il

4 7

) B =R H 1] [
2L NOL M <
L ZH NS E
H M T =0
1O FRL T =0
T HWNHMOF T
) [L = A H = T
LD OWNMHF
1RO =Z0xh
A H AT VO
T NEBH U0
2= OB H < ¢
IO =2mbB<U
iR A0 2=
I HIHU R =
1RO dHMKFE
2OZ2H<COHF
COMRMLEBEHDC
ldHL 2 ML HC
><C O [[[[T

| |

Proof Techniques

15 October 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024 /25)

Philipps-Univer:

sitat Marburg

version 2024-10-15 13:40

Learning Outcomes

Unit 1: Proof Techniques

1. Know logical proof strategies for proving implications, set inclusions, set equalities, and
quantified statements.

2. Be able to use mathematical induction in simple proofs.

3. Know techniques for proving termination and correctness of procedures.

Outline

1 Proof Techniques

1.1 Digression: Random Shuffle
1.2 Proof Templates
1.3 Mathematical Induction

1.4 Correctness Proofs

1.1 Digression: Random Shuffle

Random shuffle

» Goal: Put an array A[0..n) of n numbers into random order.

More precisely: Any ordering of the elements A[0], ..., A[n — 1] should be equally
likely.

> A natural approach yields the following code

1 procedure myShuffle(A[0..n
zp fori::O}j...,n—(l[) fo,v\):{orl,,.,t/\—t's

3 r := randomInt([0..n)) // A uniformly random number r with 0 < r < n.
4 Swap Ali] and A[r] // Swap Ali] to random position.

5 end for

» Intuitively: All elements are moved to a random index, so the order is random . . . right?

» A natural approach yields the following code

. .
Cllcker QueStlon 1 procedure myShuffle(A[0..1))
2 fori:=0,...,n-1
3 r := randomInt([0..1)) // A uniformly random number r with 0 < r < n.
f c Swap A[i] and A[r] // Swap A[i] to random position. \

Selectalls = endfor

[0-w) = {0l o=y

I'have seen this shuffling algorithm (or a very similar
method) before.

I can understand the pseudocode for myShuffle (so I would
be able to do an example by hand).

It can generate all possible orderings of A (depending on the
random numbers).

myShuffle produces all possible orderings with the same
probability.

= &8 0 6

Assuming randomInt gives (perfect) uniform random
numbers in the given range, myShuffle generates any
ordering with equal probability.

|~ sli.do/cs566

Random shuffle

» Goal: Put an array A[0..n) of n numbers into random order.
More precisely: Any ordering of the elements A[0], ..., A[n — 1] should be equally
likely.

» A natural approach yields the following code

1 procedure myShuffle(A[0..1))

2 fori :=0,...,n—-1

3 r = randomlInt([0..1)) // A uniformly random number r with 0 < r < n.
4 Swap Ali] and A[r] // Swap Ali] to random position.

5 end for

» Intuitively: All elements are moved to a random index, so the order is random . . . right?

n=2

Random shuffle

» Goal: Put an array A[0..n) of n numbers into random order.
More precisely: Any ordering of the elements A[0], ..., A[n — 1] should be equally
likely.

» A natural approach yields the following code

1 procedure myShuffle(A[0..17))

2 fori :=0,...,n-1

3 r = randomlInt([0..1)) // A uniformly random number r with 0 < r < n.
4 Swap Ali] and A[r] // Swap Ali] to random position.

5 end for

» Intuitively: All elements are moved to a random index, so the order is random . . . right??

n=2 n=3

Random shuffle

» Goal: Put an array A[0..n) of n numbers into random order.
More precisely: Any ordering of the elements A[0], ..., A[n — 1] should be equally
likely.

» A natural approach yields the following code

1 procedure myShuffle(A[0..17))

2 fori :=0,...,n—-1

3 r = randomlInt([0..1)) // A uniformly random number r with 0 < r < n.
4 Swap Ali] and A[r] // Swap Ali] to random position.

5 end for

» Intuitively: All elements are moved to a random index, so the order is random . .. right???

n=2 n=3

Random shuffle

» Goal: Put an array A[0..n) of n numbers into random order.
More precisely: Any ordering of the elements A[0], ..., A[n — 1] should be equally
likely.

» A natural approach yields the following code

1 procedure myShuffle(A[0..17))

fori :=0,..., n-—1
r = randomlInt([0..1)) // A uniformly random number r with 0 < r < n.
Swap Ali] and A[r] // Swap Ali] to random position.

2
3
4
5 end for

» Intuitively: All elements are moved to a random index, so the order is random . . . right????

I NRRERN M
it o -+

Random shuffle

> Goal: Put an array A[0..n) of n numbers into random order.
More precisely: Any ordering of the elements A[0], ..., A[n — 1] should be equally
likely.

