
11 Greedy Algorithms
14 January 2025

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25)
Philipps-Universität Marburg

version 2025-01-15 11:48 H

Learning Outcomes

Unit 11: Greedy Algorithms

1. Describe informally what greedy algorithms are.

2. Know exemplary problems and their greedy solutions: Change-Making Problem,
MSTs, SSSPP, Assignment Problem.

3. Be able to design and proof correctness of greedy algorithms for (simple) algorithmic
problems.

4. Be able to explain the matroid properties and its relation to greedy algorithms.

1

Outline

11 Greedy Algorithms
11.1 Introduction
11.2 How Can Greed Succeed?
11.3 Greed in Graphs I: MSTs
11.4 Greed in Graphs II: Prim’s MST Algorithm
11.5 Greed in Graphs III: Shortest Paths
11.6 Greedy Schedules
11.7 The Essence of Greed: Matroids

11.1 Introduction

Myopic Optimization
▶ In a “greedy” algorithm,

we assemble a solution to an optimization problem step by step
always picking the next step to maximize current gain,
and we never take back earlier steps.

“Take what you can, give nothing back!”

▶ reminiscent of gradient-descent algorithms
but discrete and even more unwilling to undo mistakes

⇝ greedy algorithms only yield optimal solutions for certain problems
▶ but where they do, their speed is usually unbeatable
⇝ it is understanding where they succeed

▶ even where they are not optimal, greedy approaches can be efficient heuristics

(unknown quality)

or
approximation

𝑐-approximation = at most factor 𝑐 worse than optimum

algorithms

2

Plan for the Unit
▶ We will first see a few examples (known and new) of greedy algorithms to make the

vague generic description concrete
▶ in particular minimum spanning trees and shortest paths in graphs

▶ Unlike other algorithm design techniques, greedy algorithms have a formal basis:
matroids (and greedoids)
▶ The second part will introduce these and how they can unify correctness proofs

3

A First Example: Reunion With An Old Friend
▶ We have seen an example of a Greedy Algorithm in Unit 7: Huffman Codes!

▶ Recall the problem:
▶ Given: Set of symbols Σ = [0..𝜎), weights 𝑤 : Σ → ℝ≥0
▶ Goal: prefix code 𝐸 (= code trie) that minimizes

∑
𝑐∈Σ 𝑤(𝑐) · |𝐸(𝑐)|

⇝ Since only code tries are valid, all solutions consist in repeatedly merging tries
(starting from single-leaf tries, until single trie left)

▶ each merge contributes the subtree’s total weight to overall cost
(since all leaves in merged tries move one level down / all codewords get one extra bit)

▶ Huffman’s Algorithm: Always choose current cheapest merge.

▶ In the correctness proof, we had to show:
There is always an optimal code trie where the two lowest-weight symbols are siblings.

This is typical: To show that Greedy is optimal, we need a structural insight into optimal solutions.

4

11.2 How Can Greed Succeed?

Greed For Change
The Change-Making Problem (a.k.a. Coin-Exchange Problem)
▶ Given: a set of integer denominations of coins 𝑤1 < 𝑤2 < · · · < 𝑤𝑘 with 𝑤1 = 1,

target value 𝑛 ∈ ℕ≥1

▶ Goal: “fewest coins to give change

(we have sufficient supply of all coins . . .)

𝑛”, i. e.,
multiplicities 𝑐1 , . . . , 𝑐𝑘 ∈ ℕ≥0 with

∑𝑘
𝑖=1 𝑐𝑖 · 𝑤𝑖 = 𝑛 minimizing

∑𝑘
𝑖=1 𝑐𝑖

For Euro coins, denominations are 1¢ , 2¢ , 5¢ , 10¢ , 20¢ , 50¢ , 1=C , and 2=C .
formally: 1 , 2 , 5 , 10 , 20 , 50 , 100 , and 200 .

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8

⇝ Simple greedy algorithm:
largest coins first
▶ optimal time (𝑂(𝑘) if coins sorted)
▶ is

∑
𝑐𝑖 minimal?

1 procedure greedyChange(𝑤[1..𝑘], 𝑛):
2 // Assumes 1 = 𝑤[1] < 𝑤[2] < · · · < 𝑤[𝑘]
3 for 𝑖 := 𝑘, 𝑘 − 1, . . . , 1:
4 𝑐[𝑖] :=

⌊
𝑛
/
𝑤[𝑖]

⌋
5 𝑛 := 𝑛 − 𝑐[𝑖] · 𝑤[𝑖]
6 // Now 𝑛 == 0
7 return 𝑐[1..𝑘]

5

Optimality of Greedy Euro-Change
▶ Theorem: greedyChange computes an optimal 𝑐[1..8] for

𝑤[1..8] = [1, 2, 5, 10, 20, 50, 100, 200] for every 𝑛 ∈ 𝑁≥1.
▶ The greedy algorithm can be interpreted as picking one coin at a time,

each time choosing the largest possible denomination 𝑤̂(𝑛) = max{𝑤[𝑖] : 𝑤[𝑖] ≤ 𝑛}.
▶ We prove by induction over 𝑛: Any optimal solution for 𝑛 must contain 𝑤̂(𝑛) .

