
8 Clever Codes
2 December 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25)
Philipps-Universität Marburg

version 2024-11-30 23:40 H

Learning Outcomes

Unit 8: Clever Codes

1. Know the principles and performance characteristics of arithmetic coding.

2. Judge the use of arithmetic coding in applications.

3. Understand the context of error-prone communication.

4. Understand concepts of error-detecting codes and error-correcting codes.

5. Know and understand Hamming codes, in particular (7,4) Hamming code.

6. Reason about the suitability of a code for an application.

1

Outline

8 Clever Codes
8.1 Arithmetic Coding
8.2 Practical Arithmetic Coding
8.3 Error Correcting Codes
8.4 Coding Theory
8.5 Hamming Codes

8.1 Arithmetic Coding

Stream Codes
▶ Recall: (binary) character encoding 𝐸 : Σ → {0, 1}★

▶ Huffman codes optimal for any given character frequencies
⇝ encoding all characters with that code minimizes compressed size

. . . if we assume that all characters must be encoded individually by a codeword!

▶ Stream codes instead compress entire sequence of characters
▶ RLE and LZW are examples of stream codes ⇝ can sometimes do better

▶ Two indicative examples
1. “Low entropy bits:” Σ = {0, 1}, highly skewed: 𝑝0 = 0.99

⇝ entropy H(1
100 ,

99
100) ≈ 0.08 bits per character,

Huffman code must use 1 bit per character!
⇝ “optimal” Huffman code gives 12-fold space increase over entropy!
▶ Can certainly do better here (RLE!)

2. “Trits”: Σ = {0, 1, 2}, equally likely
⇝ entropy H(1

3 ,
1
3 ,

1
3) = lg(3) ≈ 1.58 bits per character,

Huffman code uses average of 1
3 · 1 + 2

3 · 2 = 5
3 ≈ 1.67

▶ Can we do better?
2

A Decent Hack: Block Codes
▶ Huffman on trits wastes ≈ 0.0817 bits per character and over 5 % of space

▶ A simple trick can reduce this substantially!
▶ treat 5 trits as one “supercharacter”, e. g., 21101

⇝ 35 = 243 possible combinations
⇝ encode these using 8 bits (with 28 = 256 possible combinations)
▶ entropy lg(35) ≈ 7.92 bits, so less than 0.1 % wasted space!

▶ We can even use a Huffman code for the supercharacters to handle nonuniformity!

▶ For the low-entropy bits, could use 3 bits
⇝ probabilities:

000 : 0.97
001 , 010 , 100 : 0.0098
011 , 101 , 110 : 0.000099
111 : 0.000001

⇝ with Huffman code, 1.06 bits per superchar of 3 input bits
⇝ almost factor 3 better; can improve with larger blocks!

3

Block Codes – A Panacea?
▶ Using supercharacters works well in our examples.

Hmmm . . . so why don’t we treat the entire source text as one large block?
Wouldn’t that be even better!?

⇝ We can optimally compress any text, without doing anything intelligent!?

� For general case, need to communicate the supercharacter encoding
▶ Blocks of 𝑘 characters need Ω(𝜎𝑘) space for code
▶ Huffman code has to be part of coded message
⇝ Can only sensibly use block codes for small 𝜎 and 𝑘

There is no such thing as a free lunch . . .

4

Arithmetic Coding
▶ Also: Block codes still had Θ(𝑛) wasted

except in isolated lucky cases

space for sequences of 𝑛 symbols

▶ Arithmetic Coding:
0. Maintain [ℓ , ℓ + 𝑝) ⊆ [0, 1); initially ℓ = 0, 𝑝 = 1
1. Zoom into subinterval for each character
2. Output dyadic encoding of final interval

▶ Step 1: “Zoom” for each character (trit) in 𝑆[0..𝑛): 0 1

00 11 22
0 11

3
2
3

▶ Of the current subinterval [ℓ , ℓ + 𝑝),
take first, second or last third
depending whether 𝑆[𝑖] = 0, 1, resp. 2:
ℓ := ℓ + 𝑆[𝑖] · 1

3 · 𝑝
𝑝 := 𝑝 · 1

3

▶ Step 2: Dyadic encoding
▶ Find smallest 𝑚 so that ∃𝑥 ∈ ℕ0 with

[
𝑥

2𝑚 ,
𝑥 + 1
2𝑚

)
⊆ [ℓ , ℓ + 𝑝)

▶ Output 𝑥 in binary using 𝑚 bits.