» A natural approach yields the following code

r := randomlInt(]0..

2

3 ndom number r with0 < r <n. < WRONG!
4 Swap A[i] and

5]

sition. DO NOT USE

tuitively: All elements are moved to a random index, so the order is random .

I NRRERN M
it o -+

.. 1ight?22??

Clicker Question

~
4 Select all statements that apply to myShuffle (for you).

I'have seen this shuffling algorithm (or a very similar
method) before.

I can understand the pseudocode for myShuffle (so I would
be do an example by hand).

It can generate all possible orderings of A (depending on the
random numbers).

D ‘—» sli.do/cs566

Correct shuffle

> interestingly, a very small change corrects the issue

1 procedure shuffleKnuthFisherYates(A[0..1))

2 fori :=0,...,n-1

3 r := randomInt([i..n))
4 Swap A[i] and A[r]

5 end for

» looks good . ..

.. but how can we convince ourselves that it is correct, beyond any doubt?

1.2 Proof Templates

What is a formal proof?

A formal proof (in alogical system) is a sequence of statements such that each statement

1. isan axiom (of the logical system), OT

2. follows from previous statements using the inferernce rules (of the logical system).

Among experts: Suffices to convince a human that a formal proof exists.

What is a formal proof?

A formal proof (in alogical system) is a sequence of statements such that each statement

1. isan axiom (of the logical system), OT

2. follows from previous statements using the inferernce rules (of the logical system).

Among experts: Suffices to convince a human that a formal proof exists.

Notation:
AD]’<Y"

» Statements: A = “it rains”, B = “the street is wet”.

» Negation: -A “Not A”

» And/Or: AANB “Aand B”; AV B “Aor B or both”
» Implication: A= B “If A, thenB”; -AVB

[» Equivalence: A < B “Aholds true if and only if (‘iff’) B holds true.”; (A = B) A (B = A)

5

Clicker Question

Is the following statement true?
“If the Earth is flat, then ships can fall over its rim.”

o Yes No Neither

g |~ sli.do/cs566

Clicker Question

Is the following statement true?
“If the Earth is flat, then ships can fall over its rim.” A =B
A

IS
o Yes\/ Ne Nei-t-h' o

D ‘ - sli.do/cs566

Implications
To prove A = B, we can

A:?@ = ’zA\/E

) » directly derive B from A direct proof = 4 LB v & A)
=" v

} > prove (~B) = (—=A) indirect proof, proof by contraposition = ()5 (2 A)
» assume A A =B and derive a contradiction proof by contradiction, reductio ad absurdum
oy by contradic ion

» distinguish cases, i. e., separately prove
(ANC)=Band (AA-C)= B. proof by exhaustive case distinction

Clicker Question

n odd
~p gk > m:ZLn/

= 0 (e = 2k Gls)

-

o

Suppose we want to prove: = Q% 1k) +])
——

“If n% € N is an even number, then 7 is also even.” ek
For that we show that when 7 is odd, also 1?2 is odd. 2 ol
Which proof template do we follow? 7GR

direct proof: A = B
indirect proof: (—B) = (=A)

proof by contradiction: A A =B =

@ proof by case distinction: (AAC) = Band (AA-C) = B
J

D |~ sli.do/cs566

Clicker Question

-

Suppose we want to prove:

“If n% € N is an even number, then 7 is also even.”
For that we show that when 7 is odd, also 1?2 is odd.
Which proof template do we follow?

e PO ——
o indirect proof: (—B) = (=A) \/
()

G |~ sli.do/cs566

Equivalences

To prove A & B,
we prove both implications A = B and B = A separately.

(Often, one direction is much easier than the other.)

Set Inclusion and Equality

To prove that a set S contains a set R,i.e., RC S,
we prove the implication x € R = x € S.

To prove that two sets S and R are equal, S = R,
we prove both inclusions, S € R and R C S separately.

1.3 Mathematical Induction

Quantified Statements

Notation

> Statements with parameters: A(x) = “xis an even number.”
> Existential quantifiers: Jx : A(x) “There exists some x, so that A(x).”
il

» Universal quantifiers: Vx : A(x) “For all x it holds that A(x).”
Note: Vx : A(x) is equivalent to =3x : =A(x) Vse N .

Quantifiers can be nested, e. g., e-6-criterion for limits:

lim f(x) =a & Ve>036>0: (x—& <d)=|f(x)—a|<e.
x—&

To prove Jx : A(x), we simply list an example & such that A(£) is true.

