
12 Dynamic
Programming

21 January 2024

Prof. Dr. Sebastian Wild
CS566 (Wintersemester 2024/25)
Philipps-Universität Marburg

version 2025-01-28 13:52 H

Learning Outcomes

Unit 12: Dynamic Programming

1. Be able to apply the DP paradigm to solve new problems.

1

Outline

12 Dynamic Programming
12.1 Elements of Dynamic Programming
12.2 DP & Matrix Chain Multiplication
12.3 Greedy as Special Case of DP
12.4 The Bellman-Ford Algorithm
12.5 Making Change in Pre-1971 UK
12.6 Optimal Merge Trees & Optimal BSTs
12.7 Edit Distance

12.1 Elements of Dynamic Programming

Introduction
▶ Dynamic Programming (DP) is a power

applicable to many problems

ful algorithm design pattern
for exact solutions to optimization problems

▶ Some commonalities with Greedy Algorithms,
but with an element of brute force added in

DP = “careful brute force” (Erik Demaine)

▶ often yields polynomial time, but usually not linear time algorithms

▶ for many problems the only way we know to build efficient algorithms

▶ Naming fun: The term “dynamic programming”, due to Richard Bellman from around 1953,
does not refer to computer programming; rather to a program (= plan, schedule) changing with time.
It seems to have been at least partly marketing babble devoid of technical meaning . . .

2

Plan of the Unit
1. Abstract steps of DP (briefly)

2. Details on a concrete example (matrix chain multiplication)

3. More examples!

3

The 6 Steps of Dynamic Programming
1. Define subproblems (and relate to original problem)

2. Guess (part of solution) ⇝ local brute force

3. Set up DP recurrence (for quality of solution)

4. Recursive implementation with Memoization

5. Bottom-up table filling (topological sort of subproblem dependency graph)

6. Backtracing to reconstruct optimal solution

▶ Steps 1–3 require insight / creativity / intuition;
Steps 4–6 are mostly automatic / same each time

⇝ Correctness proof usually at level of DP recurrence

running time too! worst case time = #subproblems · time to find single best guess

4

When does DP (not) help?
▶ No Silver Bullet

DP is the most widely applicable design technique, but can’t always be applied

1. Vitally important for DP to be correct:
Bellman’s Optimality Criterion

For a correctly guessed fixed part of the solution,
any optimal solution to the corresponding subproblems

must yield an optimal solution to the overall problem (once combined).

2. Also, the total number of different subproblems should be “sma

at most polynomial in 𝑛

ll”
(DP potentially still works correctly otherwise, but won’t be efficient.)

5

12.2 DP & Matrix Chain Multiplication

The Matrix-Chain Multiplication Problem
Consider the following exemplary problem

▶ We have a product 𝑀0 · 𝑀1 · · · · · 𝑀𝑛−1 of 𝑛 matrices to compute

▶ Since (matrix) multiplication is associative, it can be evaluated in different orders.

▶ For non-square matrices of different sizes, different order can change costs dramatically
▶ Assume elementary matrix multiplication algorithm:
⇝ Multiplying 𝑎 × 𝑏-matrix with 𝑏 × 𝑐 matrix costs 𝑎 · 𝑏 · 𝑐 integer multiplications

▶ Given: Row and column counts 𝑟[0..𝑛) and 𝑐[0..𝑛) with 𝑟[𝑖 + 1] = 𝑐[𝑖] for 𝑖 ∈ [0..𝑛 − 1)
(corresponding to matrices 𝑀0 , . . . , 𝑀𝑛−1 with 𝑀𝑖 ∈ ℝ𝑟[𝑖]×𝑐[𝑖])

▶ Goal: parenthesization
really a binary tree with 𝑛 leaves!

of the product chain with minimal cost

6

Matrix-Chain Multiplication – Example

𝑀0
10 × 80

𝑀1
80 × 50

·

𝑀2
50 × 2

·

𝑀3
2 × 10

· 𝑎 × 𝑏

·
𝑏 × 𝑐

=

𝑎 × 𝑐

cost 𝑎 · 𝑏 · 𝑐

Parenthesization Cost (integer multiplications)

𝑀0 ·
(
𝑀1 · (𝑀2 · 𝑀3)

)
1000 + 40 000 + 8000 = 49 000

𝑀0 ·
((𝑀1 · 𝑀2) · 𝑀3

)
8000 + 1600 + 8000 = 17 600

(𝑀0 · 𝑀1) · (𝑀2 · 𝑀3) 40 000 + 1000 + 5000 = 46 000(
𝑀0 · (𝑀1 · 𝑀2)

) · 𝑀3 8000 + 1600 + 200 = 9 800((𝑀0 · 𝑀1) · 𝑀2
) · 𝑀3 40 000 + 1000 + 200 = 41 200

Greedy fails both

first or last operation

ways!

7

Matrix-Chain Multiplication – How about Brute Force?
If Greedy doesn’t give optimal parenthesization, maybe just try all?
▶ parenthesizations for 𝑛 matrices = binary trees with 𝑛 leaves (evalution trees)

= binary trees with 𝑛 − 1 (internal) nodes

▶ How many such trees are there?

▶ Let’s write 𝑚 = 𝑛 − 1;
▶ 𝐶0 = 1, 𝐶1 = 1, 𝐶2 = 2, 𝐶3 = 5

▶ 𝐶𝑚 =
𝑚∑
𝑟=1

𝐶𝑟−1 · 𝐶𝑚−𝑟 (𝑚 ≥ 1)

▶ Can show

generating functions / combinatorics / guess (OEIS!) & check . . .