⇝ Encode 𝑛 trits in 𝑛 lg(3) + 2 bits(!) without cheating
5

Arithmetic Coding – Encode Trits Example
▶ 𝑆[0..𝑛) = 21101 (𝑛 = 5)

▶ Step 1: Zoom into subintervals

Iteration ℓ 𝑝 Interval (rounded)

0 0 1 [0.00000, 1.00000)
1 2

3
1
3 [0.66667, 1.00000)

2 7
9

1
9 [0.77778, 0.88889)

3 22
27

1
27 [0.81482, 0.85185)

4 66
81

1
81 [0.81482, 0.82716)

5 199
243

1
243 [0.81893, 0.82305)

▶ Step 2: Dyadic encoding for interval [ℓ , ℓ + 𝑝) =

[199
243 ,

200
243

)
▶ Must have 𝑚 ≥ lg(1/𝑝) > 7

▶ 𝑚 = 8: smallest 𝑥/2𝑚 ≥ 199
243 is 𝑥 = 210, but [210/256, 211/256) ≈ [0.82031, 0.82422) ⊄ [ℓ , ℓ + 𝑝)

▶ 𝑚 = 9: smallest 𝑥/2𝑚 ≥ 199
243 is 𝑥 = 420 and [420/512, 421/512) ≈ [0.82031, 0.82227) ⊂ [ℓ , ℓ + 𝑝)✓

⇝ Output 𝑥 = 420 in binary with 𝑚 = 9 digits: 110100100

6

Versatility of Arithmetic Coding – Adaptive Model

adapted from Figure 6.4 of MacKay: Information Theory, Inference, and Learning Algorithms 2003

7

Arithmetic Coding – General framework
▶ Note: Arithmetic coder doesn’t care if probabilities or even 𝜎 change all the time!

▶ As long as encoder and decoder know from context what they are!

General stochastic sequence:
Sequence of random variables 𝑋0 , 𝑋1 , 𝑋2 , . . . such that

1. 𝑋𝑖 ∈ [0..𝑈𝑖) ∪ {$} (We use $ to signal “end of text”)
2. ℙ[𝑋𝑖 = 𝑗] = 𝑃𝑖 𝑗

3. both 𝑈𝑖 and 𝑃𝑖 𝑗 are random variables as they depend on 𝑋0 , . . . 𝑋𝑖−1,
but conditioned on 𝑋0 , . . . , 𝑋𝑖−1, they are fixed and known:
𝑃𝑖 𝑗 = 𝑃𝑖 𝑗(𝑋0 , . . . , 𝑋𝑖−1) = ℙ[𝑋𝑖 = 𝑗 | 𝑋0 , . . . , 𝑋𝑖−1]
𝑈𝑖 = 𝑈𝑖(𝑋0 , . . . , 𝑋𝑖−1) = max{ 𝑗 : 𝑃𝑖 𝑗 > 0}

▶ Can model arbitrary dependencies on previous outcomes

▶ Assume here that random process is known by both encoder and decoder (fixed coding)
otherwise extra space needed to encode model!

