
13 Text Indexing –
Searching entire genomes

3 February 2025

Prof. Dr. Sebastian Wild
CS566 (Wintersemester 2024/25)
Philipps-Universität Marburg

version 2025-01-28 21:17 H

Learning Outcomes

Unit 13: Text Indexing

1. Know and understand methods for text indexing: inverted indices, suffix trees, (enhanced)
suffix arrays

2. Know and understand generalized suffix trees

3. Know properties, in particular performance characteristics, and limitations of the above
data structures.

4. Design (simple) algorithms based on suffix trees.

5. Understand construction algorithms for suffix arrays and LCP arrays.

1

Outline

13 Text Indexing
13.1 Motivation
13.2 Suffix Trees
13.3 Applications
13.4 Longest Common Extensions
13.5 Suffix Arrays
13.6 Linear-Time Suffix Sorting: Overview
13.7 Linear-Time Suffix Sorting: The DC3 Algorithm
13.8 The LCP Array
13.9 LCP Array Construction

13.1 Motivation

Text indexing
▶ Text indexing (also: offline text search):

▶ case of string matching: find 𝑃[0..𝑚) in 𝑇[0..𝑛)
▶ but with fixed text ⇝ preprocess 𝑇 (instead of 𝑃)
⇝ expect many queries 𝑃, answer them without looking at all of 𝑇
⇝ essentially a data structuring problem: “building an index

Latin: “one who points out”

of 𝑇”

▶ application areas
▶ web search engines
▶ online dictionaries
▶ online encyclopedia
▶ DNA/RNA data bases
▶ . . . searching in any collection of text documents (that grows only moderately)

2

Inverted indices
▶ original indices

same as “indexes”

in books: list of (key) words ↦→ page numbers where they occur

▶ assumption: searches are only for whole (key) words

⇝ often reasonable for natural language text

Inverted index:
▶ collect all words in 𝑇

▶ can be as simple as splitting 𝑇 at whitespace
▶ actual implementations typically support stemming of words

goes→ go, cats→ cat

▶ store mapping from words to a list of occurrences ⇝ how?

3

Tries
▶ efficient dictionary data structure for strings

▶ name from retrieval, but pronounced “try”

▶ tree based on symbol comparisons

▶ Assumption: stored strings are prefix-free (no string is a prefix of another)
▶ strings of same length✓
▶ strings have “end-of-string” marker $

some character ∉ Σ

✓
▶ Example:

{aa$, aaab$, abaab$, abb$,
abbab$, bba$, bbab$, bbb$}

root

aa$

$

aaab$

$

b

a

a

abaab$

$

b

a

a

abb$

$

abbab$

$

b

a

b

b

a

bba$

$

bbab$

$

b

a

bbb$

$

b

b

b

4

Compact tries
▶ compress paths of unary

=1 child

nodes into single edge
▶ nodes store index of next character to check

standard trie compact trie

aa$

$

aaab$

$

b

a

a

abaab$

$

b

a

a

abb$

$

abbab$

$

b

a

b

b

a

bba$

$

bbab$

$

b

a

bbb$

$

b

b

b
0

1

2

aa$
$

aaab$
a

a

2

abaab$
a

3

abb$
$

abbab$
a

b

b

a

2

3

bba$
$

bbab$
b

a

bbb$

b

b

⇝ searching slightly trickier, but same time complexity as in trie
▶ all nodes ≥ 2 children ⇝ #nodes ≤ #leaves = #strings ⇝ linear space

5

Tries as inverted index
simple

fast lookup

cannot handle more general queries:
▶ search part of a word
▶ search phrase (sequence of words)

what if the ‘text’ does not even have words to begin with?!
▶ biological sequences

ACAAGATGCCATTGTCCCCCGGCCTCCTGCTGCTGCTGCTCTCCGGGGCCACGGCCACCGCTGCCCTGCCCCTGGAGGGTGGCCCCACCGGC
CGAGACAGCGAGCATATGCAGGAAGCGGCAGGAATAAGGAAAAGCAGCCTCCTGACTTTCCTCGCTTGGTGGTTTGAGTGGACCTCCCAGGC
CAGTGCCGGGCCCCTCATAGGAGAGGAAGCTCGGGAGGTGGCCAGGCGGCAGGAAGGCGCACCCCCCCAGCAATCCGCGCGCCGGGACAGAA
TGCCCTGCAGGAACTTCTTCTGGAAGACCTTCTCCTCCTGCAAATAAAACCTCACCCATGAATGCTCACGCAAGTTTAATTACAGACCTGAA

▶ binary streams
00000010101001111010111000001111100011111011111001101101000011100010011011110000010001101010
01101100001101011010000000100000000111010110000010000111101011101100100011001011011101111111
110001010001011001010000001110101010011000000001101100001100111110000101 0101011101111000011
10101110010010101010100000111110100110000001111001101010000000100100100000101100011000110111

⇝ need new ideas
6

13.2 Suffix Trees

Suffix trees – A ‘magic’ data structure
Appetizer: Longest common substring problem

▶ Given: strings 𝑆1 , . . . , 𝑆𝑘 Example: 𝑆1 = superiorcalifornialives, 𝑆2 = sealiver

▶ Goal: find the longest substring that occurs in all 𝑘 strings ⇝ alive

Can we do this in time 𝑂(|𝑆1| + · · · + |𝑆𝑘 |)? How??