▶ 𝑛 = 1: can only use 𝑤̂(𝑛) = 1✓
▶ 𝑛 ∈ [2..5): Assume we had a solution without 2¢ ⇝ must be 𝑛 × 1¢ with 𝑛 ≥ 2;

⇝ we can make this strictly better by replacing 1¢ 1¢ by 2¢ �

▶ 𝑛 ∈ [5..10): Assume solution without 5¢ summing to 𝑛 ≥ 5.
The solution must fall into one of the following cases:
(a) ≥ 3 × 2¢ ⇝ replacing 2¢ 2¢ 2¢ by 5¢ 1¢ strictly better �
(b) ≤ 1 × 2¢ ⇝ value 𝑛 − 2 ≥ 3 without 2¢ � by IH
(c) 2 × 2¢ and ≥ 1 × 1¢ ⇝ 2¢ 2¢ 1¢ → 5¢ strictly better �
(d) 2 × 2¢ , no 1¢ ⇝ only obtain value ≤ 4 < 𝑛 �

▶ 𝑛 ∈ [10, 20): Any solution without 10¢ contains
(a) 5¢ 5¢ ⇝ replace by 10¢ ; or
(b) at most one 5¢ ⇝ at least value 5 without 5¢ � by IH

6

Optimality of Greedy Euro-Change [2]
▶ . . . proof continued

▶ 𝑛 ∈ [20..50) Without 20¢ , we must have
(a) 10¢ 10¢ → 20¢ �

(b) at most one 10¢ ⇝ value 𝑛 − 10 ≥ 10 without 10¢ � by IH
▶ 𝑛 ∈ [50..100) Without 50¢ , we must have

(a) ≥ 3 × 20¢ ⇝ 20¢ 20¢ 20¢ → 50¢ 10¢ �

(b) ≤ 1 × 20¢ ⇝ value 𝑛 − 20 ≥ 30 without 20¢ � by IH
(c) 2 × 20¢ and ≥ 1 × 10¢ ⇝ 20¢ 20¢ 10¢ → 50¢ �

(d) 2 × 20¢ , no 10¢ ⇝ value 𝑛 − 40 ≥ 10 without 10¢ � by IH

▶ 𝑛 ∈ [100..200): as for 𝑛 ∈ [10, 20), mutatis mutandis.
▶ 𝑛 ≥ 200: as for 𝑛 ∈ [20, 50).

▶ The same arguments work for adding coins 1 · 10𝑚 , 2 · 10𝑚 , 5 · 10𝑚 for 𝑚 = 3, 4, . . .

That went smoothly!
And we proved a nice structural statement about how optimal solutions look like as a bonus.

Maybe Greedy always works?
7

Greed Can Mislead
▶ Unfortunately, No. See 𝑤 = (1, 3, 4) and 𝑛 = 6. Where/Why does our proof from above fail?

or 𝑤 = (1, 4, 9) and 𝑛 = 12
▶ Indeed, Greedy can be arbitrarily bad compared to the optimal solution:

See 𝑤 = (1, 999, 1000) and 𝑛 = 1998.

⇝ Need to be careful about the details of a correctness argument for greedy algorithms.

▶ The Change-Making problem is still only partially understood.
▶ Exactly characterizing the denomination sequences that are optimally handled by

greedyChange is an open research problem.
▶ Sufficient criteria for “greed-compatible” denominations found in the literature.

▶ The general problem is (weakly) NP-hard
▶ Yet, for moderate 𝑛, we will see a solution for general denomination sequences later!

8

11.3 Greed in Graphs I: MSTs

Metaphor: Planning an electricity grid
Given: Houses to be connected to central power grid

Possible connections with building costs given

Goal: Cheapest way to get every house connected

1010

22
66

1212

99

99 99

99

33

1010
77

77

22

33

88

55

11

11 11
55

0

1

2

3

4

5

6 7 8

9

9

The Minimum Spanning Tree (MST) Problem
Given: undirected, edge-weighted, simple

no self loops,
no parallel edges

,
connected graph 𝐺 = (𝑉, 𝐸, 𝑐)

Formally: Recall assumption 𝑉 = [0..𝑛) (⇝ array indices)
edges 𝐸 ⊆

{
{𝑢, 𝑣} : 𝑢, 𝑣 ∈ 𝑉 ∧ 𝑢 ≠ 𝑣

}
edge weights (costs) 𝑐 : 𝐸 → ℝ≥0
for all 𝑢, 𝑣 ∈ 𝑉 there exists a path 𝑢 ⇝ 𝑣 in (𝑉, 𝐸)

1010

22
66

1212

99

99 99

99

33

1010
77

77

22

33

88

55

11

11 11
55

0

1

2

3

4

5

6 7 8

9

Goal: a spanning tree (𝑉, 𝑇)
with minimal total cost 𝑐(𝑇) ≔

∑
𝑒∈𝑇

𝑐(𝑒)

Formally: 𝑇 ⊆ 𝐸

(𝑉, 𝑇) is connected and acyclic (“spanning tree”)
for every spanning tree (𝑉, 𝑇′) of 𝐺 we have 𝑐(𝑇′) ≥ 𝑐(𝑇).

0

1

2

3

4

5

6 7 8

9

10

Further MST Applications
Direct Applictions

▶ single-linkage hierarchical clustering

▶ Bottleneck-shortest paths

▶ Approximation algorithms, e. g.,
▶ Christofides’s Metric TSP Approximation
▶ Steiner-tree problem

As a cheap subroutine

▶ Routing protocols

▶ medical image processing

▶ . . .

11

Interlude: On Varieties of Trees

We freely use “tree” to mean different things in different contexts . . . mind the confusion.

▶ here:
in spanning tree

“tree” = undirected, nonplane
no order on edges

tree = an undirected, connected and acyclic graph

The digraph flavor is a rooted tree: (hence undirected trees sometimes called unrooted)

▶ rooted (nonplane/unordered) tree = digraph (𝑉, 𝐸) with root 𝑟 ∈ 𝑉 s.t.
∀𝑣 ∈ 𝑉 \ {𝑟} : 𝑑out

out-degree = #outgoing edges

(𝑣) = 1 and 𝑑out(𝑟) = 0
We draw trees with the
single(!) root on top . . .

Other “trees” don’t originate from graphs naturally, but rather from recursion / terms:

▶ binary tree = a null pointer or a node with left and right children, each a binary tree
(formally: the set of binary trees is the smallest fixed point of that construction)

▶ ordinal trees = a node with a sequence of 0 or more children, each ordinal trees
= rooted ordered trees (rooted unordered + total order on children)

▶ plus many more variants out there . . . ⇝ if in doubt, double check definitions!