𝐶𝑛 =
1

𝑛 + 1

(
2𝑛
𝑛

)
∼ 1√

𝜋
· 4𝑛

𝑛3/2

⇝ exponentially many trees (almost 4𝑛) 𝐶20 = 6 564 120 420, 𝐶30 = 3 814 986 502 092 304

⇝ A brute-force approach is utterly hopeless

⇝ Dynamic programming to the rescue!
8

Matrix-Chain Multiplication – Step 1: Subproblems
▶ Key ingredient for DP: Problem allows for recursive formulation 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

Need to decide:

1. What are the subproblems to consider?
2. How can the original problem be expressed as subproblem(s)?

▶ Often requires to solve a more general version of the problem

Here:

1. Subproblems = Ranges of matrices [𝑖.. 𝑗) 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛
i. e., optimal parenthesization for each range 𝑀𝑖 , 𝑀𝑖+1 , . . . , 𝑀 𝑗−1

2. Original problem = range [0..𝑛)

▶ Intuition:
▶ Any subtree in binary multiplication tree covers some range [𝑖.. 𝑗)

(matrix multiplication is not commutative ⇝ left-right order has to stay)
▶ left and right factors of a multiplication don’t “see/influence” each other

9

Matrix-Chain Multiplication – Step 2: Guess
▶ Usually, any subproblem can be split into smaller subproblems

in several ways
1. Subproblems
2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ Which way to decompose gives best solution not known a priori

⇝ What do we have to correctly guess to solve the problem?

▶ Here: Guess last multiplication / root of binary tree

⇝ index 𝑘 ∈ [𝑖 + 1 .. 𝑗) so that [𝑖.. 𝑗) computed with last multiplication(
𝑀𝑖 · · · · · 𝑀𝑘−1

) · (
𝑀𝑘 · · · · · 𝑀 𝑗−1

)
⇝ optimal parenthesization of 𝑀𝑖 , . . . , 𝑀𝑘−1 and 𝑀𝑘 , . . . , 𝑀 𝑗−1 computed recursively

(corresponds to subproblems [𝑖..𝑘) and [𝑘.. 𝑗))

10

Matrix-Chain Multiplication – Step 3: DP Recurrence
▶ With subproblems and guessed part fixed,

we try to express total value/cost of solution recursively
1. Subproblems
2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

⇝ We ignore the actual solution and just compute its cost!

▶ Often good to prove correctness at level of recurrence

▶ Here: Recurrence for 𝑚(𝑖 , 𝑗) = total number of integer multiplications
used in best parenthesization of [𝑖.. 𝑗)

⇝ Set up recurrence, including any base cases.

𝑚(𝑖 , 𝑗) =

0 if 𝑗 − 𝑖 ≤ 1

min

best 𝑘 chosen by local brute force

{
𝑚(𝑖 , 𝑘) + 𝑚(𝑘, 𝑗) + 𝑟[𝑖] · 𝑟[𝑘] · 𝑐[𝑗 − 1] : 𝑘 ∈ [𝑖 + 1 .. 𝑗)

}
otherwise

recursive cost cost of last multiplication

11

Matrix-Chain Multiplication – Correctness
Claim: Let 𝑚(𝑖 , 𝑗) for 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 be defined by the recurrence

𝑚(𝑖 , 𝑗) =

{
0 if 𝑗 − 𝑖 ≤ 1
min

{
𝑚(𝑖 , 𝑘) + 𝑚(𝑘, 𝑗) + 𝑟[𝑖] · 𝑟[𝑘] · 𝑐[𝑗 − 1] : 𝑘 ∈ [𝑖 + 1 .. 𝑗) } otherwise

Then 𝑚(𝑖 , 𝑗) = #integer multiplications in best parenthesization of 𝑀𝑖 · · ·𝑀 𝑗−1.

Proof: By induction over 𝑗 − 𝑖
▶ IB: When 𝑗 − 𝑖 ≤ 1 we have an empty product (𝑗 = 𝑖) or a single matrix (𝑗 = 𝑖 + 1)

In both cases, no multiplications are needed and 𝑚(𝑖 , 𝑗) = 0.

▶ IS: Given 𝑗 − 𝑖 ≥ 2 matrices and an optimal evalution tree 𝑇 for them.
▶ 𝑇’s root must be a last product of left and right subterms (𝑀𝑖 · · ·𝑀𝑘−1) · (𝑀𝑘 · · ·𝑀𝑗−1) for

some 𝑖 < 𝑘 < 𝑗, with cost 𝑟[𝑖]𝑟[𝑘]𝑐[𝑗 − 1].
▶ Moreover, left and right subtree 𝑇ℓ and 𝑇𝑟 of the root must be optimal evaluation trees for

subproblems [𝑖..𝑘) and [𝑘.. 𝑗); (otherwise can improve 𝑇)
⇝ By IH, the cost of 𝑇ℓ and 𝑇𝑟 are given by 𝑚(𝑖 , 𝑘) and 𝑚(𝑘, 𝑗)
⇝ 𝑚(𝑖 , 𝑗) = cost of 𝑇

12

Matrix-Chain Multiplication – Step 4: Memoization
▶ Write recursive function to compute recurrence 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ But memoize all results! (symbol table: subproblem ↦→ optimal cost)

⇝ First action of function: check if subproblem known
▶ If so, return cached optimal cost
▶ Otherwise, compute optimal cost and remember it!

1 procedure totalMults(𝑟[𝑖.. 𝑗), 𝑐[𝑖.. 𝑗)):
2 if 𝑗 − 𝑖 ≤ 1
3 return 0
4 else
5 best := +∞
6 for 𝑘 := 𝑖 + 1, . . . , 𝑗 − 1
7 𝑚𝑙 := cachedTotalMults(𝑟[𝑖..𝑘), 𝑐[𝑖..𝑘))
8 𝑚𝑟 := cachedTotalMults(𝑟[𝑘.. 𝑗), 𝑐[𝑘.. 𝑗))
9 𝑚 := 𝑚𝑙 + 𝑚𝑟 + 𝑟[𝑖] · 𝑟[𝑘] · 𝑐[𝑗 − 1]

10 best := min{best, 𝑚}
11 end for
12 return best

13 procedure cachedTotalMults(𝑟[𝑖.. 𝑗), 𝑐[𝑖.. 𝑗)):
14 // 𝑚[0..𝑛)[0..𝑛) initialized to NULL at start
15 if 𝑚[𝑖][𝑗] == NULL
16 𝑚[𝑖][𝑗] := totalMults(𝑟[𝑖.. 𝑗), 𝑐[𝑖.. 𝑗))
17 return 𝑚[𝑖 , 𝑗]

𝑚(𝑖 , 𝑗) =

0 if 𝑗 − 𝑖 ≤ 1

min
{
𝑚(𝑖 , 𝑘) + 𝑚(𝑘, 𝑗) + 𝑟[𝑖] · 𝑟[𝑘] · 𝑐[𝑗 − 1] : 𝑘 ∈ [𝑖 + 1 .. 𝑗)