Enter: suffix trees

▶ versatile data structure for index with full-text search
▶ linear time (for construction) and linear space
▶ allows efficient solutions for many advanced string problems

“Although the longest common substring problem looks trivial now, given our knowledge of suffix trees,
it is very interesting to note that in 1970 Don Knuth conjectured that
a linear-time algorithm for this problem would be impossible.” [Gusfield: Algorithms on Strings, Trees, and Sequences (1997)]

7

Suffix trees – Definition
▶ suffix tree T for text 𝑇 = 𝑇[0..𝑛) = compact trie of all suffixes of 𝑇$ (set 𝑇[𝑛] ≔ $)

▶ except: in leaves, store start index (instead of copy of actual string)

Example:
𝑇 = bananaban$
suffixes: {bananaban$, ananaban$, nanaban$,

anaban$, naban$, aban$, ban$, an$, n$, $}
0 1 2 3 4 5 6 7 8 9

𝑇 = b a n a n a b a n $

▶ also: edge labels like in compact trie

▶ (more readable form on slides to explain algorithms)

0

9

$ 1

5
b

2
7$

3

3b

1
n

a
n

a

3
6$

0
a

b

1
8$

2

4b

2
n

a

n

8

Suffix trees – Construction
▶ 𝑇[0..𝑛] has 𝑛 + 1 suffixes (starting at character 𝑖 ∈ [0..𝑛])

▶ We can build the suffix tree by inserting each suffix of 𝑇 into a compressed trie.
But that takes time Θ(𝑛2). ⇝ not interesting!

Amazing result: Can construct the suffix tree of 𝑇 in Θ(𝑛)

same order of growth as reading the text!

time!

▶ algorithms are a bit tricky to understand

▶ but were a theoretical breakthrough

▶ and they are efficient in practice (and heavily used)!

⇝ for now, take linear-time construction for granted. What can we do with them?

9

13.3 Applications

Applications of suffix trees
▶ In this section, always assume suffix tree T for 𝑇 given.

Recall: T stored like this: but think about this:

0

9

$

1

5

b

2

7

$

3

3

b

1

n

a

n

a

3

6

$

0

a

b

1

8

$

2

4

b

2

n

a

n

𝑇 = bananaban$

9

$ a

5

ba
n
$

n

7

$ a

3

b
a
n
$

1

n
a
b
a
n
$

ban

6

$

0

a
n
a
b
a
n
$

n

8

$ a

4

b
a
n
$

2

n
a
b
a
n
$

▶ Moreover: assume internal nodes store pointer to leftmost leaf in subtree.

▶ Notation: 𝑇𝑖 = 𝑇[𝑖..𝑛] (including $)

10

Application 1: Text Indexing / String Matching

▶ 𝑃 occurs in 𝑇 ⇐⇒ 𝑃 is a prefix of a suffix of 𝑇

▶ we have all suffixes in T!

⇝ (try to) follow path with label 𝑃, until
1. we get stuck

at internal node (no node with next character of 𝑃)
or inside edge (mismatch of next characters)
⇝ 𝑃 does not occur in 𝑇

2. we run out of pattern
reach end of 𝑃 at internal node 𝑣 or inside edge towards 𝑣
⇝ 𝑃 occurs at all leaves in subtree of 𝑣

3. we run out of tree
reach a leaf ℓ with part of 𝑃 left ⇝ compare 𝑃 to ℓ .

This cannot happen when testing edge labels since $ ∉ Σ,
but needs check(s) in compact trie implementation!

▶ Finding first match (or NO_MATCH) takes 𝑂(|𝑃|) time!

9

$ a

5

ba
n
$

n

7

$ a

3

b
a
n
$

1

n
a
b
a
n
$

ban

6

$

0

a
n
a
b
a
n
$

n

8

$ a

4

b
a
n
$

2

n
a
b
a
n
$

𝑇 = bananaban$

Examples:
▶ 𝑃 = ann
▶ 𝑃 = baa
▶ 𝑃 = ana
▶ 𝑃 = ba
▶ 𝑃 = briar

11

Application 2: Longest repeated substring
▶ Goal: Find longest substring 𝑇[𝑖..𝑖 + ℓ) that occurs

e. g. for compression ⇝ Unit 7

also at 𝑗 ≠ 𝑖: 𝑇[𝑗.. 𝑗 + ℓ) = 𝑇[𝑖..𝑖 + ℓ).

How can we efficiently check all possible substrings?

Repeated substrings = shared paths in suffix tree

▶ 𝑇5 = aban$ and 𝑇7 = an$ have longest common prefix ‘a’

⇝ ∃ internal node with path
here single edge, can be longer path

label ‘a’

⇝ longest repeated substring = longest common prefix
(LCP) of two suffixes

actually: adjacent leaves
▶ Algorithm:

1. Compute string depth (=length of path label) of nodes
2. Find internal nodes with maximal string depth

▶ Both can be done in depth-first traversal ⇝ Θ(𝑛) time

9

$ a

5

ba
n
$

n

7

$ a

3

b
a
n
$

1

n
a
b
a
n
$

ban

6

$

0

a
n
a
b
a
n
$

n

8

$ a

4

b
a
n
$

2

n
a
b
a
n
$

𝑇 = bananaban$

12

Generalized suffix trees
▶ longest repeated substring (of one string) feels very similar to

longest common substring of several strings 𝑇(1) , . . . , 𝑇(𝑘) with 𝑇(𝑗) ∈ Σ𝑛 𝑗

▶ can we solve that in the same way?