12

A Naive Approach
How to start finding an MST?
Using the cheapest edge shouldn’t hurt . . .

1 procedure greedyMST(𝑉 , 𝐸, 𝑐):
2 // Assume (𝑉, 𝐸) is simple & connected, 𝑐 : 𝐸 → ℝ≥0
3 𝑇 := ∅
4 while (𝑉, 𝑇) not connected
5 𝑒 := cheapest edge that doesn't close a cycle in 𝑇

6 𝑇 := 𝑇 ∪ {𝑒}
7 return 𝑇

1010

22
66

1212

99

99 99

99

33

1010
77

77

22

33

88

55

11

11 11
55

0

1

2

3

4

5

6 7 8

9

Apart from implementing line 4 and line 5 efficiently, this is Kruskal’s Algorithm!

As so often with greedy algorithms, the hardest bit is the correctness argument. We have:

Theorem: Kruskal’s Algorithm finds a minimum spanning tree.
This immediately follows from proving the following invariant:

Kruskal’s Invariant: There is some MST 𝑇

henceforth: identify MST with its edge set

∗ with 𝑇 ⊆ 𝑇∗.

13

A Naive Approach Works – Kruskal’s Algorithm
How to start finding an MST?
Using the cheapest edge shouldn’t hurt . . .

1 procedure kruskalMST(𝑉 , 𝐸, 𝑐):
2 // Assume (𝑉, 𝐸) is simple & connected, 𝑐 : 𝐸 → ℝ≥0
3 𝑇 := ∅
4 while (𝑉, 𝑇) not connected
5 𝑒 := cheapest edge that doesn't close a cycle in 𝑇

6 𝑇 := 𝑇 ∪ {𝑒}
7 return 𝑇

1010

22
66

1212

99

99 99

99

33

1010
77

77

22

33

88

55

11

11 11
55

0

1

2

3

4

5

6 7 8

9

Apart from implementing line 4 and line 5 efficiently, this is Kruskal’s Algorithm!

As so often with greedy algorithms, the hardest bit is the correctness argument. We have:

Theorem: Kruskal’s Algorithm finds a minimum spanning tree.
This immediately follows from proving the following invariant:

Kruskal’s Invariant: There is some MST 𝑇

henceforth: identify MST with its edge set

∗ with 𝑇 ⊆ 𝑇∗.

13

Crossing Edges and the MST-Cut Lemma
To prove the correctness of Kruskal’s Algorithm, we need a tool.
Notation:
▶ Cut 𝑆:

non-trivial set of vertices ∅ ≠ 𝑆 ⊊ 𝑉

▶ crossing edge 𝑒 wrt. cut 𝑆:
𝑒 = {𝑢, 𝑣} with 𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆̄ := 𝑉 \ 𝑆

𝑆

crossing edge
cheapest crossing edge

The MST-Cut Lemma:
Let 𝑇∗ be an MST und 𝑊 ⊆ 𝑇∗.
For every cut 𝑆, not cutting any edges in 𝑊 , and

every cheapest crossing edge 𝑒 wrt. 𝑆
there is an MST 𝑇̂∗ that contains 𝑊 ∪ {𝑒}.

14

Proof of MST-Cut Lemma
Proof:

▶ Case 1: 𝑒 ∈ 𝑇∗.
Then picking 𝑇̂∗ = 𝑇∗ proves the claim.

▶ Case 2: 𝑒 ∉ 𝑇∗.
⇝ 𝑇∗ ∪ {𝑒} contains unique cycle 𝐶 using 𝑒.
▶ Since 𝑒 crosses cut 𝑆, 𝐶 crosses 𝑆
⇝ There is a second crossing edge 𝑒′ ∈ 𝐶.
▶ Since 𝑒′ is crossing, 𝑒′ ∉ 𝑊

▶ by assumption, 𝑐(𝑒) ≤ 𝑐(𝑒′) (we pick cheapest crossing edge)
⇝ 𝑇̂∗ = 𝑇∗ ∪ {𝑒} \ {𝑒′} is a spanning tree, and 𝑊 ∪ {𝑒} ⊆ 𝑇̂∗

▶ 𝑐(𝑇̂∗) = 𝑐(𝑇∗) + 𝑐(𝑒) − 𝑐(𝑒′) ≤ 𝑐(𝑇∗)
⇝ 𝑇̂∗ is an MST.

The MST-Cut Lemma:
Let 𝑇∗ be an MST und 𝑊 ⊆ 𝑇∗.
For every cut 𝑆, not cutting any edges in 𝑊 , and

every cheapest crossing edge 𝑒 wrt. 𝑆
there is an MST 𝑇̂∗ that contains 𝑊 ∪ {𝑒}.

15

Kruskal’s Algorithm – Correctness
With these preparations, we can prove
Kruskal’s Invariant: There is some MST 𝑇∗ with 𝑇 ⊆ 𝑇∗.

Proof: by induction over the loop iterations
▶ IB: initially 𝑇 = ∅ and ∅ ⊆ 𝑇∗ for every MST 𝑇∗.

▶ IH: Assume the invariant is after the 𝑖th iteration.

▶ IS: Let 𝑒 = 𝑣𝑤 be the edge considered in iteration 𝑖 + 1.
▶ Let 𝑆 be the connected component of 𝑣 in (𝑉, 𝑇) (𝑇: before potentially adding 𝑒)

▶ Case 1: 𝑤 ∈ 𝑆.
Then 𝑒 closes a cycle in 𝑇 and is not added to 𝑇.
⇝ invariant still satisfied.

▶ Case 2: 𝑤 ∉ 𝑆.
Then 𝑒 is a crossing edge wrt. 𝑆; must be a cheapest crossing edge by choice of 𝑒.
⇝ by inv. ∃ MST 𝑇∗ ⊇ 𝑇 and by MST-Cut Lemma, there is an MST 𝑇̂∗ ⊇ 𝑇 ∪ {𝑒}
⇝ Invariant still satisfied.