}
otherwise

13

Matrix-Chain Multiplication – Example Memoization

𝑀0
10 × 80

𝑀1
80 × 50

·

𝑀2
50 × 2

·

𝑀3
2 × 10

·

𝑛 = 4
𝑟[0..𝑛) = [10, 80, 50, 2]
𝑐[0..𝑛) = [80, 50, 2, 10]

𝑚[𝑖][𝑗]

𝑖
𝑗 0 1 2 3 4

0 0 0 40000 9600 9800
1 — 0 0 8000 9600
2 — — 0 0 1000
3 — — — 0 0
4 — — — — 0

14

Matrix-Chain Multiplication – Runtime Analyses

1 procedure totalMults(𝑟[𝑖.. 𝑗), 𝑐[𝑖.. 𝑗)):
2 if 𝑗 − 𝑖 ≤ 1
3 return 0
4 else
5 best := +∞
6 for 𝑘 := 𝑖 + 1, . . . , 𝑗 − 1
7 𝑚𝑙 := cachedTotalMults(𝑟[𝑖..𝑘), 𝑐[𝑖..𝑘))
8 𝑚𝑟 := cachedTotalMults(𝑟[𝑘.. 𝑗), 𝑐[𝑘.. 𝑗))
9 𝑚 := 𝑚𝑙 + 𝑚𝑟 + 𝑟[𝑖] · 𝑟[𝑘] · 𝑐[𝑗 − 1]

10 best := min{best, 𝑚}
11 end for
12 return best

13 procedure cachedTotalMults(𝑟[𝑖.. 𝑗), 𝑐[𝑖.. 𝑗)):
14 // 𝑚[0..𝑛)[0..𝑛) initialized to NULL at start
15 if 𝑚[𝑖][𝑗] == NULL
16 𝑚[𝑖][𝑗] := totalMults(𝑟[𝑖.. 𝑗), 𝑐[𝑖.. 𝑗))
17 return 𝑚[𝑖 , 𝑗]

▶ With memoization, compute each
subproblem at most once

▶ nonrecursive cost (totalMults):
𝑂(𝑗 − 𝑖) = 𝑂(𝑛)

▶ Number of subproblems [𝑖.. 𝑗) for
0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛∑
0≤𝑖≤ 𝑗≤𝑛

1 =
𝑛∑
𝑖=0

𝑛∑
𝑗=𝑖

1 = Θ(𝑛2)

⇝ total running time 𝑂(𝑛3)

15

Matrix-Chain Multiplication – Step 5: Table Filling
▶ Recurrence induces a DAG on subproblems (who calls whom) 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ Memoized recurrence traverses this DAG (DFS!)
▶ We can slightly improve performance by systematically

computing subproblems following a fixed topological order

▶ Topological order here: by increasing length ℓ = 𝑗 − 𝑖, then by 𝑖

1 procedure totalMultsBottomUp(𝑟[0..𝑛), 𝑐[0..𝑛)):
2 𝑚[0..𝑛)[0..𝑛) := 0 // initialize to 0
3 for ℓ = 2, 3, . . . , 𝑛 // iterate over subproblems . . .
4 for 𝑖 = 0, 1 . . . , 𝑛 − ℓ // . . . in topological order
5 𝑗 := 𝑖 + ℓ
6 𝑚[𝑖][𝑗] := +∞
7 for 𝑘 := 𝑖 + 1, . . . , 𝑗 − 1
8 𝑞 := 𝑚[𝑖][𝑘] + 𝑚[𝑘][𝑗] + 𝑟[𝑖] · 𝑟[𝑘] · 𝑐[𝑗 − 1]
9 𝑚[𝑖][𝑗] := min

{
𝑚[𝑖][𝑗], 𝑞}

10 return 𝑚[0..𝑛)[0..𝑛)

▶ Same Θ-class as memoized
recursive function

▶ In practice usually
substantially faster
▶ lower overhead
▶ predictable memory

accesses

16

Matrix-Chain Multiplication – Step 6: Backtracing
▶ So far, only determine the cost of an optimal solution 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ But we also want the solution itself

▶ By retracing our steps, we can determine/construct one!

▶ Here: output a parenthesized term recursively

1 procedure matrixChainMult(𝑟[0..𝑛), 𝑐[0..𝑛)):
2 𝑚[0..𝑛)[0..𝑛) := totalMultsBottomUp(𝑟[0..𝑛), 𝑐[0..𝑛))
3 return traceback([0..𝑛))
4

5 procedure traceback([𝑖.. 𝑗)):
6 if 𝑗 − 𝑖 == 1
7 return 𝑀𝑖
8 else
9 for 𝑘 := 𝑖 + 1, . . . , 𝑗 − 1

10 𝑞 := 𝑚[𝑖][𝑘] + 𝑚[𝑘][𝑗] + 𝑟[𝑖] · 𝑟[𝑘] · 𝑐[𝑗 − 1]
11 if 𝑚[𝑖][𝑗] == 𝑞
12 return

(
traceback([𝑖..𝑘))) · (traceback([𝑘.. 𝑗)))

13 end for
14 end if

▶ follow recurrence a second time

▶ always have for running time:
backtracing = 𝑂(computing 𝑀)

⇝ computing optimal cost and
computing optimal solution have
same complexity

▶ speedup possible by
remembering correct guess 𝑘 for
each subproblem

17

Summary: The 6 Steps of Dynamic Programming
1. Define subproblems and how original problem is solved

1. Subproblems
2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

2. What part of solution to guess?

3. Set up DP recurrence for quality/cost of solution
⇝ Prove correctness here: induction over subproblems following recurrence
⇝ Analyze running time complexity here: #subproblems · non-recursive time

— (Basically) cookie-cutter approach from here on —

4. Recursive implementation with Memoization: mutually recursive functions with cache
or
5. Bottom-up table filling: define topological order of subproblem dependency graph

6. Backtracing to reconstruct optimal solution: Recursively retrace cost recurrence

18

12.3 Greedy as Special Case of DP

Dynamic Greedy
▶ Every Greedy Algorithm can also be seen as a DP algorithm without guessing

⇝ For new problems, it can help to first follow the DP roadmap and
then check if we can select the “correct” guess without local brute force