▶ could build the suffix tree for each 𝑇(𝑗) . . . but doesn’t seem to help

⇝ need a single/joint suffix tree for several texts

Enter: generalized suffix tree

▶ Define 𝑇 := 𝑇(1)$1𝑇(2)$2 · · ·𝑇(𝑘)$k for 𝑘 new end-of-word symbols

▶ Construct suffix tree T for 𝑇

⇝ $j-edges always leads to leaves ⇝ ∃ leaf (𝑗 , 𝑖) for each suffix 𝑇
(𝑗)
𝑖

= 𝑇(𝑗)[𝑖..𝑛 𝑗]

13

Application 3: Longest common substring
▶ With that new idea, we can find longest common substrings:

1. Compute generalized suffix tree T.
2. Store with each node the subset of strings that contain its path label:

2.1. Traverse T bottom-up.
2.2. For a leaf (𝑗 , 𝑖), the subset is { 𝑗}.
2.3. For an internal node, the subset is the union of its children.

3. In top-down traversal, compute string depths of nodes. (as above)

4. Report deepest node (by string depth) whose subset is {1, . . . , 𝑘}.

▶ Each step takes time Θ(𝑛) for 𝑛 = 𝑛1 + · · · + 𝑛𝑘 the total length of all texts.

“Although the longest common substring problem looks trivial now, given our knowledge of suffix trees,
it is very interesting to note that in 1970 Don Knuth conjectured that
a linear-time algorithm for this problem would be impossible.” [Gusfield: Algorithms on Strings, Trees, and Sequences (1997)]

14

Longest common substring – Example
𝑇(1) = bcabcac, 𝑇(2) = aabca, 𝑇(3) = bcaa

0
123

1123 3123

1 123

223

412

2 123

$1

$2
$3

a$2
a$3

aa$3

aabca$2

ac$1

abca$2

abcac$1

bca$2

bcaa$3

bcabcac$1

bcac$1

c$1

ca$2

caa$3

cabcac$1

cac$1

$1
$2 $3

a bca

c

$2 $3 a
bca

c $1

b
c
a
$2

$3
$2 c

$1

$2 a
$3

bcac
$1

c$1

$1 a

$2 a
$3

bcac
$1

c$1

15

13.4 Longest Common Extensions

Application 4: Longest Common Extensions
▶ We implicitly used a special case of a more general, versatile idea:

The longest common extension (LCE) data structure:
▶ Given: String 𝑇[0..𝑛)
▶ Goal: Answer LCE queries, i. e.,

given positions 𝑖, 𝑗 in 𝑇,
how far can we read the same text from there?
formally: LCE(𝑖 , 𝑗) = max{ℓ : 𝑇[𝑖..𝑖 + ℓ) = 𝑇[𝑗.. 𝑗 + ℓ)}

⇝ use suffix tree of 𝑇!

▶ In T: LCE(𝑖 , 𝑗) = LCP

(length of) longest common prefix
of 𝑖th and 𝑗th suffix

(𝑇𝑖 , 𝑇𝑗) ⇝ same thing, different name!
= string depth of

lowest common ancester (LCA) of
leaves 𝑖 and 𝑗

9

$ a

5

ba
n
$

n

7

$ a

3

b
a
n
$

1

n
a
b
a
n
$

ban

6

$

0

a
n
a
b
a
n
$

n

8

$ a

4

b
a
n
$

2

n
a
b
a
n
$

𝑇 = bananaban$

▶ in short: LCE(𝑖 , 𝑗) = LCP(𝑇𝑖 , 𝑇𝑗) = stringDepth
(
LCA(𝑖 , 𝑗)

)
16

Efficient LCA
How to find lowest common ancestors?
▶ Could walk up the tree to find LCA ⇝ Θ(𝑛) worst case

▶ Could store all LCAs in big table ⇝ Θ(𝑛2) space and preprocessing

Amazing result: Can compute data structure in Θ(𝑛) time and space
that finds any LCA is constant(!) time.

▶ a bit tricky to understand

▶ but a theoretical breakthrough

▶ and useful in practice

⇝ for now, use 𝑂(1) LCA as

and suffix tree construction inside . . .

black box.

⇝ After linear preprocessing (time & space), we can find LCEs in 𝑂(1) time.

17

Application 5: Approximate matching
𝒌-mismatch matching:

▶ Input: text 𝑇[0..𝑛), pattern 𝑃[0..𝑚), 𝑘 ∈ [0..𝑚)
▶ Output:

▶ smallest 𝑖 so that 𝑇[𝑖..𝑖 + 𝑚) are 𝑃 differ

“Hamming distance ≤ 𝑘”

in at most 𝑘 characters
▶ or NO_MATCH if there is no such 𝑖

⇝ searching with typos

▶ Adapted brute-force algorithm ⇝ 𝑂(𝑛 · 𝑚)

▶ Assume longest common extensions in 𝑇$1𝑃$2 can be found in 𝑂(1)
⇝ generalized suffix tree T has been built
⇝ string depths of all internal nodes have been computed
⇝ constant-time LCA data structure for T has been built

18

Kangaroo Algorithm for approximate matching

1 procedure kMismatch(𝑇[0..𝑛 − 1], 𝑃[0..𝑚 − 1]):
2 // build LCE data structure
3 for 𝑖 := 0, . . . , 𝑛 − 𝑚 − 1 do
4 mismatches := 0; 𝑡 := 𝑖; 𝑝 := 0
5 while mismatches ≤ 𝑘 ∧ 𝑝 < 𝑚 do
6 ℓ := LCE(𝑡 , 𝑝) // jump over matching part
7 𝑡 := 𝑡 + ℓ + 1; 𝑝 := 𝑝 + ℓ + 1
8 mismatches := mismatches + 1
9 if 𝑝 == 𝑚 then

