
15 Range-Minimum
Queries

10 February 2025

Prof. Dr. Sebastian Wild
CS566 (Wintersemester 2024/25)
Philipps-Universität Marburg

version 2024-11-15 14:10 H

Learning Outcomes

Unit 15: Range-Minimum Queries

1. Know the RMQ problem and its connection to longest common extensions in strings.

2. Know and understand trivial RMQ solutions and sparse tables.

3. Know and understand the Cartesian trees data structure.

4. Know and understand the exhaustive-tabulation technique for RMQ with linear-time
preprocessing.

1

Outline

15 Range-Minimum Queries
15.1 Introduction
15.2 RMQ, LCP, LCE, LCA — WTF?
15.3 Trivial Solutions & Sparse Tables
15.4 Cartesian Trees
15.5 Exhaustive Tabulation

15.1 Introduction

Range-minimum queries (RMQ)

▶ Given: Static
array/numbers don’t change

array 𝐴[0..𝑛) of numbers

▶ Goal: Find minimum in a range;
𝐴 known in advance and can be preprocessed

1
0

4
1

6
2

4
3

7
4

10
5

5
6

6
7

3
8

11
9

2
10

2
11

3
12

6
13

10
14

9
15

13
16

4
17

6
18

16
19

10
20

RMQ(7, 15) = 10

▶ Nitpicks:
▶ Report index of minimum, not its value
▶ Report leftmost position in case of ties

2

Rules of the Game
▶ comparison-based ⇝ values don’t matter, only relative order

▶ Two main quantities of interest:
1. Preprocessing time: Running time 𝑃(𝑛) of the preprocessing

⇝ space usage ≤ 𝑃(𝑛)
step

2. Query time: Running time 𝑄(𝑛) of one query (using precomputed data)

▶ Write ⟨𝑷(𝒏),𝑸(𝒏)⟩ time solution for short

3

15.2 RMQ, LCP, LCE, LCA — WTF?

Recall Unit 13

Application 4: Longest Common Extensions
I We implicitly used a special case of a more general, versatile idea:

The longest common extension (LCE) data structure:
I Given: String)[0..= − 1]
I Goal: Answer LCE queries, i. e.,

given positions 8, 9 in),
how far can we read the same text from there?
formally: LCE(8 , 9) = max{ℓ :)[8..8 + ℓ) =)[9.. 9 + ℓ)}

 use suffix tree of)!

I In T: LCE(8 , 9) = LCP

longest common prefix of 8th and 9th suffix

()8 ,)9) same thing, different name!
= string depth of

lowest common ancester (LCA) of
leaves 8 and 9

9

$ a

5

ba
n
$

n

7

$ a

3

b
a
n
$

1

n
a
b
a
n
$

ban

6

$

0

a
n
a
b
a
n
$

n

8

$ a

4

b
a
n
$

2

n
a
b
a
n
$

) = bananaban$

I in short: LCE(8 , 9) = LCP()8 ,)9) = stringDepth
(
LCA(8 , 9))

15

4

Recall Unit 13

Efficient LCA
How to find lowest common ancestors?
I Could walk up the tree to find LCA Θ(=)worst case

I Could store all LCAs in big table Θ(=2) space and preprocessing

Amazing result: Can compute data structure in Θ(=) time and space
that finds any LCA is constant(!) time.

I a bit tricky to understand

I but a theoretical breakthrough

I and useful in practice

 for now, use $(1) LCA as

and suffix tree construction inside . . .

black box.

 After linear preprocessing (time& space), we can find LCEs in $(1) time.

16

5

Finally: Longest common extensions
▶ In Unit 13: Left question open how to compute LCA in suffix trees

▶ But: Enhanced Suffix Array makes life easier!