▶ If so, we then recurse on a single branch of subproblems

⇝ Greedy Algorithm doesn’t need memoization or bottom-up table filling,
but can do direct recursion instead

19

Recall Unit 11

The Activity selection problem
▶ Activity Selection: scheduling for single machine, jobs with fixed start and end times

pick a subset of jobs without conflicts
Formally:

▶ Given: Activities 𝐴 = {𝑎0 , . . . , 𝑎𝑛−1}, each with a start time 𝑠𝑖 and finish time 𝑓𝑖
(0 ≤ 𝑠𝑖 < 𝑓𝑖 < ∞)

▶ Goal: Subset 𝐼 ⊆ [0..𝑛) of tasks such that 𝑖 , 𝑗 ∈ 𝐼 ∧ 𝑖 ≠ 𝑗 =⇒ [𝑠𝑖 , 𝑓𝑖) ∩ [𝑠 𝑗 , 𝑓𝑗) = ∅
and |𝐼| is maximal among all such subsets

▶ We further assume that jobs are sorted by finish time, i. e., 𝑓0 ≤ 𝑓1 ≤ · · · ≤ 𝑓𝑛−1
(if not, easy to sort them in 𝑂(𝑛 log 𝑛) time)

𝑎0𝑎0

𝑎1𝑎1

𝑎2𝑎2
𝑎3𝑎3

𝑎4𝑎4

𝑎5𝑎5

𝑎6𝑎6

𝑎7𝑎7

𝑎8𝑎8

𝑎9𝑎9
𝑎10𝑎10

31

20

DP Algorithm for Activity Selection
1. Subproblems
2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

1. Subproblems: 𝐴𝑖 , 𝑗 = {𝑎ℓ ∈ 𝐴 : 𝑠ℓ ≥ 𝑓𝑖 ∧ 𝑓ℓ ≤ 𝑠 𝑗}
(after 𝑎𝑖 finishes and before 𝑎 𝑗 begins)

Original problem: 𝐴−1,𝑛 with dummy tasks 𝑓−1 = −∞, 𝑠𝑛 = +∞
2. Guess: Task 𝑘 ∈ 𝐼∗

3. DP Recurrence: Denote 𝑐(𝑖 , 𝑗) = |𝐼∗(𝐴𝑖 , 𝑗)| = maximum #independent tasks in 𝐴𝑖 , 𝑗

⇝ 𝑐(𝑖 , 𝑗) =

{
0 , if 𝐴𝑖 , 𝑗 = ∅;
max{𝑐(𝑖 , 𝑘) + 𝑐(𝑘, 𝑗) + 1 : 𝑎𝑘 ∈ 𝐴𝑖 , 𝑗} otherwise.

4. – 6. Omitted (could be done following the standard scheme)

▶ Problem-specific insight from Unit 11 ⇝ Can always use 𝑘 = min{𝑘 : 𝑎𝑘 ∈ 𝐴𝑖 𝑗}
(earliest finish time)

No guess needed!

21

12.4 The Bellman-Ford Algorithm

Recall Shortest Paths
▶ Single Source Shortest Path Problem (SSSPP)

▶ Given: directed, edge-weighted, simple graph 𝐺 = (𝑉, 𝐸, 𝑐)
with edge costs 𝑐 : 𝐸 → ℝ, a start vertex 𝑠 ∈ 𝑉

▶ Goal: a data structure that reports for every 𝑣 ∈ 𝑉 :
𝛿𝐺(𝑠, 𝑣): the shortest-path distance from 𝑠 to 𝑣
spath(𝑣): a shortest path from 𝑠 to 𝑣 (if it exists)

▶ 𝛿𝐺(𝑠, 𝑣) = inf
({+∞} ∪ {𝑐(𝑤) : 𝑤 an 𝑠-𝑣-walk in 𝐺})

▶ Write 𝛿 instead of 𝛿𝐺 when graph clear from context

▶ Here: Assume negative-weight edges are present (otherwise Dĳkstra suffices)
▶ but for now: assume there is no negative cycle
⇝ 𝛿(𝑠, 𝑣) > −∞ and can restrict to shortest paths (not walks)

22

Shortest Paths as DP – Last Edge Decomposition
▶ Idea: Every nontrivial shortest path has a last edge. We don’t know which; so guess!

⇝ Subproblems: for 𝑤 ∈ 𝑉 , compute 𝛿(𝑠, 𝑤).
⇝ Recurrence: 𝛿(𝑠, 𝑤) = min

{
𝛿(𝑠, 𝑣) + 𝑐(𝑣𝑤) : 𝑣𝑤 ∈ 𝐸

}
subproblem dependency graph is isomorphic to 𝐺𝑇 ! ⇝ doesn’t work in general
⇝ Yields usable (terminating!) algorithm iff 𝐺 is a DAG.

To break the cycles, let’s turn them into a helix!
▶ Need to build “layers” in the subproblem dependency graph,

so that edges can’t go back up.

▶ Subproblems: (𝑤, ℓ) for 𝑤 ∈ 𝑉 , ℓ ∈ [0..𝑛), compute 𝛿≤ℓ (𝑠, 𝑤)
where 𝛿≤ℓ (𝑠, 𝑣) = min

({+∞} ∪ {𝑐(𝑤) : 𝑤 an 𝑠-𝑣-walk with ≤ ℓ edges})
▶ Original problems: ℓ = 𝑛 − 1 (without negative cycles, paths suffice)

▶ Recurrence: 𝛿≤ℓ (𝑠, 𝑤) =

∞ if ℓ = 0 and 𝑠 ≠ 𝑤

0 if ℓ = 0 and 𝑠 = 𝑤

min
{
𝛿≤ℓ−1(𝑠, 𝑣) + 𝑐(𝑣𝑤) : 𝑣𝑤 ∈ 𝐸

}
otherwise

23

Shortest Paths as DP – Length Layers

24

Hold On – What about negative cycles?
▶ The recurrence for 𝛿≤ℓ seems to

work fine with negative edges
𝛿≤ℓ (𝑠, 𝑤) =

∞ if ℓ = 0 and 𝑠 ≠ 𝑤

0 if ℓ = 0 and 𝑠 = 𝑤

min
{
𝛿≤ℓ−1(𝑠, 𝑣) + 𝑐(𝑣𝑤) : 𝑣𝑤 ∈ 𝐸

}
otherwiseBut 𝐺 could contain a

negative-weight cycle 𝐶 . . .

