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Learning Outcomes

Unit 12: Dynamic Programming

1. Be able to apply the DP paradigm to solve new problems.
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12.1 Elements of Dynamic Programming



Introduction

applicable to many problems

» Dynamic Programming (DP) is a powerful algorithm design pattern
for exact solutions to optimization problems

» Some commonalities with Greedy Algorithms,
but with an element of brute force added in

DP = “careful brute force” (Erik Demaine)

» often yields polynomial time, but usually not linear time algorithms

» for many problems the only way we know to build efficient algorithms

» Naming fun: The term “dynamic programming”, due to Richard Bellman from around 1953,
does not refer to computer programming; rather to a program (= plan, schedule) changing with time.
It seems to have been at least partly marketing babble devoid of technical meaning . ..



Plan of the Unit

1. Abstract steps of DP (briefly)
2. Details on a concrete example (matrix chain multiplication)

3. More examples!



The 6 Steps of Dynamic Programming

1.

SAN. R

Define subproblems (and relate to original problem)

Guess (part of solution) ~» local brute force

Set up DP recurrence (for quality of solution)

Recursive implementation with Memoization

Bottom-up table filling (topological sort of subproblem dependency graph)
Backtracing to reconstruct optimal solution

Steps 1-3 require insight / creativity / intuition;
Steps 4-6 are mostly automatic / same each time

~ Correctness proof usually at level of DP recurrence

[ﬁ running time too! worst case time = #subproblems - time to find single best guess



When does DP (not) help?

| 2

No Silver Bullet
DP is the most widely applicable design technique, but can’t always be applied

Vitally important for DP to be correct:

Bellman’s Optimality Criterion

For a correctly guessed fixed part of the solution,
any optimal solution to the corresponding subproblems
must yield an optimal solution to the overall problem (once combined).

at most polynomial in 7

Also, the total number of different subproblems should be “small”

(DP potentially still works correctly otherwise, but won't be efficient.)



12.2 DP & Matrix Chain Multiplication



The Matrix-Chain Multiplication Problem

Consider the following exemplary problem

» We have a product Mo - My ----- M,,—1 of n matrices to compute
» Since (matrix) multiplication is associative, it can be evaluated in different orders.

» For non-square matrices of different sizes, different order can change costs dramatically
> Assume elementary matrix multiplication algorithm:
~+ Multiplying a X b-matrix with b X ¢ matrix costs a - b - ¢ integer multiplications
» Given: Row and column counts 7[0..1) and ¢[0..n) with 7[i + 1] = c[i] for i € [0..n — 1)
(corresponding to matrices Mo, . .., M,_1 with M; € R7lixelil)
» Goal: parenthesization of the product chain with minimal cost

really a binary tree with 1 leaves!



Matrix-Chain Multiplication — Example

axb bxc axc

costa-b-c

My My M> M3
10 x 80 80 x 50 50%2 2x10
Parenthesization Cost (integer multiplications)

My - (M - (M3 - M3))
My - ((My - My) - M3)
(Mo - My) - (M3 - M3)
(Mo - (M1 - My)) - M3
(Mo - M1) - My) - M3

1000 + 40 000 + 8000
8000 + 1600 + 8000
40000 + 1000 + 5000
8000 + 1600 + 200
40000 + 1000 + 200

49000
17600
46000

9800
41200

first or last operation

/
Greedy fails both ways!



Matrix-Chain Multiplication — How about Brute Force?

If Greedy doesn’t give optimal parenthesization, maybe just try all?

> parenthesizations for n matrices = binary trees with n leaves (evalution trees)
binary trees with  — 1 (internal) nodes

» How many such trees are there?

» Let'swritem =n—1;
» Cp=1,C1=1,Cr,=2,C3=5

m
» Cm = Cr-1- Cp—r (m=>1)

=il

generating functions / combinatorics / guess (OEIS!) & check . ..

1 (2n 1 4"
> = — ~ —_—
Can show Cj, n+l(n) T
~ exponentially many trees (almost 4) Cpo = 6564120420, C3g = 3814986502092 304

~+ A brute-force approach is utterly hopeless

~ Dynamic programming to the rescue!



