats␣
lfalfa$alf␣eats␣a
falfa$alf␣eats␣al
alfa$alf␣eats␣alf
lfa$alf␣eats␣alfa
fa$alf␣eats␣alfal
a$alf␣eats␣alfalf
$alf␣eats␣alfalfa

⇝
sort

BWT
↓

$alf␣eats␣alfalfa
␣alfalfa$alf␣eats
␣eats␣alfalfa$alf
a$alf␣eats␣alfalf
alf␣eats␣alfalfa$
alfa$alf␣eats␣alf
alfalfa$alf␣eats␣
ats␣alfalfa$alf␣e
eats␣alfalfa$alf␣
f␣eats␣alfalfa$al
fa$alf␣eats␣alfal
falfa$alf␣eats␣al
lf␣eats␣alfalfa$a
lfa$alf␣eats␣alfa
lfalfa$alf␣eats␣a
s␣alfalfa$alf␣eat
ts␣alfalfa$alf␣ea

▶ BWT can be computed in 𝑂(𝑛) time!
▶ totally non-obvious from definition (naive sorting could take Ω(𝑛2) time in worst case!)

▶ will use one of the most sophisticated algorithms we cover ⇝ Unit 13!
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BWT – Properties

Why does BWT help for compression?
▶ sorting groups characters by what follows

▶ Example: lf always preceded by a

▶ more generally: BWT can be partitioned
into letters following a given context

⇝ repeated substring in 𝑆 ⇝ runs in 𝐵

▶ Example: alf ⇝ run of as
▶ picked up by RLE

⇝ If 𝑆 allows predicting

(formally: low higher-order empirical entropy)

symbols from context, 𝐵
has locally low entropy of characters.
▶ that makes MTF effective!

alf␣eats␣alfalfa$
lf␣eats␣alfalfa$a
f␣eats␣alfalfa$al
␣eats␣alfalfa$alf
eats␣alfalfa$alf␣
ats␣alfalfa$alf␣e
ts␣alfalfa$alf␣ea
s␣alfalfa$alf␣eat
␣alfalfa$alf␣eats
alfalfa$alf␣eats␣
lfalfa$alf␣eats␣a
falfa$alf␣eats␣al
alfa$alf␣eats␣alf
lfa$alf␣eats␣alfa
fa$alf␣eats␣alfal
a$alf␣eats␣alfalf
$alf␣eats␣alfalfa