Since we only terminate when 𝑇 is spanning, upon termination 𝑇 = 𝑇∗ for an MST 𝑇∗.

The MST-Cut Lemma:
Let 𝑇∗ be an MST und 𝑊 ⊆ 𝑇∗.
For every cut 𝑆, not cutting any edges in 𝑊 , and

every cheapest crossing edge 𝑒 wrt. 𝑆
there is an MST 𝑇̂∗ that contains 𝑊 ∪ {𝑒}.

16

Kruskal’s Algorithm – Data Structures
For an efficient implementation of Kruskal’s algorithm, we need to efficiently

1. check whether 𝑇 is spanning
2. find the next cheapest edge to consider
3. test whether an edge closes a cycle

Each can be supported as follows:

1. Since we maintain 𝑇 acyclic, checking |𝑇| = 𝑛 − 1 suffices!
2. It suffices to pre-sort 𝐸 by weight!

▶ We only ever grow 𝑇, so if 𝑒 is closing a cycle now, it will for good.
⇝ Once discarded, an edge need not be looked at ever again.

3. Use a Union-Find data structure (see Algorithmen & Datenstrukturen!)
▶ dynamically maintain connected components
▶ initially, every vertex has its own id
▶ adding 𝑣𝑤 to 𝑇 ⇝ call union(𝑣, 𝑤)
▶ 𝑣𝑤 closes a cycle iff find(𝑣) == find(𝑤)

⇝ 𝑂(𝑚 log𝑚) = 𝑂(𝑚 log 𝑛) time and 𝑂(𝑚) extra space.
17

11.4 Greed in Graphs II: Prim’s MST Algorithm

Prim’s Algorithm
▶ An alternative greedy approach that tries to consider only crossing edges.

▶ start with 𝑆 = {𝑠} for some vertex 𝑠

▶ only consider edges 𝑣𝑤 for some 𝑣 ∈ 𝑆, 𝑤 ∉ 𝑆 (crossing edges)
▶ add cheapest crossing edge 𝑣𝑤 to 𝑇 and add 𝑤 to 𝑆

▶ repeat until |𝑇| = 𝑛 − 1
⇝ 𝑇 invariably a single tree

⇝ a graph traversal with tree edges 𝑇!

𝑆

initial state

active

done

during traversal

done

final state

The MST-Cut Lemma:
Let 𝑇∗ be an MST und 𝑊 ⊆ 𝑇∗.
For every cut 𝑆, not cutting any edges in 𝑊 , and

every cheapest crossing edge 𝑒 wrt. 𝑆
there is an MST 𝑇̂∗ that contains 𝑊 ∪ {𝑒}.

⇝ Correctness as for Kruskal’s algorithm: Invariant: ∃ MST 𝑇∗ with 𝑇 ⊆ 𝑇∗.
IB: initially true with 𝑇 = ∅
IS: whenever we add an edge, it is the cheapest crossing edge w.r.t. cut (𝑆, 𝑆̄).

18

Prim’s Algorithm – Lazy Implementation
How to efficiently find the cheapest crossing edge?

▶ Option 1: Maintain priority queue 𝑄 of edges, ordered by weight.

1 procedure lazyPrimMST(𝐺):
2 // Assume 𝐺 = (𝑉, 𝐸, 𝑐) simple & connected, 𝑐 : 𝐸 → ℝ≥0
3 𝑇 := ∅; inS[0..𝑛) := false
4 visit(0)
5 while |𝑇| < 𝑛 − 1:
6 𝑣𝑤 := 𝑄.delMin()
7 if ¬inS[𝑤] then visit(𝑤); 𝑇.insert(𝑣𝑤) end if
8 if ¬inS[𝑣] then visit(𝑣); 𝑇.insert(𝑤𝑣) end if
9 return 𝑇

10

11 procedure visit(𝑣):
12 for (𝑤, 𝑐) ∈ 𝐺.adj[𝑣] // edge 𝑣𝑤 with cost 𝑐
13 if ¬inS[𝑤] then 𝑄.insert(𝑣𝑤, 𝑐) // 𝑤 now active
14 inS[𝑣] := true // 𝑣 now done

▶ Lazy Prim: check if 𝑣𝑤 is crossing lazily
i. e., only after delMin

▶ An instance of tricolor graph traversal
▶ 𝑣 ∈ done iff inS[𝑣]
▶ all edges to active vertices are in 𝑄

⇝ visit every edge at most once

▶ size of 𝑄 always ≤ 𝑚 ⇝ space 𝑂(𝑚)
▶ Running time:

▶ need 𝑚 calls to insert
and 𝑛 − 1 delMins

⇝ with binary heaps, total time
𝑂(𝑚 log𝑚) = 𝑂(𝑚 log 𝑛)

▶ with Fibonacci heaps even
𝑂(𝑚 + 𝑛 log 𝑛) (insert amortized 𝑂(1) time)

Easy modification: store parent in tree rooted at vertex 0

19

Prim’s Algorithm – Eager Implementation
We can reduce the extra space to 𝑂(𝑛) if we avoid storing multiple edges to the same 𝑤 ∈ 𝑆̄.
▶ Option 2: Maintain priority queue 𝑄 of vertices in 𝑆̄,

ordered by weight of cheapest edge connecting them to 𝑆.