LCE(𝑖 , 𝑗) = LCP
[
RMQLCP

(
min{𝑅[𝑖], 𝑅[𝑗]} + 1, max{𝑅[𝑖], 𝑅[𝑗]})]

Inverse suffix array: going left & right
I to understand the fastest algorithm, it is helpful to define the inverse suffix array:
I '[8] = A ⇐⇒ ![A] = 8 ! = leaf array

⇐⇒ there are A suffixes that come before)8 in sorted order
⇐⇒)8 has (0-based) rank A call '[0..=] the rank array

'[0] = 6

![8] = 4

sort suffixes

0 9 $
1 5 aban$
2 7 an$
3 3 anaban$
4 1 ananaban$
5 6 ban$
6 0 bananaban$
7 8 n$
8 4 naban$
9 2 nanaban$

A ![A])![A]
0 6th bananaban$
1 4th ananaban$
2 9th nanaban$
3 3th anaban$
4 8th naban$
5 1th aban$
6 5th ban$
7 2th an$
8 7th n$
9 0th $

8 '[8])8 right

left

25

LCP array and internal nodes

$

aban$

an$

anaban$

ananaban$

ban$

bananaban$

n$

naban$

nanaban$

ban$

naban$

ban$

naban$

$

anaban$

$
a

$

a

ban
$

n

a

ban
n

$

$ 9

aban$ 5

an$ 7

anaban$ 3

ananaban$ 1

ban$ 6

bananaban$ 0

n$ 8

naban$ 4

nanaban$ 2

L[0..=]

9

9

9

9

9

9

9

9

9

a

a

a

n

n a

b a n

n

n a

LCP-intervals

0

1 a

2 an

3 ana

0

3 ban

0

1 n

2 na

LCP[1..=]

 Leaf array ![0..=] plus LCP array LCP[1..=] encode full tree!
35

6

RMQ Implications for LCE
▶ Recall: Can compute (inverse) suffix array and LCP array in 𝑂(𝑛) time

⇝ A ⟨𝑃(𝑛), 𝑄(𝑛)⟩ time RMQ data structure implies a ⟨𝑃(𝑛), 𝑄(𝑛)⟩ time solution for
longest-common extensions

7

15.3 Trivial Solutions & Sparse Tables

Trivial Solutions

1
0

4
1

6
2

4
3

7
4

10
5

5
6

6
7

3
8

11
9

2
10

2
11

3
12

6
13

10
14

9
15

13
16

4
17

6
18

16
19

10
20

RMQ(7, 15) = 10

▶ Two easy solutions show extreme ends of scale:

1. Scan on demand
▶ no preprocessing at all
▶ answer RMQ(𝑖 , 𝑗) by scanning through 𝐴[𝑖.. 𝑗], keeping track of min
⇝ ⟨𝑂(1), 𝑂(𝑛)⟩

2. Precompute all
▶ Precompute all answers in a big 2D array 𝑀[0..𝑛)[0..𝑛)
▶ queries simple: RMQ(𝑖 , 𝑗) = 𝑀[𝑖][𝑗]
⇝ ⟨𝑂(𝑛3), 𝑂(1)⟩
▶ Preprocessing can reuse partial results ⇝ ⟨𝑂(𝑛2), 𝑂(1)⟩

8

Sparse Table
▶ Idea: Like “precompute-all”, but keep only some entries

▶ store 𝑀[𝑖][𝑗] iff ℓ = 𝑗 − 𝑖 + 1 is 2𝑘 .
⇝ ≤ 𝑛 · lg 𝑛 entries
⇝ Can be stored as 𝑀′[𝑖][𝑘]

▶ How to answer queries?