𝑟 ↓ 𝐿[𝑟]
0 $alf␣eats␣alfalfa 16
1 ␣alfalfa$alf␣eats 8
2 ␣eats␣alfalfa$alf 3
3 a$alf␣eats␣alfalf 15
4 alf␣eats␣alfalfa$ 0
5 alfa$alf␣eats␣alf 12
6 alfalfa$alf␣eats␣ 9
7 ats␣alfalfa$alf␣e 5
8 eats␣alfalfa$alf␣ 4
9 f␣eats␣alfalfa$al 2
10 fa$alf␣eats␣alfal 14
11 falfa$alf␣eats␣al 11
12 lf␣eats␣alfalfa$a 1
13 lfa$alf␣eats␣alfa 13
14 lfalfa$alf␣eats␣a 10
15 s␣alfalfa$alf␣eat 7
16 ts␣alfalfa$alf␣ea 6
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A Bigger Example have␣had␣hadnt␣hasnt␣havent␣has␣what$ $have␣had␣hadnt␣hasnt␣havent␣has␣what
ave␣had␣hadnt␣hasnt␣havent␣has␣what$h ␣had␣hadnt␣hasnt␣havent␣has␣what$have
ve␣had␣hadnt␣hasnt␣havent␣has␣what$ha ␣hadnt␣hasnt␣havent␣has␣what$have␣had
e␣had␣hadnt␣hasnt␣havent␣has␣what$hav ␣has␣what$have␣had␣hadnt␣hasnt␣havent
␣had␣hadnt␣hasnt␣havent␣has␣what$have ␣hasnt␣havent␣has␣what$have␣had␣hadnt
had␣hadnt␣hasnt␣havent␣has␣what$have␣ ␣havent␣has␣what$have␣had␣hadnt␣hasnt
ad␣hadnt␣hasnt␣havent␣has␣what$have␣h ␣what$have␣had␣hadnt␣hasnt␣havent␣has
d␣hadnt␣hasnt␣havent␣has␣what$have␣ha ad␣hadnt␣hasnt␣havent␣has␣what$have␣h
␣hadnt␣hasnt␣havent␣has␣what$have␣had adnt␣hasnt␣havent␣has␣what$have␣had␣h
hadnt␣hasnt␣havent␣has␣what$have␣had␣ as␣what$have␣had␣hadnt␣hasnt␣havent␣h
adnt␣hasnt␣havent␣has␣what$have␣had␣h asnt␣havent␣has␣what$have␣had␣hadnt␣h
dnt␣hasnt␣havent␣has␣what$have␣had␣ha at$have␣had␣hadnt␣hasnt␣havent␣has␣wh
nt␣hasnt␣havent␣has␣what$have␣had␣had ave␣had␣hadnt␣hasnt␣havent␣has␣what$h
t␣hasnt␣havent␣has␣what$have␣had␣hadn avent␣has␣what$have␣had␣hadnt␣hasnt␣h
␣hasnt␣havent␣has␣what$have␣had␣hadnt d␣hadnt␣hasnt␣havent␣has␣what$have␣ha
hasnt␣havent␣has␣what$have␣had␣hadnt␣ dnt␣hasnt␣havent␣has␣what$have␣had␣ha
asnt␣havent␣has␣what$have␣had␣hadnt␣h e␣had␣hadnt␣hasnt␣havent␣has␣what$hav
snt␣havent␣has␣what$have␣had␣hadnt␣ha ent␣has␣what$have␣had␣hadnt␣hasnt␣hav
nt␣havent␣has␣what$have␣had␣hadnt␣has had␣hadnt␣hasnt␣havent␣has␣what$have␣
t␣havent␣has␣what$have␣had␣hadnt␣hasn hadnt␣hasnt␣havent␣has␣what$have␣had␣
␣havent␣has␣what$have␣had␣hadnt␣hasnt has␣what$have␣had␣hadnt␣hasnt␣havent␣
havent␣has␣what$have␣had␣hadnt␣hasnt␣ hasnt␣havent␣has␣what$have␣had␣hadnt␣
avent␣has␣what$have␣had␣hadnt␣hasnt␣h hat$have␣had␣hadnt␣hasnt␣havent␣has␣w
vent␣has␣what$have␣had␣hadnt␣hasnt␣ha have␣had␣hadnt␣hasnt␣havent␣has␣what$
ent␣has␣what$have␣had␣hadnt␣hasnt␣hav havent␣has␣what$have␣had␣hadnt␣hasnt␣
nt␣has␣what$have␣had␣hadnt␣hasnt␣have nt␣has␣what$have␣had␣hadnt␣hasnt␣have
t␣has␣what$have␣had␣hadnt␣hasnt␣haven nt␣hasnt␣havent␣has␣what$have␣had␣had
␣has␣what$have␣had␣hadnt␣hasnt␣havent nt␣havent␣has␣what$have␣had␣hadnt␣has
has␣what$have␣had␣hadnt␣hasnt␣havent␣ s␣what$have␣had␣hadnt␣hasnt␣havent␣ha
as␣what$have␣had␣hadnt␣hasnt␣havent␣h snt␣havent␣has␣what$have␣had␣hadnt␣ha
s␣what$have␣had␣hadnt␣hasnt␣havent␣ha t$have␣had␣hadnt␣hasnt␣havent␣has␣wha
␣what$have␣had␣hadnt␣hasnt␣havent␣has t␣has␣what$have␣had␣hadnt␣hasnt␣haven
what$have␣had␣hadnt␣hasnt␣havent␣has␣ t␣hasnt␣havent␣has␣what$have␣had␣hadn
hat$have␣had␣hadnt␣hasnt␣havent␣has␣w t␣havent␣has␣what$have␣had␣hadnt␣hasn
at$have␣had␣hadnt␣hasnt␣havent␣has␣wh ve␣had␣hadnt␣hasnt␣havent␣has␣what$ha
t$have␣had␣hadnt␣hasnt␣havent␣has␣wha vent␣has␣what$have␣had␣hadnt␣hasnt␣ha
$have␣had␣hadnt␣hasnt␣havent␣has␣what what$have␣had␣hadnt␣hasnt␣havent␣has␣