8

Arithmetic Coding – Encoding
1 procedure arithmeticEncode(𝑋0 , . . . , 𝑋𝑛):
2 // Assume model 𝑈𝑖 and 𝑃𝑖 𝑗 are fixed.
3 // Assume 𝑋𝑖 ∈ [0..𝑈𝑖) for 𝑖 < 𝑛 and 𝑋𝑛 = $
4 // Step 1: Interval zooming
5 ℓ := 0; 𝑝 := 1
6 for 𝑖 := 0, . . . , 𝑛 − 1 do

7 𝑞 :=
𝑋𝑖−1∑
𝑗=0

𝑃𝑖 𝑗 ;

8 ℓ := ℓ + 𝑞 · 𝑝; 𝑝 := 𝑝 · 𝑃𝑖 ,𝑋𝑖

9 end for
10 𝑞 := 1 − 𝑃𝑛,$ // encode $ as last character
11 ℓ := ℓ + 𝑞 · 𝑝; 𝑝 := 𝑝 · 𝑃𝑛,$
12 // Step 2: Dyadic encoding
13 𝑚 := ⌈lg(1/𝑝)⌉ − 1
14 do
15 𝑚 := 𝑚 + 1; 𝑥 := ⌈ℓ · 2𝑚⌉
16 while (𝑥 + 1)/2𝑚 > ℓ + 𝑝

17 return 𝑥 in binary using 𝑚 bits

9

Arithmetic Coding – Decoding
1 procedure arithmeticDecode(𝐶[0..𝑚)):
2 // Assume model 𝑈𝑖 and 𝑃𝑖 𝑗 are fixed.
3 // 𝐶[0..𝑚) bit string produced by arithmeticEncode
4 𝑥 =

∑𝑚
𝑖=0 𝐶[𝑖] · 2−(𝑖+1) // final interval [𝑥/2𝑚 , (𝑥 + 1)/2𝑚)

5 ℓ := 0; 𝑝 := 1; 𝑖 := 0
6 while true
7 𝑐 := 0; 𝑞 := 0 // Decode next character 𝑐
8 while ℓ + 𝑞 · 𝑝 < 𝑥/2𝑚
9 if 𝑐 == 𝑈𝑖 + 1 // reached $

10 𝑋[𝑖] := $
11 return 𝑋[0..𝑖]
12 else
13 𝑞 := 𝑞 + 𝑃𝑖 ,𝑐 ; 𝑐 := 𝑐 + 1
14 end while
15 𝑐 := 𝑐 − 1; 𝑞 := 𝑞 − 𝑃𝑖 ,𝑐 // we overshot by 1
16 𝑋[𝑖] := 𝑐

17 ℓ := ℓ + 𝑞 · 𝑝; 𝑝 := 𝑝 · 𝑃𝑖 ,𝑐
18 𝑖 := 𝑖 + 1
19 end for

10

8.2 Practical Arithmetic Coding

Arithmetic Coding – Numerics
▶ As implemented above, 𝑝 usually gets smaller by a

constant factor with each character
⇝ 𝑝 gets exponentially small in 𝑛!
▶ ℓ does not get smaller in absolute terms, but

we need it to ever higher accuracy

⇝ requires Ω(𝑛) bit precision and exact arithmetic!

▶ With a clever trick, this can be avoided!
▶ If [ℓ , ℓ + 𝑝) ⊆ [0, 1

2), we know:
▶ Our final 𝑥 with

[
𝑥

2𝑚 , 𝑥+1
2𝑚

)
⊆ [ℓ , ℓ + 𝑝)

must start with a 0-bit!
⇝ Output a 0 and renormalize interval:

ℓ := 2ℓ ; 𝑝 := 2𝑝
▶ If [ℓ , ℓ + 𝑝) ⊆ [1

2 , 1), similarly:
▶ Output 1 and renormalize:

ℓ := ℓ − 1
2

ℓ := 2ℓ ; 𝑝 := 2𝑝
11

Arithmetic Coding – Renormalization
Does this guarantee ℓ and 𝑝 stay in a reasonable range?

▶ No! Consider (uniform) trits in {0, 1, 2} again and encode
11111111111111111 . . .