Matrix-Chain Multiplication — Step 1: Subproblems

» Key ingredient for DP: Problem allows for recursive formulation 1. Subproblems
Need to decide: 2. Guess!
1. What are the subproblems to consider? 3. DP Recurrence
2. How can the original problem be expressed as subproblem(s)? 4. Mem01'za.t10n
5. Table Filling
> Often requires to solve a more general version of the problem 6. Backtrace

Here:

1. Subproblems = Ranges of matrices [i..j) 0<i<j<n
i.e., optimal parenthesization for each range M;, M;1,..., M;1

2. Original problem = range [0..n)

» Intuition:

» Any subtree in binary multiplication tree covers some range [i..j)
(matrix multiplication is not commutative ~- left-right order has to stay)

» left and right factors of a multiplication don’t “see/influence” each other



Matrix-Chain Multiplication — Step 2: Guess

» Usually, any subproblem can be split into smaller subproblems
in several ways

» Which way to decompose gives best solution not known a priori

~» What do we have to correctly guess to solve the problem?

» Here: Guess last multiplication / root of binary tree

~ index k € [i +1..]) so that [i..j) computed with last multiplication

(Mi . “"Mk—l) . (Mk ..... Mjfl)

S S Col =

Subproblems
Guess!

DP Recurrence
Memoization
Table Filling
Backtrace

~~ optimal parenthesization of M;, ..., M1 and My, ..., M;-1 computed recursively

(corresponds to subproblems [i..k) and [k..j))




Matrix-Chain Multiplication — Step 3: DP Recurrence

» With subproblems and guessed part fixed, 1. Subproblems
we try to express total value/cost of solution recursively 2. Guess!
. . . . 3. DPR

~ We ignore the actual solution and just compute its cost! ecurrence
4. Memoization

» Often good to prove correctness at level of recurrence 5. Table Filling
6. Backtrace

» Here: Recurrence for m(i, j) = total number of integer multiplications

used in best parenthesization of [i..))
~+ Set up recurrence, including any base cases.
0 recursive cost cost of last multiplication if ] —-i<1

m(i,j) = / /
min{ m(i, k) +m(k, j) + r[i] - r[k] - clj - 1] :ke[i+1..j)> otherwise

best k chosen by local brute force



Matrix-Chain Multiplication — Correctness

Claim: Let m(7, j) for 0 < i < j < n be defined by the recurrence
o 0 ifj—i<1
m(i, j) = . : : : : : : .
mm{m(z, k)+m(k,j)+rli]-r[k]-c[j-1] : ke[i+1..)) } otherwise

Then m(i,j) = #integer multiplications in best parenthesization of M; - - - M;_1.

Proof: By induction over j — i
»> IB: When j —i < 1 we have an empty product (j = i) or a single matrix (j = i + 1)
In both cases, no multiplications are needed and (i, j) = 0.
> IS: Given j — i > 2 matrices and an optimal evalution tree T for them.
> T’s root must be a last product of left and right subterms (M; - - - My_1) - (My - Mj_q) for
some i < k < j, with cost r[i]r[k]c[j —1].
» Moreover, left and right subtree Ty and T} of the root must be optimal evaluation trees for
subproblems [i..k) and [k..j); (otherwise can improve T)
~> By IH, the cost of Ty and T; are given by m(i, k) and m(k, j)

~» m(i, j) = cost of T



Matrix-Chain Multiplication — Step 4: Memoization

» Write recursive function to compute recurrence 1. Subproblems
2 |
» But memoize all results! (symbol table: subproblem — optimal cost ) 2. Guess!
3. DP Recurrence
~ First action of function: check if subproblem known 4. Memoization
» If so, return cached optimal cost 5. Table Filling
» Otherwise, compute optimal cost and remember it! 6. Backtrace
1 procedure totalMults(r[i..j), c[i..j)):
2 ifj-i<1 0 ifj-i<1
3 return 0 m(@.j) = min{m(z‘,k)+rvl(k,j)+r[i]-r‘[k]»c[j—1] tkeli+1..j); otherwise
4 else
5 best := +o0
6 fork :=i+1,...,j-1
7 m; := cachedTotalMults(r[i..k), c[i..k))
8 m, := cachedTotalMults(r[k..j), c[k..j)) 13 procedure cachedTotalMults(r[i..f), c[i..})):
9 m = my +m, +rli]-r[k]-c[j 1] 14 // m|0..n)[0..n) initialized to NULL at start
10 best := min{best, m} 15 if m[i][j] == NULL
1 end for 16 m[i][j] := totalMults(r[i..j), c[i..]))
12 return best 17 return m|i, j]