▶ call that weight the distance, dist[𝑤], of 𝑤 ∈ 𝑆̄ from 𝑆.
(dist[𝑤] = 0 if 𝑤 ∈ 𝑆, dist[𝑤] = ∞ if no single edge to 𝑆)

▶ after adding a vertex 𝑢 to 𝑆, distance to 𝑤 can shrink (to 𝑐(𝑢𝑤)) (but never grow)

⇝ need a MinPQ that supports decreaseKey
▶ implementation hassle: efficient implementations require a “pointer” into data structure

cleaner design: let data structure handle pointers internally

⇝ IndexMinPQ:
▶ Assumption: stored

(use ST otherwise)

objects are from [0..𝑛) and 𝑛 known

(use amortized doubling otherwise)

/fixed at construction time
▶ IndexMinPQ implementations maintain array positions

e. g., for binary heaps, maintain heapIndex[0..n), update whenever heap modified
⇝ easy to support decreaseKey(𝑖, 𝑝′) and contains(𝑖)

(for a full implementation see Sedgewick & Wayne or Nebel & Wild)

20

Prim’s Algorithm – Eager Implementation Code
1 procedure primMST(𝐺):
2 // Assume 𝐺 = (𝑉, 𝐸, 𝑐) is simple & connected, 𝑐 : 𝐸 → ℝ≥0
3 father[0..𝑛) := NONE; inS[0..𝑛) := false; dist[0..𝑛) := ∞
4 𝑄 := new IndexMinPQ(𝑛)
5 𝑄.insert(0, 0)
6 while ¬𝑄.isEmpty()
7 visit(𝑄.delMin())
8 return

{
{father[𝑣], 𝑣} : 𝑣 ∈ [1..𝑛)

}
9

10 procedure visit(𝑣):
11 for (𝑤, 𝑐) ∈ 𝐺.adj[𝑣] // edge 𝑣𝑤 with cost 𝑐
12 if ¬inS[𝑤]
13 if 𝑐 < dist[𝑤] // 𝑣𝑤 currently cheapest edge to 𝑤

14 father[𝑤] := 𝑣; dist[𝑤] := 𝑐

15 if 𝑄.contains(𝑤) // 𝑤 already active
16 𝑄.decreaseKey(𝑤, 𝑐)
17 else // 𝑤 now becoming active
18 𝑄.insert(𝑤, 𝑐)
19 end if
20 end if
21 end for
22 inS[𝑣] := true; dist[𝑣] := 0 // 𝑣 now done

▶ Eager Prim: filter edges eagerly!
⇝ keep only cheapest edge to 𝑤 ∈ 𝑆̄

(namely {father[𝑤], 𝑤})

▶ Prototypical tricolor traversal variant

▶ 𝑣 ∈ done iff inS[𝑣]
▶ 𝑣 ∈ active iff 𝑄.contains(𝑣)
▶ choose next vertex using PQ 𝑄,

iterative over its edges

▶ size of 𝑄 always ≤ 𝑛 ⇝ space 𝑂(𝑛)

▶ Running time:
▶ 𝑛 × insert, (𝑛 − 1) × delMin,

up to 𝑚 × decreaseKey

⇝ with binary heaps 𝑂(𝑚 log 𝑛)
with Fibonacci heaps 𝑂(𝑚 + 𝑛 log 𝑛)

21

Minimum Spanning Trees – Discussion
MSTs are a versatile modeling tool

very efficient to compute even for arbitrary weights

Prim’s Algorithm (eager version) give best time and space and is efficient in practice

Above algorithms are almost linear-time, but not quite . . . can we find MSTs in linear time?
▶ Yes, if graph is dense, e. g., 𝑚 = Ω(𝑛 log 𝑛). Then 𝑂(𝑚 + 𝑛 log 𝑛) = 𝑂(𝑚)

▶ stronger results known, as well

▶ Yes, for integer weights on the word-RAM (Fredman, Willard 1994)

▶ Yes, if randomization is allowed (Karger, Klein, Tarjan 1995)
▶ uses that linear time suffices to verify a given ST as minimal(!)

▶ General (deterministic, comparison-based, on sparse graphs)? Open research problem!
▶ Best known general time 𝑂(𝑚𝛼(𝑚, 𝑛)) where 𝛼 is an “inverse Ackermann function”

𝛼(𝑚, 𝑛) = min{𝑧 ≥ 1 : 𝐴(𝑧, 4⌈𝑚/𝑛⌉) > lg 𝑛}
𝐴(0, 𝑥) = 2𝑥, 𝐴(𝑖 , 0) = 0, 𝐴(𝑖 , 1) = 2, (𝑖 ≥ 1),
𝐴(𝑖 , 𝑥) = 𝐴

(
𝑖 − 1, 𝐴(𝑖 , 𝑥 − 1)

)
; (𝑖 ≥ 1, 𝑥 ≥ 2)

22

11.5 Greed in Graphs III: Shortest Paths

Metaphor: Route Planning
Given: Road network (map), current location, target location

crossings = vertices, roads = edges, road length = edge weight

Goal: Find shortest path from current location to target

23

SSSPP
It turns out that a cleaner algorithmic problem is to find shortest paths to all vertices.

Single Source Shortest Path Problem (SSSPP)

▶ Given: directed, edge-weighted, simple graph 𝐺 = (𝑉, 𝐸, 𝑐)
with edge costs 𝑐 : 𝐸 → ℝ, a start vertex 𝑠 ∈ 𝑉

▶ Goal: a data structure that reports for every 𝑣 ∈ 𝑉 :
𝛿𝐺(𝑠, 𝑣): the shortest-path distance from 𝑠 to 𝑣

spath(𝑣): a shortest path from 𝑠 to 𝑣 (if it exists)

Formally:

▶ for a walk 𝑤[0..𝑚] in 𝐺, we define 𝑐(𝑤) =
𝑚−1∑
𝑖=0

𝑐
(
𝑤[𝑖]𝑤[𝑖 + 1]

)
▶ 𝛿𝐺(𝑠, 𝑣) = inf

(
{+∞} ∪

{
𝑐(𝑤) : 𝑤 = 𝑤[0..𝑚] a walk in 𝐺 with 𝑤[0] = 𝑠 ∧ 𝑤[𝑚] = 𝑣

})
▶ Note: 𝛿𝐺 defined via all 𝑠-𝑣-walks, not only 𝑠-𝑣-paths (= vertex-single walks)
▶ But we will see: In relevant scenarios, we can restrict to paths (hence the name)