⇝ 𝑝 =
(1
3
)𝑛 , ℓ =

1
3 + 1

9 + 1
27 + · · · =

𝑛∑
𝑖=1

3−𝑖 =
1
2 − 3−𝑛

2
⇝ ℓ < 1

2 and ℓ + 𝑝 > 1
2 ⇝ next bit unknown as of yet

But: If [ℓ , ℓ + 𝑝) ⊆ [1
4 ,

3
4), next two bits are either 01 or 10

▶ Remember an “outstanding opposite bit” (increment counter)

▶ Renormalize:
ℓ := ℓ − 1

4
ℓ := 2ℓ ; 𝑝 := 2𝑝

⇝ ℓ and 𝑝 remain in range of 𝑃𝑖 𝑗

⇝ round 𝑃𝑖 𝑗 to integer multiple of 2−𝐹 ⇝ fixed-precision arithmetic
12

Fixed Precision Arithmetic Encode
Detailed code from Moffat, Neal, Witten, Arithmetic Coding Revisited, ACM Trans. Inf. Sys. 1998

13

Fixed Precision Renormalize

14

Fixed Precision Arithmetic Decode

15

Arithmetic Coding Discussion
Subtle code

Typically slower to encode/decode than Huffman codes

Encoded bits produced/consumed in bursts

Extremely versatile w. r. t. random process

Almost optimal space usage / compression

Widely used (instead of Huffman) in JPEG, zip variants, . . .

16

8.3 Error Correcting Codes

Noisy Communication
▶ most forms of communication are “noisy”

▶ humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

▶ How do humans cope with that?
▶ slow down and/or speak up
▶ ask to repeat if necessary

▶ But how is it possible (for us)
to decode a message in the presence of noise & errors?

Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!

⇝ We can
1. detect errors “This sentence has aao pi dgsdho gioasghds.”
2. correct (some) errors “Tiny errs ar corrrected automaticly.”

(sometimes too eagerly as in the Chinese Whispers / Telephone)

17

Noisy Channels
▶ computers: copper cables &

electromagnetic interference

▶ transmit a binary string

▶ but occasionally bits can “flip”

⇝ want a robust code

▶ We can aim at

1. error detection ⇝ can request a re-transmit
2. error correction ⇝ avoid re-transmit for common types of errors

▶ This will require redundancy: sending more

that’s the opposite of compression!

bits than plain message
⇝ goal: robust code with lowest redundancy

18

8.4 Coding Theory

Block codes
▶ model:

▶ want to send message 𝑆 ∈ {0, 1}★ (bitstream) across a (communication) channel
▶ any bit transmitted through the channel might flip (0 → 1 resp. 1 → 0)

no other errors occur (no bits lost, duplicated, inserted, etc.)

▶ instead of 𝑆, we send encoded bitstream 𝐶 ∈ {0, 1}★
sender encodes 𝑆 to 𝐶, receiver decodes 𝐶 to 𝑆 (hopefully)

⇝ what errors can be detected and/or corrected?

▶ all codes discussed here are block codes
▶ divide 𝑆 into messages 𝑚 ∈ {0, 1}𝑘 of 𝑘 bits each (𝑘 = message length)
▶ encode each message (separately) as 𝐶(𝑚) ∈ {0, 1}𝑛 (𝑛 = block length, 𝑛 ≥ 𝑘)

⇝ can analyze everything block-wise

▶ between 0 and 𝑛 bits might be flipped
▶ how many flipped bits can we definitely detect

invalid code

?
▶ how many flipped bits can we correct

i. e. decoding 𝑚 still possible

without retransmit?

19

Code distance
▶ each block code is an injective

𝑚 ≠ 𝑚′ =⇒ 𝐶(𝑚) ≠ 𝐶(𝑚′)

function 𝐶 : {0, 1}𝑘 → {0, 1}𝑛

▶ define C = set of all codewords = 𝐶({0, 1}𝑘)

⇝ C ⊆ {0, 1}𝑛 |C| = 2𝑘 out of 2𝑛 𝑛-bit strings are valid codewords

▶ decoding = finding closest valid codeword

▶ distance of code:
𝑑 = minimal Hamming distance of any two codewords = min

𝑥,𝑦∈C
𝑑𝐻(𝑥, 𝑦)

Implications for codes

1. Need distance 𝑑 to detect all errors flipping up to 𝑑 − 1 bits.

2. Need distance 𝑑 to correct all errors flipping up to
⌊
𝑑−1

2
⌋

bits.