13



Matrix-Chain Multiplication — Example Memoization

——- =

Mo My My M
10 x 80 80 x 50 50x2 2x10

S~

n =
r[0..1) = [10, 80,50, 2]
c[0..n) = [80,50, 2, 10]

1. J 0 1 2 8 4
0 0 0 40000 9600 9800
mlillj] 1 — 0 0 8000 9600
2 — — 0 0 1000

3 — — — 0 0

n — — — — 0




Matrix-Chain Multiplication — Runtime Analyses

1 procedure totalMults(r[i..j), c[i..j)):

2 ifj—i<1

3 return 0

4 else

5 best := +co

6 fork =i+1,...,j-1

7 m; := cachedTotalMults(r[i..k), c[i..k))
8 m, := cachedTotalMults(r[k..j), c[k..j))
9 m = my +my +r[i] - r[k]-c[j —1]

10 best := min{best, m}

11 end for

12 return best

13 procedure cachedTotalMults(r[i..j), c[i..])):
14 // m[0..n)[0..n) initialized to NULL af start
15 if m[i][j] == NULL

16 m[i][j] = totalMults(r[i..j), c[i..))
17 return m|i, j]

~~ total running time O(n>)

»> With memoization, compute each
subproblem at most once

» nonrecursive cost (totalMults):
O(j — i) = O(n)

» Number of subproblems [i..j) for
0<i<j<n

Z 1 = 221 = On?)

0<i<j<n i=0 j=i

15



Matrix-Chain Multiplication — Step 5: Table Filling

» Recurrence induces a DAG on subproblems (who calls whom)

» Topological order here: by increasing length ¢ = j — i, then by i

» Memoized recurrence traverses this DAG (DFS!)

» We can slightly improve performance by systematically

computing subproblems following a fixed topological order

1
2
3
4
b}
6
7
8
9

10

procedure totalMultsBottomUp(r[0..7), c[0..1)):
m[0..n)[0..n) := 0 // initialize to 0
for{ =2,3,...,n //iterate over subproblems . ..
fori=0,1...,n—"0//... intopological order
j=i+l
mlil[j] := +oo
fork :=i+1,...,j-1
g = mlil[K] + m[KI[j] + r{i] - K] - [j — 1]
mli][j] = min{m[i][j],q}
return m[0..1n)[0..1n)

S S Col =

Subproblems
Guess!

DP Recurrence
Memoization
Table Filling
Backtrace

» Same ©-class as memoized
recursive function

» In practice usually
substantially faster

» lower overhead
» predictable memory

accesses

16



Matrix-Chain Multiplication — Step 6: Backtracing

» So far, only determine the cost of an optimal solution

» By retracing our steps, we can determine/construct one!

» But we also want the solution itself

» Here: output a parenthesized term recursively

1
2
3
4
5
6
7
8
9

procedure matrixChainMult(r[0..n), c[0..n)):
m[0..n)[0..n) := totalMultsBottomUp(r[0..n), c[0..1))
return traceback([0..7))

procedure traceback([i..f)):
ifj—i==1
return M;
else
fork :=i+1,...,j-1
q = mli][k] + m[k][j] + r[i] - r[k]-c[j —1]
if mlil[j] == q
return (traceback([i..k))) - (traceback([k../)))
end for
end if

S S Col =

Subproblems
Guess!