10 return 𝑖

▶ Analysis: Θ(𝑛 + 𝑚) preprocessing + 𝑂(𝑛 · 𝑘) matching

⇝ very efficient for small 𝑘

▶ State of the art
▶ 𝑂

(
𝑛
𝑘2 log 𝑘

𝑚

)
possible with complicated algorithms

▶ extensions for edit distance ≤ 𝑘 possible
19

Application 6: Matching with wildcards
▶ Allow a wildcard

stands for arbitrary (single) character

character in pattern unit* 𝑃

in␣unit5␣we␣will 𝑇

▶ similar algorithm as for 𝑘-mismatch ⇝ 𝑂(𝑛 · 𝑘 + 𝑚) when 𝑃 has 𝑘 wildcards

∗ ∗ ∗

Many more applications, in particular for problems on biological sequences

20+ described in Gusfield, Algorithms on strings, trees, and sequences (1999)

20

Suffix trees – Discussion
▶ Suffix trees were a threshold invention

linear time and space

suddenly many questions efficiently solvable in theory

construction of suffix trees:
linear time, but significant overhead

construction methods fairly complicated

many pointers in tree incur large space overhead

21

13.5 Suffix Arrays

Putting suffix trees on a diet

$ 9

aban$ 5

an$ 7

anaban$ 3

ananaban$ 1

ban$ 6

bananaban$ 0

n$ 8

naban$ 4

nanaban$ 2

L[0..𝑛]

ban$

naban$

ban$

naban$

$

anaban$

$

a

$

a

ban
$

n

a

ban
n

$

▶ Observation: order of leaves in suffix tree
= suffixes lexicographically sorted

▶ Idea: only store list of leaves 𝐿[0..𝑛]
▶ Enough to do efficient string matching!

1. Use binary search for pattern 𝑃

2. check if 𝑃 is prefix of suffix after position found

▶ Example: 𝑃 = ana

⇝ 𝐿[0..𝑛] is called suffix array:

𝐿[𝑟] = (start index of) 𝑟th suffix in sorted order

▶ using 𝐿, can do string matching with
≤ (lg 𝑛 + 2) · 𝑚 character comparisons

22

Suffix arrays – Construction
How to compute 𝐿[0..𝑛]?
▶ from suffix tree

▶ possible with traversal . . .
but we are trying to avoid constructing suffix trees!

▶ sorting the suffixes of 𝑇 using general purpose sorting method
trivial to code!

▶ but: comparing two suffixes can take Θ(𝑛) character comparisons
Θ(𝑛2 log 𝑛) time in worst case

▶ We can do better!

23

Digression: Recall BWT

Burrows-Wheeler Transform
1. Take all cyclic shifts of 𝑆

2. Sort cyclic shifts

3. Extract last column

𝑆 = alf␣eats␣alfalfa$
𝐵 = asff$f␣e␣lllaaata

alf␣eats␣alfalfa$
lf␣eats␣alfalfa$a
f␣eats␣alfalfa$al
␣eats␣alfalfa$alf
eats␣alfalfa$alf␣
ats␣alfalfa$alf␣e
ts␣alfalfa$alf␣ea
s␣alfalfa$alf␣eat
␣alfalfa$alf␣eats
alfalfa$alf␣eats␣
lfalfa$alf␣eats␣a
falfa$alf␣eats␣al
alfa$alf␣eats␣alf
lfa$alf␣eats␣alfa
fa$alf␣eats␣alfal
a$alf␣eats␣alfalf
$alf␣eats␣alfalfa

⇝
sort

BWT
↓

$alf␣eats␣alfalfa
␣alfalfa$alf␣eats
␣eats␣alfalfa$alf
a$alf␣eats␣alfalf
alf␣eats␣alfalfa$
alfa$alf␣eats␣alf
alfalfa$alf␣eats␣
ats␣alfalfa$alf␣e
eats␣alfalfa$alf␣
f␣eats␣alfalfa$al
fa$alf␣eats␣alfal
falfa$alf␣eats␣al
lf␣eats␣alfalfa$a
lfa$alf␣eats␣alfa
lfalfa$alf␣eats␣a
s␣alfalfa$alf␣eat
ts␣alfalfa$alf␣ea

24

Digression: Computing the BWT

How can we compute the BWT of a text efficiently?

▶ cyclic shifts 𝑆 =̂ suffixes of 𝑆
▶ comparing cyclic shifts stops at first $
▶ for comparisons, anything after $ irrelevant!