Isn’t that a contradiction to the non-existence of shortest paths?

▶ No. If we restrict the length, shortest walks always exist.

▶ But: If there is a negative cycle 𝐶[0..𝑘] with paths 𝑠 ⇝ 𝐶 and 𝐶 ⇝ 𝑤,
then 𝛿≤ℓ (𝑠, 𝑤) > 𝛿≤ℓ+𝑘(𝑠, 𝑤) > 𝛿≤ℓ+2𝑘(𝑠, 𝑤) > · · · (and 𝛿(𝑠, 𝑤) = −∞)

⇝ We can detect if any negative cycle is reachable from 𝑠 by including more layers ℓ ≥ 𝑛
and check if some vertex still improves.
▶ How many further layers do we need / when is it safe to stop?

25

Detecting negative cycles
We can detect reachable negative cycles by including just the single extra layer ℓ = 𝑛!
Lemma: ∃𝑤 : 𝛿≤𝑛(𝑠, 𝑤) < 𝛿≤𝑛−1(𝑠, 𝑤) iff negative cycle reachable from 𝑠

“⇒” ▶ If some vertex 𝑤 improves further, i. e., 𝛿≤𝑛(𝑠, 𝑤) < 𝛿≤𝑛−1(𝑠, 𝑤)
a walk 𝑊[0..𝑛] with 𝑐(𝑊) = 𝛿≤𝑛(𝑠, 𝑤) was the shortest way to reach 𝑤

⇝ 𝑊 is a non-simple walk, i. e., it contains a cycle
▶ Let 𝑃[0..𝑘] be the path resulting from 𝑊 by shortcutting all cycles ⇝ 𝑘 ≤ 𝑛 − 1
⇝ 𝑐(𝑃) ≥ 𝛿≤𝑛−1(𝑠, 𝑤) > 𝛿≤𝑛(𝑠, 𝑤) = 𝑐(𝑊)
⇝ ∃ negative cycle reachable from 𝑠

“⇐” ▶ Conversely, let negative cycle 𝐶[0..𝑘] be reachable from 𝑠
⇝ 𝑐(𝐶) = ∑𝑘−1

𝑖=0 𝑐(𝐶[𝑖]𝐶[𝑖 + 1]) < 0
▶ Assume towards a contradiction that ∀𝑤 : 𝛿≤𝑛(𝑠, 𝑤) = 𝛿≤𝑛−1(𝑠, 𝑤)
⇝ ∀𝑣𝑤 ∈ 𝐸 : 𝛿≤𝑛−1(𝑠, 𝑤) ≤ 𝛿≤𝑛−1(𝑠, 𝑣) + 𝑐(𝑣𝑤) (no update in layer ℓ = 𝑛)
▶ summing this inequality over 𝐶[0..𝑘] yields (abbreviating 𝛿(𝑤) := 𝛿≤𝑛−1(𝑠, 𝑤))

𝑘∑
𝑖=1

𝛿(𝐶[𝑖]) ≤
𝑘∑

𝑖=1

(
𝛿(𝐶[𝑖 − 1]) + 𝑐(𝐶[𝑖]𝐶[𝑖 + 1])

)
=

𝑘−1∑
𝑖=0

𝛿(𝐶[𝑖]) +
𝑘∑

𝑖=1
𝑐(𝐶[𝑖]𝐶[𝑖 + 1])

︸ ︷︷ ︸
= 𝑐(𝐶)< 0⇝ 0 ≤ 𝑐(𝐶) < 0 �

26

Shortest Paths as DP – Template Algorithm
▶ Strictly following the template works . . . 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ Subproblem order: by increasing ℓ ∈ [0..𝑛] and 𝑣 ∈ 𝑉
▶ Bottom-up table filling:

𝛿≤ℓ (𝑠, 𝑤) =

∞ if ℓ = 0 and 𝑠 ≠ 𝑤

0 if ℓ = 0 and 𝑠 = 𝑤

min
{
𝛿≤ℓ−1(𝑠, 𝑣) + 𝑐(𝑣𝑤) : 𝑣𝑤 ∈ 𝐸

}
otherwise

1 procedure shortestPathsDP(𝐺, 𝑠):
2 // Base case ℓ = 0:
3 𝛿[0..𝑛][0..𝑛) := +∞ // 𝛿[ℓ][𝑣] will store 𝛿≤ℓ (𝑠, 𝑣)
4 𝛿[0][𝑠] := 0
5 for ℓ := 1, . . . , 𝑛 // layer
6 for 𝑤 := 0, . . . , 𝑛 − 1 // vertex
7 for 𝑣𝑤 ∈ 𝐸
8 𝛿[ℓ][𝑤] := min

{
𝛿[ℓ][𝑤], 𝛿[ℓ − 1][𝑣] + 𝑐(𝑣𝑤)}

9 return 𝛿

▶ . . . but some improvements are possible!
▶ Iterating over incoming edges is not convenient

⇝ order of updates within layer ℓ doesn’t matter ⇝ iterate forwards!
▶ only use final distances in the end; we waste space by keeping 2D array around

⇝ can actually just do updates in place, using a single array 𝛿
⇝ Don’t strictly solve subproblems (ℓ , 𝑣) any more! (but final result correct)

27

The Bellman-Ford Algorithm
1 procedure bellmanFord(𝐺, 𝑠):
2 dist[0..𝑛) := +∞; pred[0..𝑛) := null
3 dist[𝑠] := 0
4 for ℓ := 1, . . . , 𝑛 − 1
5 for 𝑣 := 0, . . . , 𝑛 − 1
6 for (𝑤, 𝑐) ∈ 𝐺.adj[𝑣]
7 if dist[𝑤] > dist[𝑣] + 𝑐
8 dist[𝑤] := dist[𝑣] + 𝑐
9 pred[𝑤] := 𝑣 // remember for backtrace

10 for 𝑣 := 0, . . . , 𝑛 − 1
11 for (𝑤, 𝑐) ∈ 𝐺.adj[𝑣]
12 if dist[𝑤] > dist[𝑣] + 𝑐
13 return HAS_NEGATIVE_CYCLE
14 return (dist, pred)

▶ Final algorithm
(including shortest path tree via pred)