DP Recurrence
Memoization
Table Filling
Backtrace

follow recurrence a second time

always have for running time:

backtracing = O(computing M)

computing optimal cost and

computing optimal solution have

same complexity

speedup possible by
remembering correct guess k for

each subproblem

17



Summary: The 6 Steps of Dynamic Programming

. Subproblems
1. Define subproblems and how original problem is solved - Guess!

. DP Recurrence
2. What part of solution to guess? - Memoization

. Table Filling
3. Set up DP recurrence for quality/cost of solution . Backtrace

~~ Prove correctness here: induction over subproblems following recurrence

~> Analyze running time complexity here: #subproblems - non-recursive time

=
— (Basically) cookie-cutter approach from here on —

4. Recursive implementation with Memoization: mutually recursive functions with cache
or

5. Bottom-up table filling: define topological order of subproblem dependency graph

6. Backtracing to reconstruct optimal solution: Recursively retrace cost recurrence

18



12.3 Greedy as Special Case of DP



Dynamic Greedy

» Every Greedy Algorithm can also be seen as a DP algorithm without guessing

~+ For new problems, it can help to first follow the DP roadmap and
then check if we can select the “correct” guess without local brute force

» If so, we then recurse on a single branch of subproblems

~ Greedy Algorithm doesn’t need memoization or bottom-up table filling,
but can do direct recursion instead

19



Recall Unit 11

The Activity selection problem

» Activity Selection: scheduling for single machine, jobs with fixed start and end times
pick a subset of jobs without conflicts
Formally:
> Given: Activities A = {ag,...,a,-1}, each with a start time s; and finish time f;
0<s; < fi <)
> Goal: Subset! C [0..n) of tasks such thati,j € [Ai # ] = [s;, fi) N[5}, fj) =0
and |I| is maximal among all such subsets

> We further assume that jobs are sorted by finish time, i.e., fo < fi < --- < f,,1
(if not, easy to sort them in O(n log 1) time)

] a
I )

41— o= %
Hoo—  F—=4— k64 410

I 1 I o 1

] a ]
r 9 1

31

20



DP Algorithm for Activity Selection

1. Subproblems
2. Guess!
Subproblems: A;; ={a;€ A:s;> fi A fy <sj} 3. DP Recurrence
(after a; finishes and before a; begins) 4 Msmalzion
5. Table Fillin;
. . . g
Original problem: A_;, with dummy tasks f_; = —c0, 5, = +00 6. Backtrace

Guess: Task k € I*

DP Recurrence: Denote c(i, j) = [I"(A; ;)| = maximum #independent tasks in A; ;

(‘ ) 0, ifAi,j :(Z),'
~ C\1, =
/ max{c(i, k) + c(k,j)+1:ar € A;j} otherwise.

. Omitted (could be done following the standard scheme)

Problem-specific insight from Unit 11 ~- Can always use k = min{k : a; € A;j}
(earliest finish time)

No guess needed!

21



12.4 The Bellman-Ford Algorithm



Recall Shortest Paths

> Single Source Shortest Path Problem (SSSPP)

» Given: directed, edge-weighted, simple graph G = (V, E, c)
with edge costs ¢ : E — R, astart vertexs € V
> Goal: a data structure that reports for every v € V:
0G(s, v): the shortest-path distance from s to v
spath(v): a shortest path from s to v (if it exists)

» 0g(s,v) = [inf ({+oo} U {c(w) : w an s-v-walk in G})]

» Write 6 instead of 6 when graph clear from context

> Here: Assume negative-weight edges are present

» but for now: assume there is no negative cycle

~+ 0(s,v) > —oo and can restrict to shortest paths (not walks)

(otherwise Dijkstra suffices)

22



Shortest Paths as DP — Last Edge Decomposition

» Idea: Every nontrivial shortest path has a last edge. We don’t know which; so guess!
~~ Subproblems: forw € V, compute 6(s, w).

~» Recurrence: 0(s,w) = min{b(s,v) + c(ow) : vw € E}

subproblem dependency graph is isomorphic to G ~ doesn’t work in general
~» Yields usable (terminating!) algorithm iff G is a DAG.

To break the cycles, let’s turn them into a helix!

»> Need to build “layers” in the subproblem dependency graph,
so that edges can’t go back up.