▶ BWT is essentially suffix sorting!
▶ 𝐵[𝑖] = 𝑆[𝐿[𝑖] − 1]
▶ where 𝐿[𝑖] = 0, 𝐵[𝑖] = $

⇝ Can compute 𝐵 in 𝑂(𝑛) time from 𝐿

alf␣eats␣alfalfa$
lf␣eats␣alfalfa$a
f␣eats␣alfalfa$al
␣eats␣alfalfa$alf
eats␣alfalfa$alf␣
ats␣alfalfa$alf␣e
ts␣alfalfa$alf␣ea
s␣alfalfa$alf␣eat
␣alfalfa$alf␣eats
alfalfa$alf␣eats␣
lfalfa$alf␣eats␣a
falfa$alf␣eats␣al
alfa$alf␣eats␣alf
lfa$alf␣eats␣alfa
fa$alf␣eats␣alfal
a$alf␣eats␣alfalf
$alf␣eats␣alfalfa

𝑟 ↓ 𝐿[𝑟]
0 $alf␣eats␣alfalfa 16
1 ␣alfalfa$alf␣eats 8
2 ␣eats␣alfalfa$alf 3
3 a$alf␣eats␣alfalf 15
4 alf␣eats␣alfalfa$ 0
5 alfa$alf␣eats␣alf 12
6 alfalfa$alf␣eats␣ 9
7 ats␣alfalfa$alf␣e 5
8 eats␣alfalfa$alf␣ 4
9 f␣eats␣alfalfa$al 2
10 fa$alf␣eats␣alfal 14
11 falfa$alf␣eats␣al 11
12 lf␣eats␣alfalfa$a 1
13 lfa$alf␣eats␣alfa 13
14 lfalfa$alf␣eats␣a 10
15 s␣alfalfa$alf␣eat 7
16 ts␣alfalfa$alf␣ea 6

25

Fat-pivot radix quicksort – Example

she

sells

seashells

by

the

sea

shore

the

shells

she

sells

are

surely

seashells

by

are

she

sells

seashells

sea

shore

shells

she

sells

surely

seashells

the

the

are

by

sells

seashells

sea

sells

seashells

she

shore

shells

she

surely

the

the

sells

seashells

sea

sells

seashells

she$

shells

she$

shore

the

the

seashells

sea

seashells

sells

sells

she

she

shells

the

the

seashells

sea$

seashells

sells

sells

sea

seashells

seashells

sells

sells

. . .

26

Fat-pivot radix quicksort
details in §5.1 of Sedgewick, Wayne Algorithms 4th ed. (2011), Pearson

▶ partition based on 𝒅th character only (initially 𝑑 = 0)

⇝ 3 segments: smaller, equal, or larger than 𝑑th symbol of pivot

▶ recurse on smaller and large with same 𝑑, on equal with 𝑑 + 1
⇝ never compare equal prefixes twice

⇝ can show: ∼ 2 ln(2) · 𝑛 lg 𝑛 ≈ 1.39𝑛 lg 𝑛 character comparisons on average
for random strings

simple to code

efficient for sorting many lists of strings

▶ fat-pivot radix quicksort finds suffix array in 𝑂(𝑛 log 𝑛) expected

random string

time

but we can do 𝑂(𝑛) time worst case!
27

13.6 Linear-Time Suffix Sorting: Overview

Inverse suffix array: going left & right
▶ to understand the fastest algorithm, it is helpful to define the inverse suffix array:

▶ 𝑅[𝑖] = 𝑟 ⇐⇒ 𝐿[𝑟] = 𝑖 𝐿 = leaf array
⇐⇒ there are 𝑟 suffixes that come before 𝑇𝑖 in sorted order
⇐⇒ 𝑇𝑖 has (0-based) rank 𝑟 ⇝ call 𝑅[0..𝑛] the rank array

𝑅[0] = 6

𝐿[8] = 4

sort suffixes

0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$
5 6 ban$
6 0 bananaban$
7 8 n$
8 4 naban$
9 2 nanaban$

𝑟 𝐿[𝑟] 𝑇𝐿[𝑟]

0 6th bananaban$
1 4th ananaban$
2 9th nanaban$
3 3th anaban$
4 8th naban$
5 1th aban$
6 5th ban$
7 2th an$
8 7th n$
9 0th $

𝑖 𝑅[𝑖] 𝑇𝑖 right

left

28

Linear-time suffix sorting
DC3 / Skew algorithm

1. Compute rank array 𝑅1,2 for suffixes 𝑇𝑖 starting at 𝑖 ̸≡ 0

not a multiple of 3

(mod 3) recursively.

2. Induce rank array 𝑅3 for suffixes 𝑇0, 𝑇3, 𝑇6, 𝑇9, . . . from 𝑅1,2.

3. Merge 𝑅1,2 and 𝑅0 using 𝑅1,2.
⇝ rank array 𝑅 for entire input

▶ We will show that steps 2. and 3. take Θ(𝑛) time

⇝ Total complexity is 𝑛 + 2
3𝑛 +

(2
3
)2
𝑛 +

(2
3
)3
𝑛 + · · · ≤ 𝑛 ·

∑
𝑖≥0

(2
3
) 𝑖

= 3𝑛 = Θ(𝑛)

▶ Note: 𝐿 can easily be computed from 𝑅 in one pass, and vice versa.
⇝ Can use whichever is more convenient.

29

DC3 / Skew algorithm – Step 2: Inducing ranks
▶ Assume: rank array 𝑅1,2 known:

▶ 𝑅1,2[𝑖] =

{
rank of 𝑇𝑖 among 𝑇1 , 𝑇2 , 𝑇4 , 𝑇5 , 𝑇7 , 𝑇8 , . . . for 𝑖 = 1, 2, 4, 5, 7, 8, . . .
undefined for 𝑖 = 0, 3, 6, 9, . . .

▶ Task: sort the suffixes 𝑇0, 𝑇3, 𝑇6, 𝑇9, . . . in linear time (!)

▶ Suppose we want to compare 𝑇0 and 𝑇3.
▶ Characterwise comparisons too expensive
▶ but: after removing first character, we obtain 𝑇1 and 𝑇4

▶ these two can be compared in constant time by comparing 𝑅1,2[1] and 𝑅1,2[4]!