▶ spath(𝑣) returns a walk 𝑤 with 𝑐(𝑤) = 𝛿𝐺(𝑠, 𝑣) if such a walk exists
24

The Trouble with Negative Cycles
▶ The complications in the definition all stem from negative-weight edges

𝛿𝐺(𝑠, 𝑣) = inf
(
{+∞} ∪ {𝑐(𝑤) : 𝑤 an 𝑠-𝑣-walk in 𝐺}

)
▶ In general, 𝛿𝐺(𝑠, 𝑣) can be

▶ +∞ if there is no 𝑠-𝑣-walk at all, or (“no-path case” easy to detect and handle)

▶ −∞ if there are 𝑠-𝑣-walks of arbitrarily small (negative) value
This happens iff we reach a negative cycle that we can repeat indefinitely,

always improving the total “cost” of the walk.

⇝ Lemma (Shortest Paths): If 𝑤 is a shortest 𝑠-𝑣-walk in 𝐺 = (𝑉, 𝐸, 𝑐),
there is an 𝑠-𝑣-path 𝑝 with 𝑐(𝑝) = 𝑐(𝑤).

Proof: Suppose 𝑤 contains a cycle 𝐶.
▶ If 𝑐(𝐶) < 0, 𝑤 is not shortest as we can repeat 𝐶 and reduce cost �
▶ If 𝑐(𝐶) > 0, 𝑤 is not shortest as we can remove 𝐶 and reduce cost �
▶ If 𝑐(𝐶) = 0 for all cycles in 𝑤, we can remove them from 𝑤 to obtain a path 𝑝 and 𝑐(𝑝) = 𝑐(𝑤).

⇝ In the absense of negative cycles, 𝛿𝐺(𝑠, 𝑣) is well-defined and
all shortest walks are shortest paths (of at most 𝑛 − 1 edges).

25

Variants of Shortest Path Problems
Important special cases

1. Positive SSSPP

▶ 𝑐 : 𝐸 → ℝ>0
▶ most relevant case for many applications ⇝ focus of this section

2. Unweighted SSSPP

▶ 𝑐(𝑒) = 1 for 𝑒 ∈ 𝐸 ⇝ 𝑐(𝑤) = #edges for every walk 𝑤

⇝ solved by BFS in linear time

3. Acyclic SSSPP

▶ 𝐺 is a DAG
▶ can be solved in linear time based on topological sort (for arbitrary 𝑐)

▶ For the rest of this section, we will assume 𝑐(𝑒) > 0.

▶ But: The general case of cyclic graphs with negative edge weights is also relevant
▶ We will come back to this case in Unit 12!

26

Dĳkstra’s Algorithm
▶ Intuition: Imagine sending out many little pioneers, walking at unit speed from 𝑠 across all edges in 𝐺.

The first pioneer to reach a vertex 𝑣 “claims” 𝑣 and proclaims the current time (= distance).

Dĳkstra’s Algorithm is a event-driven simulation of this process!

▶ Event: Some pioneer reaches a new vertex.
Can set a “timer” for that as soon as they start walking over an edge.

▶ Maintain priority queue of events, sorted by time.
▶ Discard events for vertices that have been claimed already.
▶ Avoid generating events when already clear that they will be discarded.

▶ Note: With 𝑐(𝑒) = 1, this simulates BFS!

▶ Implementation: Store unclaimed vertices in IndexMinPQ
Priority = earliest time known so far when this vertex will be claimed

▶ To claim 𝑤 at time 𝑡, must have claimed some 𝑣 at time 𝑡 − 𝑐(𝑣𝑤)
⇝ whenever we claim a vertex 𝑣, update successors’ claim times (via decreaseKey)

⇝ overall process is a graph traversal! claimed = done

27

Dĳkstra’s Algorithm – Code & Correctness
1 procedure dĳkstra(𝐺):
2 // Assume 𝐺 = (𝑉, 𝐸, 𝑐) is simple (di)graph, 𝑐 : 𝐸 → ℝ>0
3 father[0..𝑛) := NONE; inS[0..𝑛) := false; dist[0..𝑛) := +∞
4 𝑄 := new IndexMinPQ(𝑛)
5 𝑄.insert(0, 0); dist[𝑠] := 0
6 while ¬𝑄.isEmpty()
7 visit(𝑄.delMin())
8 return (dist, father)
9

10 procedure visit(𝑣):
11 for (𝑤, 𝑐) ∈ 𝐺.adj[𝑣] // edge 𝑣𝑤 with cost 𝑐 > 0
12 if ¬inS[𝑤]
13 if dist[𝒗] + 𝒄 < dist[𝑤]
14 // 𝑠 ⇝ 𝑣 → 𝑤 new currently cheapest path to 𝑤

15 father[𝑤] := 𝑣; dist[𝑤] := dist[𝒗] + 𝒄
16 if 𝑄.contains(𝑤) then 𝑄.decreaseKey(𝑤, 𝑐)
17 else 𝑄.insert(𝑤, 𝑐) end if // 𝑤 active
18 end if
19 end if
20 end for
21 inS[𝑣] := true // 𝑣 done

▶ Same as primMST except dist computation
distance from 𝑠, not distance from 𝑆

⇝ Same running time:
▶ 𝑛 × insert, (𝑛 − 1) × delMin,

up to 𝑚 × decreaseKey

⇝ with binary heaps 𝑂(𝑚 log 𝑛)
with Fibonacci heaps 𝑂(𝑚 + 𝑛 log 𝑛)

▶ Correctness:

1. current “time” = dist[𝑣] in visit(𝑣) calls
strictly increasing over iterations

2. Invariant: dist[v] is cost of some 𝑠-𝑣-path
or dist[v] = +∞

3. dist[𝑢] = 𝛿𝐺(𝑠, 𝑢) for all 𝑢 ∈ done

28

Shortest Paths Discussion
Simple and efficient solution if edge weights are positive

Dĳkstra’s Algorithm (with Fibonacciy heaps) is worst-case optimal
▶ (for sorting vertices by distance from 𝑠 in a comparison-addition model)
▶ another fine example of a greedy algorithm!