1
0

4
1

6
2

4
3

7
4

10
5

5
6

6
7

3
8

11
9

2
10

2
11

3
12

6
13

10
14

9
15

13
16

1
17

6
18

16
19

10
20

RMQ(7, 13) = 10

RMQ(10, 18) = 17

1. Find 𝑘 with ℓ/2 ≤ 2𝑘 ≤ ℓ

2. Cover range [𝑖.. 𝑗] by
2𝑘 positions right from 𝑖 and
2𝑘 positions left from 𝑗

3. RMQ(𝑖 , 𝑗) =
arg min{𝐴[rmq1], 𝐴[rmq2]}

with rmq1 = RMQ(𝑖 , 𝑖 + 2𝑘 − 1)
rmq2 = RMQ(𝑗−2𝑘 +1, 𝑗)

▶ Preprocessing can be done in 𝑂(𝑛 log 𝑛) times

⇝ ⟨𝑂(𝑛 log 𝑛), 𝑂(1)⟩ time solution!
9

15.4 Cartesian Trees

RMQ & LCA

4
0

6
1

4
2

7
3

10
4

5
5

6
6

3
7

11
8

14
9

2
10

3
11

6
12

10
13

9
14

13
15

4
16

6
17

16
18

10
19

rmq(6, 14) = 9
▶ Range-max queries on array 𝐴:

rmq𝐴(𝑖 , 𝑗) = arg max
𝑖≤𝑘≤ 𝑗

𝐴[𝑘]
= index of max

▶ Task: Preprocess 𝐴,
then answer RMQs fast
ideally constant time!

▶ Cartesian tree: (cf. treap)
construct binary tree by
sweeping line down

▶ rmq(𝑖 , 𝑗) =

inorder of

lowest common ancestor (LCA)

of 𝑖th and 𝑗th node in inorder

10

RMQ & LCA

6 14

9

lca(6, 14) = 9

▶ Range-max queries on array 𝐴:
rmq𝐴(𝑖 , 𝑗) = arg max

𝑖≤𝑘≤ 𝑗
𝐴[𝑘]

= index of max

▶ Task: Preprocess 𝐴,
then answer RMQs fast
ideally constant time!

▶ Cartesian tree: (cf. treap)
construct binary tree by
sweeping line down

▶ rmq(𝑖 , 𝑗) = inorder of
lowest common ancestor (LCA)
of 𝑖th and 𝑗th node in inorder

11

Cartesian Tree – Larger Example

14

29

10

18

3

5

11

8

12

23

1

6

20

26

17

28

9

25

16

30

27

4

21

2

19

13

7

24

22

151

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

14 29 10 18 3 5 11 8 12 23 1 6 20 26 17 28 9 25 16 30 27 4 21 2 19 13 7 24 22 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

12

Counting binary trees

▶ Given the Cartesian tree,
all RMQ answers are determined

and vice versa!

▶ How many different Cartesian trees are there for arrays of length 𝑛?

▶ known result: Catalan numbers 1
𝑛 + 1

(
2𝑛
𝑛

)
▶ easy to see: ≤ 22𝑛

⇝ many arrays will give rise to the same Cartesian tree

Can we exploit that?

13

15.5 Exhaustive Tabulation

Four Russians?
The exhaustive-tabulation technique to follow is often called “Four Russians trick” . . .

▶ The algorithmic technique was published 1970 by
V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. Faradžev

▶ all worked in Moscow at that time . . . but not even clear if all are Russians!

(Arlazarov and Kronrod are Russian)

▶ American authors coined the othering term “Method of Four Russians”
. . . name in widespread use

14

Bootstrapping
▶ We know a ⟨𝑂(𝑛 log 𝑛), 𝑂(1)⟩ time solution

▶ If we use that for 𝑚 = Θ(𝑛/log 𝑛) elements, 𝑂(𝑚 log𝑚) = 𝑂(𝑛)!

▶ Break 𝐴 into blocks of 𝑏 = ⌈ 1
4 lg 𝑛⌉ numbers

▶ Create array of block minima 𝐵[0..𝑚) for 𝑚 = ⌈𝑛/𝑏⌉ = 𝑂(𝑛/log 𝑛)

𝐴[0..𝑛)
0 1 2 . . . 𝑏−1 𝑏 2𝑏 3𝑏 4𝑏 (𝑚−1)𝑏 𝑚𝑏−1

𝐵[0..𝑚) 𝐵[𝑖] = index of minimum inside block 𝑖
0 1 2 . . . 𝑚−1

1 4 0 3 7 5 1

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

⇝ Use sparse tables for 𝐵.