⇝
𝑇0 comes before 𝑇3 in lexicographic order
iff pair (𝑇[0], 𝑅1,2[1]) comes before pair (𝑇[3], 𝑅1,2[4]) in lexicographic order

30

DC3 / Skew algorithm – Inducing ranks example
𝑇 = hannahbansbananasman$$$ (append 3 $ markers)

radix sort

𝑇0 hannahbansbananasman$$$
𝑇3 nahbansbananasman$$$
𝑇6 bansbananasman$$$
𝑇9 sbananasman$$$
𝑇12 nanasman$$$
𝑇15 asman$$$
𝑇18 an$$$
𝑇21 $$

𝑇22 $

𝑅1,2[22] = 0 𝑇22 $

𝑇20 $$$

𝑅1,2[20] = 1 𝑇20 $$$
𝑇4 ahbansbananasman$$$ 𝑅1,2[4] = 2 𝑇4 ahbansbananasman$$$

𝑇11 ananasman$$$

𝑅1,2[11] = 3 𝑇11 ananasman$$$

𝑇13 anasman$$$

𝑅1,2[13] = 4 𝑇13 anasman$$$

𝑇1 annahbansbananasman$$$

𝑅1,2[1] = 5 𝑇1 annahbansbananasman$$$
𝑇7 ansbananasman$$$

𝑅1,2[7] = 6 𝑇7 ansbananasman$$$𝑇10 bananasman$$$
𝑅1,2[10] = 7 𝑇10 bananasman$$$

𝑇5 hbansbananasman$$$

𝑅1,2[5] = 8 𝑇5 hbansbananasman$$$

𝑇17 man$$$

𝑅1,2[17] = 9 𝑇17 man$$$

𝑇19 n$$$

𝑅1,2[19] = 10 𝑇19 n$$$
𝑇14 nasman$$$

𝑅1,2[14] = 11 𝑇14 nasman$$$

𝑇2 nnahbansbananasman$$$

𝑅1,2[2] = 12 𝑇2 nnahbansbananasman$$$

𝑇8 nsbananasman$$$

𝑅1,2[8] = 13 𝑇8 nsbananasman$$$

𝑇16 sman$$$

𝑅1,2[16] = 14 𝑇16 sman$$$
𝑅1,2 (known)

𝑇0 h05
𝑇3 n02
𝑇6 b06
𝑇9 s07
𝑇12 n04
𝑇15 a14
𝑇18 a10
𝑇21 $00

sman$$$ = 𝑇16

𝑅1,2[16] = 14

𝑇21 $00 ⇝ 𝑅0[21] = 0
𝑇18 a10 ⇝ 𝑅0[18] = 1
𝑇15 a14 ⇝ 𝑅0[15] = 2
𝑇6 b06 ⇝ 𝑅0[6] = 3
𝑇0 h05 ⇝ 𝑅0[0] = 4
𝑇3 n02 ⇝ 𝑅0[3] = 5
𝑇12 n04 ⇝ 𝑅0[12] = 6
𝑇9 s07 ⇝ 𝑅0[9] = 7

𝑅0

▶ sorting of pairs doable in 𝑂(𝑛) time
by 2 iterations of counting sort

⇝ Obtain 𝑅0 in 𝑂(𝑛) time

31

DC3 / Skew algorithm – Step 3: Merging
𝑇21 $$
𝑇18 an$$$
𝑇15 asman$$$
𝑇6 bansbananasman$$$
𝑇0 hannahbansbananasman$$$
𝑇3 nahbansbananasman$$$
𝑇12 nanasman$$$
𝑇9 sbananasman$$$

𝑇22 $
𝑇20 $$$
𝑇4 ahbansbananasman$$$
𝑇11 ananasman$$$
𝑇13 anasman$$$
𝑇1 annahbansbananasman$$$
𝑇7 ansbananasman$$$
𝑇10 bananasman$$$
𝑇5 hbansbananasman$$$
𝑇17 man$$$
𝑇19 n$$$
𝑇14 nasman$$$
𝑇2 nnahbansbananasman$$$
𝑇8 nsbananasman$$$
𝑇16 sman$$$

𝑇22 $
𝑇21 $$
𝑇20 $$$
𝑇4 ahbansbananasman$$$
𝑇18 an$$$

Compare 𝑇15 to 𝑇11

Idea: try same trick as before

𝑇15 = asman$$$
= asman$$$
= a𝑇16

𝑇11 = ananasman$$$
= ananasman$$$
= a𝑇12

can’t compare 𝑇16
and 𝑇12 either!

⇝ Compare 𝑇16 to 𝑇12

𝑇16 = sman$$$
= sman$$$
= s𝑇17

𝑇12 = nanasman$$$
= aanasman$$$
= a𝑇13

always at most 2 steps
then can use 𝑅1,2!

▶ Have:
▶ sorted 1,2-list:

𝑇1 , 𝑇2 , 𝑇4 , 𝑇5 , 𝑇7 , 𝑇8 , 𝑇10 , 𝑇11 , . . .

▶ sorted 0-list:
𝑇0 , 𝑇3 , 𝑇6 , 𝑇9 , . . .

▶ Task: Merge them!
▶ use standard merging method from Mergesort
▶ but speed up comparisons using 𝑅1,2

⇝ 𝑂(𝑛) time for merge
32

13.7 Linear-Time Suffix Sorting: The DC3
Algorithm

DC3 / Skew algorithm – Fix recursive call
▶ both step 2. and 3. doable in 𝑂(𝑛) time!