▶ improvements often possible for 𝑠-𝑡 shortest paths (although worst case remains same)
▶ in SSSPP Dĳkstra, can stop once 𝑡 is done
▶ bidirectional Dĳkstra (alternatingly work from both ends until we “meet”)
▶ 𝐴∗/goal-directed search (use cheap lower bound for 𝛿𝐺(𝑣, 𝑡) in vertex selection)

▶ we will revisit the general SSSPP (with negative weights)

29

11.6 Greedy Schedules

Scheduling
▶ A rich class of optimization problems deals with scheduling.

▶ Given: Jobs (a.k.a. tasks, processes) and machines (a.k.a. workers, processors);
optionally: constraints (e. g., order of certain jobs)

▶ Common Goal: Find an optimal schedule, i. e.,
decide which machine does which jobs, and when,
such that a given objective is optimized (e. g., shortest makespan)

▶ exact properties change computational complexity of scheduling dramatically
▶ can jobs be preempted (paused)?
▶ are all machines equally fast on all jobs?
▶ can we choose to drop certain jobs (at a cost) or must we schedule all?
▶ do jobs have a hard deadline after which they are useless?
▶ . . .

⇝ Could fill a module of its own . . . Here: one exemplary special case

30

The Activity selection problem
▶ Activity Selection: scheduling for single machine, jobs with fixed start and end times

pick a subset of jobs without conflicts
Formally:

▶ Given: Activities 𝐴 = {𝑎0 , . . . , 𝑎𝑛−1}, each with a start time 𝑠𝑖 and finish time 𝑓𝑖
(0 ≤ 𝑠𝑖 < 𝑓𝑖 < ∞)

▶ Goal: Subset 𝐼 ⊆ [0..𝑛) of tasks such that 𝑖 , 𝑗 ∈ 𝐼 ∧ 𝑖 ≠ 𝑗 =⇒ [𝑠𝑖 , 𝑓𝑖) ∩ [𝑠 𝑗 , 𝑓𝑗) = ∅
and |𝐼| is maximal among all such subsets

▶ We further assume that jobs are sorted by finish time, i. e., 𝑓0 ≤ 𝑓1 ≤ · · · ≤ 𝑓𝑛−1
(if not, easy to sort them in 𝑂(𝑛 log 𝑛) time)

𝑎0𝑎0

𝑎1𝑎1

𝑎2𝑎2
𝑎3𝑎3

𝑎4𝑎4

𝑎5𝑎5

𝑎6𝑎6

𝑎7𝑎7

𝑎8𝑎8

𝑎9𝑎9
𝑎10𝑎10

31

Greedy Activity Selection

1 procedure greedyActivitySelection(𝑠[0..𝑛), 𝑓 [0..𝑛))
2 𝐼 := {0}
3 last := 0
4 for 𝑖 := 1, . . . , 𝑛 − 1
5 if 𝑠[𝑖] ≥ 𝑓 [last] // no conflict, add it!
6 𝐼 := 𝐼 ∪ {𝑖}
7 last := 𝑖

8 return 𝐼

▶ running time 𝑂(𝑛) trivial
(assumes that tasks already sorted!)

▶ Correctness: greedyActivitySelection (gAS)
is effectively recursive:

gAS(𝐴) = {0} ∪ gAS(𝐴≥0)
for 𝐴≥0 = {𝑎𝑖 : 𝑠𝑖 ≥ 𝑓0}

𝑎0𝑎0

𝑎1𝑎1

𝑎2𝑎2
𝑎3𝑎3

𝑎4𝑎4

𝑎5𝑎5

𝑎6𝑎6

𝑎7𝑎7

𝑎8𝑎8

𝑎9𝑎9
𝑎10𝑎10

⇝ 𝐴≥0 = {𝑎4 , 𝑎6 , 𝑎7 , . . . , 𝑎10}
We prove:

1. ∃ optimal solution 𝐼∗ with 0 ∈ 𝐼∗

2. 𝐼∗ with 0 ∈ 𝐼∗ is an optimal solution iff 𝐼∗ \ {0} is an optimal solution for 𝐴≥0.
⇝ Correctness of gAS follows by induction on 𝑛.

32

Greedy Activity Selection – Correctness Proof
Proofs:

1. ∃ optimal solution 𝐼∗ with 0 ∈ 𝐼∗

▶ Let 𝐼∗ be some optimal solution and let 𝑖 = min 𝐼∗.
▶ If 𝑖 = 0, we are done.
▶ Otherwise, since 𝐼∗ is conflict-free and 𝑎0 finishes earlier than 𝑎𝑖 ,

𝐼∗ \ {𝑖} ∪ {0} is also conflict-free.

2. 𝐼∗ with 0 ∈ 𝐼∗ is an optimal solution iff 𝐼∗ \ {0} is an optimal solution for 𝐴≥0.
“⇒” by contraposition.

Let 𝐼≥0 = 𝐼 \ {0} be a non-optimal solution for 𝐴≥0, i. e.,
∃ solution 𝐼∗≥0 for 𝐴≥0 with |𝐼∗≥0| > |𝐼≥0|.
Then also |𝐼| = |𝐼≥0 ∪ {0}| < |𝐼∗≥0 ∪ {0}|.

“⇐” by contraposition. Let 𝐼 be non-optimal for 𝐴, i. e., |𝐼∗| > |𝐼| exists.
By Claim 1, we can assume that 0 ∈ 𝐼∗.
Then |𝐼 \ {0}| < |𝐼∗ \ {0}|.