h a v e ␣ h a d ␣ h a d n t ␣ h a s n t ␣ h a v e n t ␣ h a s ␣ w h a t $𝑇 =

t e d t t t s h h h h h h h a a v v ␣ ␣ ␣ ␣ w $ ␣ e d s a a a n n n a a ␣𝐵 =

8 5 5 2 0 0 8 7 0 0 0 0 0 0 7 0 9 0 8 0 0 0 10 9 2 9 9 8 7 0 0 10 0 0 1 0 5MTF(𝐵) =

For 𝑇 some English text,
MTF(𝐵) has typically
around 50% zeroes!
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Run-length BWT Compression
▶ amazingly, just run-length compressing the BWT is already powerful!

▶ 𝒓 = number of runs in BWT

▶ 𝑟 = 𝑂(𝑧 log2(𝑛)), 𝑧 number of LZ77 phrases
proven in 2019 (!)

Example:
𝑆 = alf␣eats␣alfalfa$

𝐵 = asff$f␣e␣lllaaata

RL(𝐵) =
[a
1
] [s

1
] [f

2
] [$

1
] [f

1
] [␣

1
] [e

1
] [␣

1
] [l

3
] [a

3
] [t

1
] [a

1
]

⇝ 𝑟 = |RL(𝐵)| = 12; 𝑛 = 17

Larger Example:
𝑆 = have␣had␣hadnt␣hasnt␣havent␣has␣what$

⇝ 𝑟 = 19; 𝑛 = 36
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7.10 Inverse BWT



Inverse BWT
▶ Great, can compute BWT efficiently and it helps compression. But how can we decode

not even obvious that
it is at all invertible!

it?

▶ “Magic” solution:
1. Create array 𝐷[0..𝑛] of pairs:

𝐷[𝑟] = (𝐵[𝑟], 𝑟).
2. Sort 𝐷 stably with

respect to first entry.
3. Use 𝐷 as linked list with

(char, next entry)

Example:
𝐵 = ard$rcaaaabb
𝑆 = abracadabra$

(a, 0)0

(r, 1)1

(d, 2)2

($, 3)3

(r, 4)4

(c, 5)5

(a, 6)6

(a, 7)7

(a, 8)8

(a, 9)9

(b, 10)10

(b, 11)11

𝐷

($, 3)0

(a, 0)1

(a, 6)2

(a, 7)3

(a, 8)4

(a, 9)5

(b, 10)6

(b, 11)7

(c, 5)8

(d, 2)9

(r, 1)10

(r, 4)11

sorted 𝐷

char next
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Inverse BWT – The magic revealed
▶ Inverse BWT very easy to compute:

▶ only sort individual characters in 𝐵 (not suffixes)
⇝ 𝑂(𝑛) with counting sort

▶ but why does this work!?
▶ decode char by char

▶ can find unique $ ⇝ starting row

▶ to get next char, we need
(i) char in first column of current row
(ii) find row with that char’s copy in BWT
⇝ then we can walk through and decode

▶ for (i): first column = characters of 𝐵 in sorted order✓
▶ for (ii): relative order of same character stays same:

𝑖th a in first column = 𝑖th a in BWT
⇝ stably sorting (𝐵[𝑟], 𝑟) by first entry enough✓

0 9 $bananaban
1 5 aban$banan
2 7 an$bananab
3 3 anaban$ban
4 1 ananaban$b
5 6 ban$banana
6 0 bananaban$
7 8 n$bananaba
8 4 naban$bana
9 2 nanaban$ba

𝑟 𝐿[𝑟] 𝑇𝐿[𝑟] 𝐵[𝑟]
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BWT – Discussion
▶ Running time: Θ(𝑛)

▶ encoding uses suffix sorting
▶ decoding only needs counting sort
⇝ decoding much simpler & faster (but same Θ-class)

typically slower than other methods

need access to entire text (or apply to blocks independently)

BWT-MTF-RLE-Huffman (bzip2) pipeline tends to have best compression
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Summary of Compression Methods

Huffman Variable-width, single-character (optimal in this case)
RLE Variable-width, multiple-character encoding
LZW Adaptive, fixed-width, multiple-character encoding

Augments dictionary with repeated substrings
MTF Adaptive, transforms to smaller integers

should be followed by variable-width integer encoding
BWT Block compression method, should be followed by MTF
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