▶ But: we cheated in 1. step! “compute rank array 𝑅1,2 recursively”
▶ Taking a subset of suffixes is not an instance of the same problem!

⇝ Need a single string 𝑇′ to recurse on, from which we can deduce 𝑅1,2.

How can we make 𝑇′ “skip” some suffixes?

redefine alphabet to be triples of characters abc
𝑇 = bananaban$$$

⇝ 𝑇□ = ban ana ban $$$
ana ban $$$

ban $$$
$$$

⇝ suffixes of 𝑇□ ↭ 𝑇0 , 𝑇3 , 𝑇6 , 𝑇9 , . . .

▶ 𝑇′ = 𝑇[1..𝑛)□ $$$ 𝑇[2..𝑛)□ $$$ ↭ 𝑇𝑖 with 𝑖 ̸≡ 0 (mod 3).

⇝ Can call suffix sorting recursively on 𝑇′ and map result to 𝑅1,2

33

DC3 / Skew algorithm – Fix alphabet explosion
▶ Still does not quite work!

▶ Each recursive step cubes 𝜎 by using triples!
⇝ (Eventually) cannot use linear-time sorting anymore!

▶ But: Have at most 2
3𝑛 different triples abc in 𝑇′!

⇝ Before recursion:
1. Sort all occurring triples. (using counting sort in 𝑂(𝑛))
2. Replace them by their rank (in Σ).

⇝ Maintains 𝜎 ≤ 𝑛 without affecting order of suffixes.

34

DC3 / Skew algorithm – Step 3. Example
𝑇′ = 𝑇[1..𝑛)□ $$$ 𝑇[2..𝑛)□ $$$

▶ 𝑇 = hannahbansbananasman$ 𝑇2 = nnahbansbananasman$
𝑇′ = ann ahb ans ban ana sma n$$ $$$ nna hba nsb ana nas man $$$

▶ Occurring triples:
ann ahb ans ban ana sma n$$ $$$ nna hba nsb nas man

▶ Sorted triples with ranks:

Rank 00 01 02 03 04 05 06 07 08 09 10 11 12
Triple $$$ ahb ana ann ans ban hba man n$$ nas nna nsb sma

▶ 𝑇′ = ann ahb ans ban ana sma n$$ $$$ nna hba nsb ana nas man $$$
𝑇′′ = 03 01 04 05 02 12 08 00 10 06 11 02 09 07 00

35

Suffix array – Discussion
sleek data structure compared to suffix tree

simple and fast 𝑂(𝑛 log 𝑛) construction

more involved but optimal 𝑂(𝑛) construction

supports efficient string matching

string matching takes 𝑂(𝑚 log 𝑛), not optimal 𝑂(𝑚)

Cannot use more advanced suffix tree features
e. g., for longest repeated substrings

36

13.8 The LCP Array

String depths of internal nodes
▶ Recall algorithm for longest repeated substring in suffix tree

1. Compute string depth of nodes
2. Find path label to node with maximal string depth

▶ Can we do this using suffix arrays?

9

$ a

5

ba
n
$

n

7

$ a

3

b
a
n
$

1

n
a
b
a
n
$

ban

6

$

0

a
n
a
b
a
n
$

n

8

$ a

4

b
a
n
$

2

n
a
b
a
n
$

𝑇 = bananaban$
▶ Yes, by enhancing the suffix array with the LCP array!

LCP[1..𝑛]
LCP[𝑟] = LCP

length of longest common prefix of suffixes of rank 𝑟 and 𝑟 − 1

(𝑇𝐿[𝑟] , 𝑇𝐿[𝑟−1])

⇝ longest repeated substring = find maximum in LCP[1..𝑛]

37

LCP array and internal nodes

$

aban$

an$

anaban$

ananaban$

ban$

bananaban$

n$

naban$

nanaban$

ban$

naban$

ban$

naban$

$

anaban$

$

a

$

a

ban
$

n

a

ban
n

$

$ 9

aban$ 5

an$ 7

anaban$ 3

ananaban$ 1

ban$ 6

bananaban$ 0

n$ 8

naban$ 4

nanaban$ 2

L[0..𝑛]

𝜺

𝜺

𝜺

𝜺

𝜺

𝜺

𝜺

𝜺

𝜺

a

a

a

n

n a

b a n

n

n a

LCP-intervals

0

1 a

2 an

3 ana

0

3 ban

0

1 n

2 na

LCP[1..𝑛]

⇝ Leaf array 𝐿[0..𝑛] plus LCP array LCP[1..𝑛] encode full tree!
38

13.9 LCP Array Construction

LCP array construction
▶ computing LCP[1..𝑛] naively too expensive

▶ each value could take Θ(𝑛) time
Θ(𝑛2) in total

▶ but: seeing one large (= costly) LCP value ⇝ can find another large one!

▶ Example: 𝑇 = Buffalo␣buffalo␣buffalo␣buffalo$
▶ first few suffixes in sorted order:

𝑇𝐿[0] = $
𝑇𝐿[1] = alo␣buffalo$
𝑇𝐿[2] = alo␣buffalo␣buffalo$

alo␣buffalo␣buffalo ⇝ LCP[3] = 19
𝑇𝐿[3] = alo␣buffalo␣buffalo␣buffalo$

⇝ Removing first character from 𝑇𝐿[2] and 𝑇𝐿[3] gives two new suffixes:

𝑇𝐿[?] = lo␣buffalo␣buffalo$
lo␣buffalo␣buffalo ⇝ LCP[?]

unclear where. . .