0000

» Subproblems: (w,?)forw € V, ¢ € [0..n), compute 6<4(s, w)
where 6<¢(s, v) = min({+oc0} U {c(w) : w an s-v-walk with < ¢ edges})

» Original problems: ¢ =n -1 (without negative cycles, paths suffice)
00 if¢{ =0ands # w
» Recurrence: 0<y(s,w) =140 iff=0ands =w

min{ég_1(s,v) + c(vw) : vw € E} otherwise

23



Shortest Paths as DP — Length Layers

24



Hold On - What about negative cycles?

» The recurrence for 6<y seems to

. : : if { =0and s #
work fine with negative edges N ' mes v

0<¢(s,w) =40 if{ =0and s = w

But G could contain a min{(qu(S, v) + c(vw) : vw € E} otherwise

negative-weight cycle C . ..

‘l Isn’t that a contradiction to the non-existence of shortest paths?

» No. If we restrict the length, shortest walks always exist.
» But: If there is a negative cycle C[0..k] with paths s ~» C and C ~~ w,
then 6<(s, w) > O<psk(s, w) > O<pyok(s, w) > --- (and 6(s, w) = —o0)

~» We can detect if any negative cycle is reachable from s by including more layers ¢ > n
and check if some vertex still improves.

» How many further layers do we need / when is it safe to stop?

25



Detecting negative cycles

We can detect reachable negative cycles by including just the single extra layer ¢ = n!

Lemma: Jw : 6<,(s, w) < 6<,—1(s, w) iff negative cycle reachable from s

“="  » If some vertex w improves further, i.e., <, (s, w) < 6<y,—1(s, w)

a walk W[0..n] with ¢(W) = 6<x(s, w) was the shortest way to reach w

W is a non-simple walk, i. e., it contains a cycle

Let P[0..k] be the path resulting from W by shortcutting all cycles ~» k<n—1
c(P) 2 b<p-1(s,w) > d<uls,w) = c(W)

J negative cycle reachable from s

Conversely, let negative cycle C[0..k] be reachable from s

(€)= Xt e(clilcli +1]) < 0

Assume towards a contradiction that Vw : < (s, w) = 6<,—1(s, w)

Yow € E : 6 (s,w) <o (s,0) + c(vw) (no update in layer ¢ = n)

ﬂi
vivsiw § % v

summing this inequality over C[0..k] yields (abbreviating 6(w) := 6 (s, w))
k

k k-1 k
sl < Z((S(C[i—1])+c(C[i]C[i+1])) = > 8(Clil+ Y. e(CLICLi +11)
i=0 i=1

i=1 i=1

~ 0<c(C)<0 ¥ =¢(C)<0



Shortest Paths as DP — Template Algorithm

» Strictly following the template works . ..
» Subproblem order: by increasing ¢ € [0..n] and v € V
» Bottom-up table filling:

1 procedure shortestPathsDP(G, s):

2 // Base case ¢ = 0:

3 6[0..n][0..n) := +o0 // 5[€][v] will store 6<4(s,v)
4 6[0][s] := 0

5 for?¢ :=1,...,n//layer
6

7

8

9

0o

O<¢(s,w) =40
forw :=0,...,n—1//vertex

forow € E
oll])[w] := min{b[é][w], ol¢ —1][v] + c(vw)}
return 0

» ... but some improvements are possible!
» Iterating over incoming edges is not convenient

~ order of updates within layer { doesn’t matter ~- iterate forwards!

. Subproblems
. Guess!