33

11.7 The Essence of Greed: Matroids

Set Systems
We will now see a formalism to unify the study a whole class of Greedy algorithms.

▶ Hereditary Set System:
(𝑆, I) for a finite set 𝑆 and a set of “independent” sets I ⊆ 2𝑆 is a
hereditary set system if 𝐵 ∈ I ∧ 𝐴 ⊆ 𝐵 =⇒ 𝐴 ∈ I

▶ Weighted hereditary set system:
(𝑆, I, 𝑤) with a hereditary set system (𝑆, I) and weight 𝑤 : 𝑆 → ℝ≥0

▶ We extend 𝑤 from 𝑆 to 2𝑆 via 𝑤(𝐴) :=
∑
𝑥∈𝐴

𝑤(𝑥)

⇝ Natural optimization problem for weighted set system: max
𝐴∈I

𝑤(𝐴)
▶ usually also: find this set 𝐴, i. e., arg max

𝐴∈I
𝑤(𝐴)

34

Canonical Greedy Algorithm
▶ Given a weighted set system, we can try to greedily optimize 𝑤(𝐴):

1 procedure canonicalGreedy(𝑆, I, 𝑤)
2 // Assume 𝑆 = {𝑠1 , . . . , 𝑠𝑛} sorted by weight: 𝑤(𝑠1) ≥ 𝑤(𝑠2) ≥ · · · ≥ 𝑤(𝑠𝑛)
3 𝐴 := ∅
4 for 𝑖 := 1, . . . , 𝑛
5 if 𝐴 ∪ {𝑠𝑖} ∈ I

6 𝐴 := 𝐴 ∪ {𝑠𝑖}
7 return 𝐴

⇝ When does this greedy algorithm succeed, i. e., find arg max
𝐴∈I

𝑤(𝐴)?

▶ Certainly not always:
𝑆 = {𝑥, 𝑦, 𝑧}, I =

{
∅, {𝑥}, {𝑦}, {𝑧}, {𝑦, 𝑧}

}
𝑤(𝑥) = 3, 𝑤(𝑦) = 𝑤(𝑧) = 2

▶ Indeed: Greedy succeeds if and only if (𝑆, I) is a matroid.

35

Matroids
▶ Matroid:

Hereditary set system (𝑆, I) is a matroid if it satisfies the exchange property:
𝐴, 𝐵 ∈ I ∧ |𝐴| < |𝐵| =⇒ ∃𝑥 ∈ 𝐵 \ 𝐴 : 𝐴 ∪ {𝑥} ∈ I

▶ Prototypical example (also origin of names):
▶ 𝑆 = rows of a given matrix
▶ I = set of linearly independent rows

⇝ (𝑆, I) is a matroid by Steinitz exchange lemma („Austauschlemma der linearen Algebra“)

▶ Further example: Graphic Matroid: Given an undirected graph 𝐺 = (𝑉, 𝐸)
▶ 𝑆 = 𝐸

▶ 𝐴 ∈ I iff (𝑉, 𝐴) is acyclic
⇝ check exchange property:

adding 𝑘 acyclic edges reduces #connected components by exactly 𝑘

if |𝐵| > |𝐴|, some edge in 𝐵 \ 𝐴 does not close a cycle in 𝐴

▶ set 𝑤(𝑒) = 𝑊 − 𝑐(𝑒) for 𝑐 the edge cost and 𝑊 > max 𝑐(𝑒)
⇝ a maximum-weight independent set in (𝑆, I) iff MST of 𝐺!

36

Greedy iff Matroid
Theorem:
Let (𝑆, I) be a hereditary set system. The following statements are equivalent

1. canonicalGreedy(𝑆, I, 𝑤) = arg max𝐴∈I 𝑤(𝐴) for all weights 𝑤 : 𝑆 → ℝ≥0.
2. (𝑆, I) is a matroid.

Proof:

37

Discussion
Matroid Theory

If we can identify a problem as matroid, Greedy automatically works!

unfortunately often necessarily easier than a direct proof

Greedy Algorithms

If applicable, Greedy algorithms usually offer linear running time

If successful, correctness proof often insightful for problem solved

Restricted to “tame” problems

38

	Greedy Algorithms
	 Learning Outcomes
	Introduction
	 Myopic Optimization
	 Plan for the Unit
	 A First Example: Reunion With An Old Friend

	How Can Greed Succeed?
	 Greed For Change
	 Optimality of Greedy Euro-Change
	 Optimality of Greedy Euro-Change [2]
	 Greed Can Mislead

	Greed in Graphs I: MSTs
	 Metaphor: Planning an electricity grid
	 The Minimum Spanning Tree (MST) Problem
	 Further MST Applications
	 Interlude: On Varieties of Trees
	 A Naive Approach <2->Works – Kruskal's Algorithm
	 Crossing Edges and the MST-Cut Lemma
	 Proof of MST-Cut Lemma
	 Kruskal's Algorithm – Correctness
	 Kruskal's Algorithm – Data Structures

	Greed in Graphs II: Prim's MST Algorithm
	 Prim's Algorithm
	 Prim's Algorithm – Lazy Implementation
	 Prim's Algorithm – Eager Implementation
	 Prim's Algorithm – Eager Implementation Code
	 Minimum Spanning Trees – Discussion

	Greed in Graphs III: Shortest Paths
	 Metaphor: Route Planning
	 SSSPP
	 The Trouble with Negative Cycles
	 Variants of Shortest Path Problems
	 Dijkstra's Algorithm
	 Dijkstra's Algorithm – Code & Correctness
	 Shortest Paths Discussion

	Greedy Schedules
	 Scheduling
	 The Activity selection problem
	 Greedy Activity Selection
	 Greedy Activity Selection – Correctness Proof

	The Essence of Greed: Matroids
	 Set Systems
	 Canonical Greedy Algorithm
	 Matroids
	 Greedy iff Matroid
	 Discussion