▶ Correctness:

▶ by induction over loop iteration show
dist[𝑤] ≤ 𝛿≤ℓ (𝑠, 𝑤) and if finite,
dist[𝑤] is 𝑐(𝑃) for some 𝑠-𝑤-path

▶ negative cycle detection from Lemma

▶ Space: Θ(𝑛)
▶ Running time: 𝑂(𝑛(𝑛 + 𝑚))

Extensions:
▶ Can be implemented in 𝑂(𝑛𝑚) time by removing unreachable vertices from consideration
▶ Instead of only detecting a negative cycle, we can return one;

we can also explicitly find all vertices with 𝛿(𝑠, 𝑤) = −∞ (needs another traversal).
▶ Can terminate with smaller ℓ if no distance changed ⇝ faster for some graphs

28

12.5 Making Change in Pre-1971 UK

Recall Unit 11

Greed For Change
The Change-Making Problem (a.k.a. Coin-Exchange Problem)
▶ Given: a set of integer denominations of coins 𝑤1 < 𝑤2 < · · · < 𝑤𝑘 with 𝑤1 = 1,

target value 𝑛 ∈ ℕ≥1

▶ Goal: “fewest coins to give change

(we have sufficient supply of all coins . . .)

𝑛”, i. e.,
multiplicities 𝑐1 , . . . , 𝑐𝑘 ∈ ℕ≥0 with

∑𝑘
𝑖=1 𝑐𝑖 · 𝑤𝑖 = 𝑛 minimizing

∑𝑘
𝑖=1 𝑐𝑖

For Euro coins, denominations are 1¢ , 2¢ , 5¢ , 10¢ , 20¢ , 50¢ , 1=C , and 2=C .
formally: 1 , 2 , 5 , 10 , 20 , 50 , 100 , and 200 .

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8

⇝ Simple greedy algorithm:
largest coins first
▶ optimal time (𝑂(𝑘) if coins sorted)
▶ is

∑
𝑐𝑖 minimal?

1 procedure greedyChange(𝑤[1..𝑘], 𝑛):
2 // Assumes 1 = 𝑤[1] < 𝑤[2] < · · · < 𝑤[𝑘]
3 for 𝑖 := 𝑘, 𝑘 − 1, . . . , 1:
4 𝑐[𝑖] :=

⌊
𝑛
/
𝑤[𝑖]⌋

5 𝑛 := 𝑛 − 𝑐[𝑖] · 𝑤[𝑖]
6 // Now 𝑛 == 0
7 return 𝑐[1..𝑘]

5

29

Pre-Decimal English Coins
We discussed that for some (unwise) choices of denominations, Greedy cannot give optimal change.
Welcome to Britain until 1971!

British Pre-Decimal Coins:

▶ 1
2 penny,

▶ 1 penny,
▶ 3 pence,
▶ 6 pence,
▶ shilling = 12 pence,
▶ florin = 24 pence
▶ half-crown = 30 pence
▶ crown = 60 pence
▶ pound = 240 pence
▶ guinea = 21 · 12 = 252 pence

(obsolete as coin since 1816)

⇝ Greedy would give 48 pence
as 30p + 12p + 6p

▶ obviously, 2 florins are more efficient

⇝ How to solve exactly?

As the old saying goes . . .

Where Greedy fails, DP prevails.
(but mind details, and how it scales)

30

Making Change by DP
Idea: Every solution must pick a first coin. Which one? Unclear, so guess! 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ Subproblems: Change for 𝑚 ∈ [0..𝑛] (with coins 𝑤1 , . . . , 𝑤𝑘)
Original problem 𝑚 = 𝑛

▶ Guess: first coin 𝑤𝑖 to use
▶ Recurrence 𝐶(𝑚) = smallest #coins to give change 𝑚

𝐶(𝑚) =

{
0 if 𝑚 = 0
1 + min

{
𝐶(𝑚 − 𝑤𝑖) : 𝑖 ∈ [1..𝑘] ∧ 𝑤𝑖 ≤ 𝑚

}
otherwise

▶ Bottom-up implementation & Backtrace
1 procedure dpChange(𝑤[1..𝑘], 𝑛):
2 𝐶[0..𝑛] := +∞
3 𝐶[0] := 0
4 for 𝑚 := 1, . . . , 𝑛
5 for 𝑖 := 1, . . . , 𝑘
6 if 𝑤[𝑖] ≥ 𝑚
7 𝑞 := 1 + 𝐶[𝑚 − 𝑤[𝑖]]
8 𝐶[𝑚] := min{𝐶[𝑚], 𝑞}
9 return 𝐶[𝑛]

1 procedure tracebackChange(𝑤[1..𝑘], 𝑛):
2 𝐶[0..𝑛] :=dpChange(𝑤[1..𝑘], 𝑛)
3 𝑐[1..𝑘] := 0 // coin multiplicities
4 𝑚 := 𝑛
5 while 𝑚 > 0
6 for 𝑖 := 1, . . . , 𝑘
7 if 𝑤[𝑖] ≥ 𝑚 ∧ 𝐶[𝑚] == 1 + 𝐶[𝑚 − 𝑤[𝑖]]
8 𝑐[𝑖] := 𝑐[𝑖] + 1; 𝑚 := 𝑚 − 𝑤[𝑖]
9 return 𝑐[1..𝑘]

31

Making Change by DP – Analysis
▶ Input: denominations of coins

𝑤1 < 𝑤2 < · · · < 𝑤𝑘 with 𝑤1 = 1,
target value 𝑛 ∈ ℕ≥1

▶ Space: Θ(𝑛)
▶ Running Time: 𝑂(𝑛

#subproblems

· 𝑘
time per subproblem

)

1 procedure dpChange(𝑤[1..𝑘], 𝑛):
2 𝐶[0..𝑛] := +∞
3 𝐶[0] := 0
4 for 𝑚 := 1, . . . , 𝑛
5 for 𝑖 := 1, . . . , 𝑘
6 if 𝑤[𝑖] ≥ 𝑚
7 𝑞 := 1 + 𝐶[𝑚 − 𝑤[𝑖]]
8 𝐶[𝑚] := min{𝐶[𝑚], 𝑞}
9 return 𝐶[𝑛]

How good is this running time?
▶ A linear function in both input numbers seems decent, right? (If 𝑘 and 𝑛 small, certainly Yes.)