. Memoization
. Table Filling
. Backtrace

SO R W N R

DP Recurrence

» only use final distances in the end; we waste space by keeping 2D array around

~ can actually just do updates in place, using a single array 6

~» Don't strictly solve subproblems (¢, v) any more! (but final result correct)

if{ =0and s # w
if{ =0ands =w

min{hg,l(s, v) + c(vw) : vw € E} otherwise

27



The Bellman-Ford Algorithm

1 procedure bellmanFord(G, s):

2 dist[0..n) := +oo; pred[0..n) := null

3 dist[s] := 0

4 for! :=1,...,n-1

5 forv :=0,...,n—-1

6 for (w, c) € G.adj[v]

7 if dist{w] > dist[v] + ¢

8 dist|w] := dist[v] + ¢

9 pred[w] := v // remember for backtrace
10 forv :=0,...,n—1

11 for (w, c) € G.adj[v]

12 if dist{w] > dist[v] + ¢

13 return HAS NEGATIVE CYCLE
14 return (dist, pred)

Extensions:

» Final algorithm
(including shortest path tree via pred)
» Correctness:

» by induction over loop iteration show
dist{w] < 0<¢(s, w) and if finite,
dist[w] is ¢(P) for some s-w-path

> negative cycle detection from Lemma

» Space: O(n)

» Running time: O(n(n + m))

» Can be implemented in O(nm) time by removing unreachable vertices from consideration

» Instead of only detecting a negative cycle, we can return one;

we can also explicitly find all vertices with 6(s, w) = —co

(needs another traversal).

» Can terminate with smaller ¢ if no distance changed ~- faster for some graphs

28



12.5 Making Change in Pre-1971 UK



Recall Unit 11

Greed For Change

The Change-Making Problem (a.k.a. Coin-Exchange Problem)
» Given: a set of integer denominations of coins wy < wy < -+ < wy withwy =1,
target value n € Nzl /(we have sufficient supply of all coins ...)

» Goal: “fewest coins to give change 1", i.e.,
multiplicities c1, . .., cx € Nyo with Zf:] i - w; = n Minimizing Zf;l @5

For Euro coins, denominations are , , , , @ , , @ ,and @
formally: 1, 2, 5, 10, 20, 50 , 100, and 200.
w1 Wy W3 Wy Ws We wy wsg

1 procedure greedyChange(w|1..k], 1):
2 /] Assumes 1 = w[l] < w[2] < -+ < w[k]

~+ Simple greedy algorithm: . fori = kk—1,.. 1

largest coins first

4 cli] = |n/wli]|
» optimal time (O (k) if coins sorted) 5 n = n—cli] wli]
» is ) ¢; minimal? 6 //Nown ==0

7 return c[1..k]

29



Pre-Decimal English Coins

We discussed that for some (unwise) choices of denominations, Greedy cannot give optimal change.
Welcome to Britain until 1971!

British Pre-Decimal Coins:

> 3 penny, ~+ Greedy would give 48 pence

> 1 penny, as 30p + 12p + 6p

> 3 pence, » obviously, 2 florins are more efficient
> 6 pence,

» shilling = 12 pence,

> florin = 24 pence ~» How to solve exactly?

> half-crown = 30 pence As the old saying goes . . .

> crown =60 pence Where Greedy fails, DP prevails.

> pound =240 pence (but mind details, and how it scales)

> guinea = 21 - 12 = 252 pence

(obsolete as coin since 1816)

30



Making Change by DP

Idea: Every solution must pick a first coin. Which one? Unclear, so guess! 1. Subproblems
2. Guess!
» Subproblems: Change for m € [0..1] (with coins w1, . .., wg) 3. DP Recurrence
Original problem m = n 4 Msmalzion
. . 5. Table Filling
» Guess: first coin w; to use 6. Backtrace
» Recurrence C(m) = smallest #coins to give change m
ifm=0
C(m) = : : .
1+ mm{C(m —w;):i€[l.k] Aw; < m} otherwise
»> Bottom-up implementation & Backtrace

1 procedure dpChange(w|1..k], n): 1 procedure tracebackChange(w[1..k], n):

2 C[0..n] := 40 2 C[0..n] :=dpChange(w|[1..k], )

3 C[0] := 0 3 c[1..k] := 0// coin multiplicities

4 form :=1,...,n 4 m:=n

5 fori :=1,...,k 5 while m > 0

6 ifw[i]>m 6 fori:=1,...,k

7 g =1+ C[m —wli]] 7 ifwl[i]>mAC[m]==1+ C[m —wl[i]]
8 C[m] := min{C[m], q} 8 cli] == cli] +1; m = m —w[i]

9 return C[n| 9 return c[1..k|

31



Making Change by DP — Analysis

» Input: denominations of coins
Wy < wy < -+ <wpwithwy =1,
target value n € N>q

. #subproblems
> Space' @(1’1) time per subproblem

» Running Time: O(# - k)

How good is this running time?