20

Lower Bounds
▶ Main advantage of concept of code distance:

can prove lower bounds on block length

Given block length 𝑛, message length 𝑘, code distance 𝑑, we must

otherwise no such code exists

have:

▶ Singleton bound: 2𝑘 ≤ 2𝑛−(𝑑−1) ⇝ 𝑛 ≥ 𝑘 + 𝑑 − 1
▶ proof sketch: We have 2𝑘 codeswords with distance 𝑑

after deleting the first 𝑑 − 1 bits, all are still distinct
but there are only 2𝑛−(𝑑−1) such shorter bitstrings.

▶ Hamming bound: 2𝑘 ≤ 2𝑛∑⌊(𝑑−1)/2⌋
𝑓=0

(
𝑛
𝑓

)
▶ proof idea: consider “balls” of bitstrings around codewords

count bitstrings with Hamming-distance ≤ 𝑡 = ⌊(𝑑 − 1)/2⌋
correcting 𝑡 errors means all these balls are disjoint
so 2𝑘 · ball size ≤ 2𝑛

⇝ We will come back to these.
21

8.5 Hamming Codes

Parity Bit
▶ simplest possible error-detecting code: add a parity bit

0 1 1 0 1 1 1 1 0⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = 0

0 1 1 0 1 1 1 1 0 0

XOR

=

{
0 if number of ones is even
1 if number of ones is odd

⇝ code distance 2

▶ can detect any single-bit error (actually, any odd number of flipped bits)

▶ used in many hardware (communication) protocols
▶ PCI buses, serial buses
▶ caches
▶ early forms of main memory

very simple and cheap

cannot correct any errors
22

Error-correcting codes
▶ typical application: heavy-duty server

any downtime is expensive!

RAM
▶ bits can randomly flip (e. g., by cosmic rays)
▶ individually very unlikely,

but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

▶ Yes! store every bit three times!
▶ upon read, do majority vote
▶ if only one bit flipped, the other two (correct) will still win

triples the cost! You want WHAT!?!

Can do it with 11%

instead of 200% (!)

extra memory!

23

https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

How to locate errors?
▶ Idea: Use several parity bits

▶ each covers a subset of bits
▶ clever subsets ⇝ violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

▶ Consider 𝑛 = 7 bits 𝐵1 , . . . , 𝐵7 with the following constraints:

𝐵1

0012

𝐵2

0102

𝐵3

0112

𝐵4

1002

𝐵5

1012

𝐵6

1102

𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

Observe:
▶ No error (all 7 bits correct) ⇝ 𝐶 = 𝐶2𝐶1𝐶0 = 0002 = 0✓
▶ What happens if (exactly) 1 bit, say 𝐵𝑖 flips?

𝐶 𝑗 = 1 iff 𝑗th bit in binary representation of 𝑖 is 1 ⇝ 𝐶 encodes position of error!

24

(7, 4) Hamming Code
▶ How can we turn this into a code?

𝐵1

0012
𝐵2

0102
𝐵3

0112
𝐵4

1002
𝐵5

1012
𝐵6

1102
𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐷3 𝐷2 𝐷1 𝐷0𝑃2

⊕
𝑃2 = 𝐷3 ⊕ 𝐷2 ⊕ 𝐷1

𝑃1

⊕ 𝑃1 = 𝐷3 ⊕ 𝐷2 ⊕ 𝐷0
𝑃0

⊕
𝑃0 = 𝐷3 ⊕ 𝐷1 ⊕ 𝐷0

▶ 𝐵4, 𝐵2 and 𝐵1 occur only in one constraint each ⇝ define them based on rest!