▶ Running time is also certainly a polynomial in 𝑛 and 𝑘

▶ But: In terms of computational complexity, dpChange is an exponential-time algorithm!
▶ Reason: We give the input number 𝑛 in binary, so 𝑛 is exponential in its input size.

Must distinguish: value of a number (in the input) vs. size of the (encoding of the) input
⇝ dpChange is a pseudo-polynomial time algorithm

▶ Actually, the general making-change problem is NP-complete (!)
32

Knapsack
Let’s look at slightly more interesting problem: Knapsack

a.k.a. the burglar’s problem

(„Rucksack“).

The 0/1-Knapsack Problem

▶ Given: 𝑘 items with weights 𝑤1 . . . , 𝑤𝑘 ∈ ℕ≥1 and values 𝑣1 , . . . , 𝑣𝑘 ∈ ℝ≥0;
a weight budget 𝑊 ∈ ℕ

▶ Goal: Subset
Variant closer to Making change: Can use each item several times

𝐼 ⊆ [1..𝑘] such that
∑

𝑖∈𝐼 𝑤𝑖 ≤ 𝑊 with maximum
∑

𝑖∈𝐼 𝑣𝑖 .

▶ Recall from tutorials: Greedy fails miserably in general.

⇝ Let’s try DP!
1. Subproblems
2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ Subproblems: 𝐵 ∈ [0..𝑊], best value with total weight ≤ 𝐵
▶ Guess: first item 𝑖 with 𝑤𝑖 ≤ 𝐵.
� Subproblem not of same type since 𝑤𝑖 no longer there!
⇝ 2𝑘 possible “states” to be in (items already used) (0/1-Knapsack)
�� need a table of size 𝑊 · 2𝑘 . . . might as well do brute force then!

33

Knapsack by DP
⇝ Force order to consider items in! 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ Let’s refine the guessing part to
Guess: Whether or not to include the last item (𝑘)
⇝ For subproblem, restrict to items 1, . . . , 𝑘 − 1 (in either case)

⇝ Subproblems: (ℓ , 𝐵) for ℓ ∈ [1..𝑘] and 𝐵 ∈ [0..𝑊]
𝑉(ℓ , 𝐵) = max

𝐼

∑
𝑖∈𝐼

𝑣𝑖 over sets of items 𝐼 ⊂ [1..ℓ] with
∑

𝑖∈𝐼 𝑤𝑖 ≤ 𝑩

Original problem corresponds to 𝑉(𝑘,𝑊)

▶ Recurrence: 𝑉(ℓ , 𝐵) =

0 if ℓ = 1 ∧ 𝑤1 > 𝐵

𝑣1 if ℓ = 1 ∧ 𝑤1 ≤ 𝐵

max
{
𝑣ℓ +𝑉(ℓ − 1, 𝐵 − 𝑤𝑘) , 𝑉(ℓ − 1, 𝐵)} otherwise

take item ℓ don’t take ℓ

Cookie-Cutter Steps 4. – 6. Omitted
▶ 𝑉(ℓ , ·) only needs 𝑉(ℓ − 1, ·) ⇝ two arrays 𝑉[0..𝑊] and 𝑉prev[0..𝑊] suffice
⇝ Θ(𝑊) space, Θ(𝑊 · 𝑘) time (pseudo-polynomial algorithm)

34

12.6 Optimal Merge Trees & Optimal BSTs

Recall Unit 4

Good merge orders
Let’s take a step back and breathe.

▶ Conceptually, there are two tasks:
1. Detect and use existing runs in the input ⇝ ℓ1 , . . . , ℓ𝑟 (easy)✓
2. Determine a favorable order of merges of runs (“automatic” in top-down mergesort)

2 32 2 6 2 6

15 17 12 19 2 9 13 7 11 1 4 8 10 14 23 5 21 3 6 16 18 20 22

Merge cost = total area of
= total length of paths to all array entries
=

∑
𝑤 leaf

weight(𝑤) · depth(𝑤)

⇝ optimal merge tree
= optimal binary search tree

well-understood problem
with known algorithms

for leaf weights ℓ1 , . . . , ℓ𝑟
(optimal expected search cost)

29

35

Optimal Alphabetic Trees
“well-understood problem with known algorithms” . . . let’s make it so

▶ Given: Leaf weights ℓ0 , . . . , ℓ𝑛 normalized to ℓ0 + · · · + ℓ𝑛 = 1

▶ Goal: Binary search tree 𝑇 with 𝑛 + 1 null pointers 𝐿0 , . . . , 𝐿𝑛 , such that

𝑐(𝑇) :=
𝑛∑
𝑖=1

ℓ𝑖 · depth𝑇(𝐿𝑖) is minimized

▶ Equivalent interpretations:
1. Optimal Static BST with keys 1, 2, . . . , 𝑛

⇝ leaf 𝐿𝑖 reached when searching for 𝑖 + 0.5 ⇝ 𝑐(𝑇) expected cost

#comparisons

of unsuccessful search
2. Alphabetic code for 𝜎 = 𝑛 + 1 symbols; like Huffman code, but codewords must retain order

(if 𝑖 < 𝑗 then the codeword for 𝑖 lexicographically smaller than codeword for 𝑗)
⇝ 𝑐(𝑇) expected codeword length
▶ Inherit lower bound from Huffman codes: 𝑐(𝑇) ≥ H with H =

𝑛∑
𝑖=0

ℓ𝑖 · log2

(
1
ℓ𝑖

)
3. Merge tree for adaptive sorting; 𝑐(𝑇) = merge cost per element.

▶ Via Peeksort or Powersort know methods to achieve 𝑐(𝑇) ≤ H + 2
▶ But neither are in general optimal

36

Optimal Alphabetic Trees by DP
▶ Guess: (Key in) root 𝑟 ∈ [1..𝑛] of BST 𝑇 (= #leaves in left subtree) 1. Subproblems

2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

▶ Subproblems: [𝑖.. 𝑗) for 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1
𝐶(𝑖 , 𝑗) = cost of opt. BST with leaf weights ℓ𝑖 , . . . , ℓ 𝑗−1

Original problem: 𝐶(0, 𝑛 + 1)
▶ Recurrence:

𝐶(𝑖 , 𝑗) =

{
0 if 𝑗 − 𝑖 = 1
ℓ𝑖 + · · · + ℓ 𝑗−1 + min

{
𝐶(𝑖 , 𝑟) + 𝐶(𝑟, 𝑗) : 𝑟 ∈ [𝑖 + 1.. 𝑗 − 1]} otherwise

all leaves in subtree pay 1 at root. . .