1
2
3
4
5
6
7
8
9

procedure dpChange(w|1..k], n):
C[0..n] := +o0

C[0] :=0
form :=1,...,n
fori :=1,...,k
if wli] > m

q =1+ C[m —wli]]
Clm] := min{C[m], q}
return C[n]

» A linear function in both input numbers seems decent, right?  (f k and 1 small, certainly Yes.)

» Running time is also certainly a polynomial in n and k

» But: In terms of computational complexity, dpChange is an exponential-time algorithm!

> Reason: We give the input number 7 in binary, so 7 is exponential in its input size.

A Must distinguish: value of a number (in the input) vs. size of the (encoding of the) input

~ [dehange is a pseudo-polynomial time algorithm]

» Actually, the general making-change problem is NP-complete (!)
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Knapsack

Let’s look at slightly more interesting problem: Knapsack (,,Rucksack”).
N

The 0/1-Knapsack Problem a.k.a. the burglar’s problem

» Given: k items with weights w; ..., wy € N>1 and values vy, ..., vx € Rxo;
a weight budget W € N

» Goal: Sub's\et I € [1..k] such that };c; w; < W with maximum )’;; v;.

Variant closer to Making change: Can use each item several times

» Recall from tutorials: Greedy fails miserably in general.

1. Subproblems
~ Let’s try DP! 2. Guess!
3. DP Recurrence
» Subproblems: B € [0..W], best value with total weight < B 4. Memoization
5. Table Filling
» Guess: firstitem i with w; < B. &, BadkizEe

¥ Subproblem not of same type since w; no longer there!
~ 2K possible “states” to be in (items already used) (0/1-Knapsack)
k% need a table of size W - 25 ... might as well do brute force then!



Knapsack by DP

~~ Force order to consider items in! 1. Subproblems
2. Guess!
» Let’s refine the guessing part to 3. DP Recurrence
Guess: Whether or not to include the last item (k) 4. Memoization
5. Table Filling
~» For subproblem, restrict toitems 1,...,k —1 (in either case) 6. Backtrace

~» Subproblems: ({,B) for{ € [1..k] and B € [0..W]
V(,B) = mlaxz v; over sets of items [ C [1..¢] with }};c;w; < B
i€l
Original problem corresponds to V (k, W)
0 if¢{ =1Awy; > B
take item ¢ don't take ¢

» Recurrence: V({,B) = v / / if{=1Aw1 <B
max{w +V({-1,B-wy), V(- l,B)} otherwise

@ Cookie-Cutter Steps 4.—6. Omitted

> V(¢,-)only needs V({ —1,:) ~» two arrays V[0..W]and Vprey[0..W] suffice
~ O(W) space, O(W - k) time (pseudo-polynomial algorithm)
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12.6 Optimal Merge Trees & Optimal BSTs



Recall Unit 4

Good merge orders

« Let’s take a step back and breathe.

» Conceptually, there are two tasks:

1. Detect and use existing runs in the input ~ #,..., ¢ (easy) \/

2. Determine a favorable order of merges of runs  (“automatic” in top-down mergesort)

lﬂ rj é é well-understood problem
2 2 3 2 6 2 6

with known algorithms

Merge cost = totalareaof () ~~ | optimal merge tree j
= total length of paths to all array entries = optimal binary search tree
= szeigllt(w) - depth(w) for leaf weights ¢, ..., ¢,

w leaf (optimal expected search cost)




Optimal Alphabetic Trees

“well-understood problem with known algorithms” . .. let’s make it so =

» Given: Leaf weights {y,..., ¢, normalizedto o +---+ ¢, =1

» Goal: Binary search tree T with n + 1 null pointers Lo, ..., L,, such that
n
o(T) = {; - depth(L;) is minimized

i=1

» Equivalent interpretations:

1. Optimal Static BST with keys 1,2,...,n #“’mj““is"“s
~> leaf L; reached when searching for i + 0.5 ~» c¢(T) expected cost of unsuccessful search

2. Alphabetic code for ¢ = n + 1 symbols; like Huffman code, but codewords must retain order
(if i < j then the codeword for i lexicographically smaller than codeword for ;)
~> ¢(T) expected codeword length 7
» Inherit lower bound from Huffman codes: ¢(T) > H with H = Z l; - logz(%)
5 il

3. Merge tree for adaptive sorting; c(T) = merge cost per element. =0

» Via Peeksort or Powersort know methods to achieve ¢(T) < H + 2

» But neither are in general optimal
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Optimal Alphabetic Trees by DP

» Guess: (Keyin)rootr € [1..n] of BST T (= #leaves in left subtree)

» Subproblems: [i..j)for0<i<j<n+1
C(i, j) = cost of opt. BST with leaf weights ¢;, ..., {j-1
Original problem: C(0,n + 1)

> Recurrence:

all leaves in subtree pay 1 at root. . .

G R WM

. Subproblems
. Guess!

. DP Recurrence
. Memoization
. Table Filling

. Backtrace

ifj—i=1

C(i,j) = /
G+t + min{C(i, r)+C(r,j):reli+1l.j— 1]} otherwise

... plus cost to continue in left/right subtree

=

~~ Obtain a O(n?) time and O(n?) space algorithm
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Optimal Binary Search Trees

» Algorithm can be generalized to Optimal BSTs when also internal nodes have weights
» Same DP subproblems
» Running time can be reduced to O(n?) using quadrangle inequality

» Intuitively: When adding more weight in right subtree, optimal root cannot move left.

» Requires to remember 7 for each subproblem

» For original alphabetic tree problem, can actually find optimal tree in O(7 logn) time
with a much more intricate algorithm
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12.7 Edit Distance



Edit Distance

Our last DP application here: (algorithmic foundation of) diff!

» diff is a classic Unix tool to compare two text files

> routinely used in version control systems such as git

» abstract problem: measure how different two strings are

> We've seen Hamming distance . . .
But how to deal with strings of different lengths?

» how to match common parts that are far apart?

» diff works line-oriented, but we will formulate the problem character oriented

Edit Distance Problem
» Given: String A[0..m) and B[0..n) over alphabet £ = [0..0).

» Goal: deqit(A, B) = minimal #symbol operations to transform A into B
operations can be insertion/deletion/substitution of single character
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Edit Distance Example

Example: edit distance degit(algorithm, logarithm)?

algorithm

logarithm

al-gorithm
-[+IXT T
-logarithm
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Edit Distance by DP
1. Subproblems: (i,j)for0<i<m,0< j < m compute degit(A[0..7), B[0..]))
2. Guess: What to do with last positions? (insert/delete/(mis)match)

3. Recurrence: D(i,]) = deqit(A[0..7), B[O..}))

i ifj=0

j ifi=0
D(l,])I D(i_lrj)+1/

min<D(i,j-1)+1, otherwise

D(i-1,j—1)+ [Ali - 1] # B[j — 1]]

~» O(nm) space and time
space can be improved to O (min{n, m}) by remembering only 2 rows or columns

» An optimal edit script can be constructed by a backtrace
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Generalized Edit Distances

» The variant we discussed is also called Levenshtein distance
» all operation have cost 1
» we can directly give each of the following its own cost in our DP algorithm

» deleting an occurrence of 7 € X
> inserting ana € X

» substitutinga € X forb € &

» Extensions of the algorithm can support:

> free insert/delete at beginning/end of a string

» affine gap costs, i. e., inserting /deleting k consecutive chars costs ¢ - k + d for constants ¢ and d

> extensions widely used to find approximate matches, e. g., in DNA sequences
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Dynamic Programming — Summary

Subproblems
Guess!

DP Recurrence
Memoization
Table Filling
Backtrace

S RS

ib Versatile and powerful algorithm design paradigm

ib Once key idea (recurrence) clear, implementation rather straight-forward

=
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