▶ (7, 4) Hamming Code – Encoding
1. Given: message 𝐷3𝐷2𝐷1𝐷0 of length 𝑘 = 4
2. copy 𝐷3𝐷2𝐷1𝐷0 to 𝐵7𝐵6𝐵5𝐵3
3. compute 𝑃2𝑃1𝑃0 = 𝐵4𝐵2𝐵1 so that 𝐶 = 0
4. send 𝐷3𝐷2𝐷1𝑃2𝐷0𝑃1𝑃0

25

(7, 4) Hamming Code – Decoding
▶ (7, 4) Hamming Code – Decoding

1. Given: block 𝐵7𝐵6𝐵5𝐵4𝐵3𝐵2𝐵1 of length 𝑛 = 7
2. compute 𝐶 (as above)
3. if 𝐶 = 0 no (detectable) error occurred

otherwise, flip 𝐵𝐶 (the 𝐶th bit was twisted)
4. return 4-bit message 𝐵7𝐵6𝐵5𝐵3

26

(7, 4) Hamming Code – Properties
▶ Hamming bound:

▶ 24 valid 7-bit codewords (on per message)
▶ any of the 7 single-bit errors corrected towards valid codeword
⇝ each codeword covers 8 of all possible 7-bit strings
▶ 24 · 23 = 27 ⇝ exactly cover space of 7-bit strings

▶ distance 𝑑 = 3

▶ can correct any 1-bit error

▶ How about 2-bit errors?
▶ We can detect that something went wrong.
▶ But: above decoder mistakes it for a (different!) 1-bit error and “corrects” that

▶ Variant: store one additional parity bit for entire block
⇝ Can detect any 2-bit error, but not correct it.

27

Hamming Codes – General recipe
▶ construction can be generalized:

▶ Start with 𝑛 = 2ℓ − 1 bits for ℓ ∈ ℕ (we had ℓ = 3)

▶ use the ℓ bits whose index is a power of 2 as parity bits
▶ the other 𝑛 − ℓ are data bits

▶ Choosing ℓ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

simple and efficient coding / decoding

fairly space-efficient

28

Outlook
▶ Indeed: (2ℓ−1, 2ℓ−ℓ−1) Hamming Code is “perfect”

= matches Hamming lower bound

code

⇝ cannot use fewer bits . . .

▶ if message length is 2ℓ − ℓ − 1 for ℓ ∈ ℕ≥2
i. e., one of 1, 4, 11, 26, 57, 120, 247, 502, 1013, . . .

▶ and we want to correct 1-bit errors

▶ For other scenarios, finding good codes is an active research area
▶ information theory predicts that almost all randomly chosen codes are good(!)
▶ but these are inefficient to decode
⇝ clever tricks and constructions needed

29

	Clever Codes
	 Learning Outcomes
	Arithmetic Coding
	 Stream Codes
	 A Decent Hack: Block Codes
	 Block Codes – A Panacea?
	 Arithmetic Coding
	 Arithmetic Coding – Encode Trits Example
	 Versatility of Arithmetic Coding – Adaptive Model
	 Arithmetic Coding – General framework
	 Arithmetic Coding – Encoding
	 Arithmetic Coding – Decoding

	Practical Arithmetic Coding
	 Arithmetic Coding – Numerics
	 Arithmetic Coding – Renormalization
	 Fixed Precision Arithmetic Encode
	 Fixed Precision Renormalize
	 Fixed Precision Arithmetic Decode
	 Arithmetic Coding Discussion

	Error Correcting Codes
	 Noisy Communication
	 Noisy Channels

	Coding Theory
	 Block codes
	 Code distance
	 Lower Bounds

	Hamming Codes
	 Parity Bit
	 Error-correcting codes
	 How to locate errors?
	 (7, 4) Hamming Code
	 (7, 4) Hamming Code – Decoding
	 (7, 4) Hamming Code – Properties
	 Hamming Codes – General recipe
	 Outlook