. . . plus cost to continue in left/right subtree

⇝ Obtain a 𝑂(𝑛3) time and 𝑂(𝑛2) space algorithm

37

Optimal Binary Search Trees
▶ Algorithm can be generalized to Optimal BSTs when also internal nodes have weights

▶ Same DP subproblems

▶ Running time can be reduced to 𝑂(𝑛2) using quadrangle inequality
▶ Intuitively: When adding more weight in right subtree, optimal root cannot move left.
▶ Requires to remember 𝑟 for each subproblem

▶ For original alphabetic tree problem, can actually find optimal tree in 𝑂(𝑛 log 𝑛) time
with a much more intricate algorithm

38

12.7 Edit Distance

Edit Distance
Our last DP application here: (algorithmic foundation of) diff!

▶ diff is a classic Unix tool to compare two text files

▶ routinely used in version control systems such as git

▶ abstract problem: measure how different two strings are
▶ We’ve seen Hamming distance . . .

But how to deal with strings of different lengths?
▶ how to match common parts that are far apart?
▶ diff works line-oriented, but we will formulate the problem character oriented

Edit Distance Problem

▶ Given: String 𝐴[0..𝑚) and 𝐵[0..𝑛) over alphabet Σ = [0..𝜎).
▶ Goal: 𝑑edit(𝐴, 𝐵) = minimal # symbol operations to transform 𝐴 into 𝐵

operations can be insertion/deletion/substitution of single character

39

Edit Distance Example
Example: edit distance 𝑑edit(algorithm, logarithm)?

algorithm

logarithm

0123456789
al·gorithm
-|+|X|||||
·logarithm

40

Edit Distance by DP
1. Subproblems: (𝑖 , 𝑗) for 0 ≤ 𝑖 ≤ 𝑚, 0 ≤ 𝑗 ≤ 𝑚 compute 𝑑edit(𝐴[0..𝑖), 𝐵[0.. 𝑗))
2. Guess: What to do with last positions? (insert/delete/(mis)match)

3. Recurrence: 𝐷(𝑖 , 𝑗) = 𝑑edit(𝐴[0..𝑖), 𝐵[0.. 𝑗))

𝐷(𝑖 , 𝑗) =

𝑖 if 𝑗 = 0
𝑗 if 𝑖 = 0

min

𝐷(𝑖 − 1, 𝑗) + 1,
𝐷(𝑖 , 𝑗 − 1) + 1,
𝐷(𝑖 − 1, 𝑗 − 1) + [

𝐴[𝑖 − 1] ≠ 𝐵[𝑗 − 1]]
otherwise

⇝ 𝑂(𝑛𝑚) space and time
space can be improved to 𝑂(min{𝑛, 𝑚}) by remembering only 2 rows or columns

▶ An optimal edit script can be constructed by a backtrace

41

Generalized Edit Distances
▶ The variant we discussed is also called Levenshtein distance

▶ all operation have cost 1

▶ we can directly give each of the following its own cost in our DP algorithm
▶ deleting an occurrence of 𝑎 ∈ Σ

▶ inserting an 𝑎 ∈ Σ

▶ substituting 𝑎 ∈ Σ for 𝑏 ∈ Σ

▶ Extensions of the algorithm can support:
▶ free insert/delete at beginning/end of a string
▶ affine gap costs, i. e., inserting/deleting 𝑘 consecutive chars costs 𝑐 · 𝑘 + 𝑑 for constants 𝑐 and 𝑑

▶ extensions widely used to find approximate matches, e. g., in DNA sequences

42

Dynamic Programming – Summary

1. Subproblems
2. Guess!
3. DP Recurrence
4. Memoization
5. Table Filling
6. Backtrace

Versatile and powerful algorithm design paradigm

Once key idea (recurrence) clear, implementation rather straight-forward

43

	Dynamic Programming
	 Learning Outcomes
	Elements of Dynamic Programming
	 Introduction
	 Plan of the Unit
	 The 6 Steps of Dynamic Programming
	 When does DP (not) help?

	DP & Matrix Chain Multiplication
	 The Matrix-Chain Multiplication Problem
	 Matrix-Chain Multiplication – Example
	 Matrix-Chain Multiplication – How about Brute Force?
	 Matrix-Chain Multiplication – Step 1: Subproblems
	 Matrix-Chain Multiplication – Step 2: Guess
	 Matrix-Chain Multiplication – Step 3: DP Recurrence
	 Matrix-Chain Multiplication – Correctness
	 Matrix-Chain Multiplication – Step 4: Memoization
	 Matrix-Chain Multiplication – Example Memoization
	 Matrix-Chain Multiplication – Runtime Analyses
	 Matrix-Chain Multiplication – Step 5: Table Filling
	 Matrix-Chain Multiplication – Step 6: Backtracing
	 Summary: The 6 Steps of Dynamic Programming

	Greedy as Special Case of DP
	 Dynamic Greedy
	 Recall Unit 11
	 DP Algorithm for Activity Selection

	The Bellman-Ford Algorithm
	 Recall Shortest Paths
	 Shortest Paths as DP – Last Edge Decomposition
	 Shortest Paths as DP – Length Layers
	 Hold On – What about negative cycles?
	 Detecting negative cycles
	 Shortest Paths as DP – Template Algorithm
	 The Bellman-Ford Algorithm

	Making Change in Pre-1971 UK
	 Recall Unit 11
	 Pre-Decimal English Coins
	 Making Change by DP
	 Making Change by DP – Analysis
	 Knapsack
	 Knapsack by DP

	Optimal Merge Trees & Optimal BSTs
	 Recall Unit 4
	 Optimal Alphabetic Trees
	 Optimal Alphabetic Trees by DP
	 Optimal Binary Search Trees

	Edit Distance
	 Edit Distance
	 Edit Distance Example
	 Edit Distance by DP
	 Generalized Edit Distances
	 Dynamic Programming – Summary