= 18
𝑇𝐿[?] = lo␣buffalo␣buffalo␣buffalo$

Shortened suffixes might not
be adjacent in sorted order!
⇝ no LCP entry for them!

39

Kasai’s algorithm – Example
▶ Kasai et al. used above observation systematically

▶ Key idea: compute LCP values in text order

▶ Dropping first character of adjacent suffixes might not lead to adjacent shorter suffixes,
but LCP entry can only be longer.

0 6th bananaban$
1 4th ananaban$
2 9th nanaban$
3 3th anaban$
4 8th naban$
5 1th aban$
6 5th ban$
7 2th an$
8 7th n$
9 0th $

𝑖 𝑅[𝑖] 𝑇𝑖

0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$
5 6 ban$
6 0 bananaban$
7 8 n$
8 4 naban$
9 2 nanaban$

𝑟 𝐿[𝑟] 𝑇𝐿[𝑟] LCP[𝑟]
–

3

3

2

2

1

0

0

1

0

40

Kasai’s algorithm – Code

1 procedure computeLCP(𝑇[0..𝑛], 𝐿[0..𝑛], 𝑅[0..𝑛]):
2 // Assume 𝑇[𝑛] = $, 𝐿 and 𝑅 are suffix array and inverse
3 ℓ := 0
4 for 𝑖 := 0, . . . , 𝑛 − 1 // Consider 𝑇𝑖 now
5 𝑟 := 𝑅[𝑖]
6 // compute LCP[𝑟]; note that 𝑟 > 0 since 𝑅[𝑛] = 0
7 𝑖−1 := 𝐿[𝑟 − 1]
8 while 𝑇[𝑖 + ℓ] == 𝑇[𝑖−1 + ℓ] do
9 ℓ := ℓ + 1

10 LCP[𝑟] := ℓ

11 ℓ := max{ℓ − 1, 0}
12 return LCP[1..𝑛]

▶ remember length ℓ of induced common prefix

▶ use 𝐿 to get start index of suffixes

Analysis:

▶ dominant operation:
character comparisons

▶ separately count those with
outcomes “=” resp. “≠”

▶ each ≠ ends iteration of for-loop
⇝ ≤ 𝑛 cmps

▶ each = implies increment of ℓ ,
but ℓ ≤ 𝑛 and
decremented ≤ 𝑛 times
⇝ ≤ 2𝑛 cmps

⇝ Θ(𝑛) overall time

41

Back to suffix trees
We can finally look into the black box of linear-time suffix-array construction!

1. Compute suffix array for 𝑇.

2. Compute LCP array for 𝑇.

3. Construct T from suffix array and LCP array.

$

aban$

an$

anaban$

ananaban$

ban$

bananaban$

n$

naban$

nanaban$

ban$

naban$

ban$

naban$

$

anaban$

$

a

$

a

ban
$

n

a

ban
n

$

$ 9

aban$ 5

an$ 7

anaban$ 3

ananaban$ 1

ban$ 6

bananaban$ 0

n$ 8

naban$ 4

nanaban$ 2

L[0..𝑛]

𝜺

𝜺

𝜺

𝜺

𝜺

𝜺

𝜺

𝜺

𝜺

a

a

a

n

n a

b a n

n

n a

LCP-intervals

0

1 a

2 an

3 ana

0

3 ban

0

1 n

2 na

LCP[1..𝑛]

42

Conclusion
▶ (Enhanced) Suffix Arrays are the modern version of suffix trees

can be harder to reason about

can support same algorithms as suffix trees

but use much less space

simpler linear-time construction

43

	Text Indexing
	 Learning Outcomes
	Motivation
	 Text indexing
	 Inverted indices
	 Tries
	 Compact tries
	 Tries as inverted index

	Suffix Trees
	 Suffix trees – A `magic' data structure
	 Suffix trees – Definition
	 Suffix trees – Construction

	Applications
	 Applications of suffix trees
	 Application 1: Text Indexing / String Matching
	 Application 2: Longest repeated substring
	 Generalized suffix trees
	 Application 3: Longest common substring
	 Longest common substring – Example

	Longest Common Extensions
	 Application 4: Longest Common Extensions
	 Efficient LCA
	 Application 5: Approximate matching
	 Kangaroo Algorithm for approximate matching
	 Application 6: Matching with wildcards
	 Suffix trees – Discussion

	Suffix Arrays
	 Putting suffix trees on a diet
	 Suffix arrays – Construction
	 Digression: Computing the BWT
	 Fat-pivot radix quicksort – Example
	 Fat-pivot radix quicksort

	Linear-Time Suffix Sorting: Overview
	 Inverse suffix array: going left & right
	 Linear-time suffix sorting
	 DC3 / Skew algorithm – Step 2: Inducing ranks
	 DC3 / Skew algorithm – Inducing ranks example
	 DC3 / Skew algorithm – Step 3: Merging

	Linear-Time Suffix Sorting: The DC3 Algorithm
	 DC3 / Skew algorithm – Fix recursive call
	 DC3 / Skew algorithm – Fix alphabet explosion
	 DC3 / Skew algorithm – Step 3. Example
	 Suffix array – Discussion

	The LCP Array
	 String depths of internal nodes
	 LCP array and internal nodes

	LCP Array Construction
	 LCP array construction
	 Kasai's algorithm – Example
	 Kasai's algorithm – Code
	 Back to suffix trees
	 Conclusion