⇝ Can solve RMQs in 𝐵[0..𝑚) in ⟨𝑂(𝑛), 𝑂(1)⟩ time
15

Query decomposition
▶ Query RMQ𝐴(𝑖 , 𝑗) covers

▶ suffix of block ℓ = ⌊𝑖/𝑚⌋
▶ prefix of block 𝑟 = ⌊ 𝑗/𝑚⌋
▶ blocks ℓ + 1, . . . , 𝑟 − 1

entirely

query

interblock query

intrablock queries

𝐴[0..𝑛)

𝑀[0..𝑚)
𝐵[0..𝑚) 1 4 0 3 7 5 1

▶ RMQA(𝑖 , 𝑗) = arg min
𝑘∈𝐾

𝐴[𝑘] with 𝐾 =




RMQ block ℓ
(
𝑖 − ℓ𝑏, (ℓ + 1)𝑏 − 1

)
,

𝑏 · RMQ𝑀
(
ℓ + 1, 𝑟 − 1

)+
𝐵
[
RMQ𝑀

(
ℓ + 1, 𝑟 − 1

)]
,

RMQ block 𝑟
(
𝑟𝑏, 𝑗 − 𝑟𝑏)


⇝ only 3 possible values to check

if intrablock and interbloc✓k queries known
16

Intrablock queries [1]
⇝ It remains to solve the intrablock queries!

▶ Want ⟨𝑂(𝑛)
must include preprocessing for all 𝑚 =

⌈𝑛
𝑏

⌉
= Θ

(𝑛
log 𝑛

)
blocks!

, 𝑂(1)⟩ time overall

▶ many blocks, but just 𝑏 =
⌈ 1

4 lg 𝑛
⌉

numbers long

⇝ Cartesian tree of 𝑏 elements can be encoded using 2𝑏 = 1
2 lg 𝑛 bits

⇝ # different Cartesian trees is ≤ 22𝑏 = 2
1
2 lg 𝑛 =

(
2lg 𝑛

)1/2
=

√
𝑛

⇝ many equivalent blocks!

⇝ Exhaustive Tabulation Technique:
1. represent each subproblem by storing its type (here: encoding of Cartesian tree)

2. enumerate all possible subproblem types and their solutions
3. use type as index in a large lookup table

17

Intrablock queries [2]
1. For each block, compute 2𝑏 bit representation of Cartesian tree

▶ can be done in linear time

2. Compute large lookup table

Block type 𝑖 𝑗 RMQ(𝑖 , 𝑗)
...

...

▶ ≤ √
𝑛 block types

▶ ≤ 𝑏2 combinations for 𝑖 and 𝑗

⇝ Θ
(√
𝑛 · log2 𝑛

)
rows

▶ each row can be computed in
𝑂(log 𝑛) time

⇝ overall preprocessing: 𝑂(𝑛) time!

18

Discussion
▶ ⟨𝑂(𝑛), 𝑂(1)⟩ time solution for RMQ

⇝ ⟨𝑂(𝑛), 𝑂(1)⟩ time solution for LCE in strings!

optimal preprocessing and query time!

a bit complicated

Research questions:
▶ Reduce the space usage
▶ Avoid access to 𝐴 at query time

19

	Range-Minimum Queries
	 Learning Outcomes
	Introduction
	 Range-minimum queries (RMQ)
	 Rules of the Game

	RMQ, LCP, LCE, LCA — WTF?
	 Recall Unit 13
	 Recall Unit 13
	 Finally: Longest common extensions
	 RMQ Implications for LCE

	Trivial Solutions & Sparse Tables
	 Trivial Solutions
	 Sparse Table

	Cartesian Trees
	 RMQ & LCA
	 Cartesian Tree – Larger Example
	 Counting binary trees

	Exhaustive Tabulation
	 Four Russians?
	 Bootstrapping
	 Query decomposition
	 Intrablock queries [1]
	 Intrablock queries [2]
	 Discussion