Clicker Question

/ Have you seen proofs by mathematical induction before?
Yes, could do it
Yes, but only vaguely remember
o I've heard this term before, but ...
@ I have not heard “mathematical induction” before
&

D |~ sli.do/cs566

For-all statements

To prove/\/_x,i(x), we can
» derive A(x) for an “arbitrary but fixed value of x”, or,
» for x € Ny, use induction, i.e.,

» prove A(0), induction basis, and

» prove Vn € Ng : A(n) = A(n +1) inductive step

A

A)

ALO
-

Alo) j

o

10

For-all statements

To prove Vx : A(x), we can
» derive A(x) for an “arbitrary but fixed value of x”, or,
» for x € Ny, use induction, i.e.,

» prove A(0), induction basis, and

» prove Vn € Ng : A(n) = A(n +1) inductive step

More general variants of induction:

> complete/strong induction vellslsdigs (endiilion
inductive step shows (A(0) A --- A A(n)) = A(n +1)

» structural/transfinite induction

works on any well-ordered set, e. g., binary trees, graphs, Boolean formulas, strings, . ..

no infinite strictly decreasing chains

wolld - Wedede Ovdwinms / Neetsrsela O"JJMAD

10

1.4 Correctness Proofs

Formal verification

» verification: prove that a program computes the correct result
~» not our key focus in CS 566
but same techniques are useful for reasoning about algorithms
Here:
1. Prove that loop or recursive call eventually terminates.

2. Prove that a loop computes the correct result.

11

Proving termination

To prove that a recursive procedure proc(xy, ..., X,) eventually terminates, we
PIDEAL s A

» define a potential O(x1,...xm) € No of the parameters N, = 90,1.1,

(Note: @(x1,...xy) > 0by deflnltlon') IN

» prove that every recursive call decreases the potential, i.e.,
any recursive call proc(yy, ..., y,;) inside proc(xy, ..., x;,) satisfies

Dy1, .-, Ym) < D(x1,...,%m) which means
q)(y1/-~~/]/m) S q)(x1/-~~/xm)_1

s = ?g(ér

S
1

proc('(,r-v ¢)(V«—)‘—

(
precly,.

r
\
<

) Ve

12

Proving termination
To prove that a recursive procedure proc(xy, ..., X,) eventually terminates, we

» define a potential ®(x1, ... x,;) € Ny of the parameters
(Note: d(x1,...x,) > 0by definition!)

» prove that every recursive call decreases the potential, i.e.,

any recursive call proc(yy, ..., y,;) inside proc(xy, ..., x;,) satisfies

Dy1, .-, Ym) < D(x1,...,%m) which means
cp(y1/-~~/ym) S cD(x1/-~~/xm)_1

proc(xy, ..., X;) terminates because
we can only strictly decrease the (integral) potential
a finite number of times from its initial value

» Can use same idea for a loop: show that potential decreases in each iteration.

~+ see tutorials for an example.

12

Loop invariants Hoaee Kollcsd {pre coudbion |
p iy

Goal: Prove that a post condition holds after execution of a (terminating) loop. ¢ pest coudrhon §

1 // (A) before loop For that, we
> while cond do

s //(B) before body > find a loop invariant I~ (that's the tough part)

4 body > prove that I holds at (A)
5 // (C) after body
¢ end while » prove that I A cond at (B) imply I at (C)

7 Wiy > prove that I A —cond imply the desired post condition at (D)

Note: I holds before, during, and after the loop execution, hence the name.

Loop invariant — Example

1 procedure arrayMax(A,n) -
» loop condition: cond = j <n 2 // input: array of n elementsLi
3 // output the maximum element i (1 [0.n = 1]
» post condition (in line 13): 4 curMax = A[0]; j:==1
curMax = max A[k] s /(A
ke[0..n—1] 6 while j < 1 do /
. . 7 //(B); i
> IOOp Invariant: 8 if A[{] > curMax /’/
I = curMax = max A[k] A j<n 9 curMax = A[j] |
kE[O..]—l] [10] = j+1
1 //(C)
We have to proof: 2 end while
13 // (D)
(i) I holds at (A) 14 return curMax
(ii) I Acondat(B) = Iat(C) (i) corMax = ALSY =/ wax ALD
- keld..5-13
(iif) I A —cond = post condition Y
= wia X AS [53
/ kelo. o) v

Loop invariant — Example

(ii) I Acondat(B) = Iat(C)

loop invariant:

I = curMax = max A[k] A j<n
ke[0..j-1]

1
2

procedure arrayMax(A,1) -
// input: array of n elements) n > 1]

(iii) I A—~cond = post condition - = ; ﬁ/llmﬁz’:i’fzfigﬁﬂ;llleilemf"fmAIO--"flJ
s A -
6 hile j d;
(U"\ TQﬂ uMl'vSrzt.u\éw.S Moc(« ‘Ecin\asuu.ﬁ oy 29 , w 1/7(13;” °
8 ifA[:] > curMax
pIu 4 +al0 AE).A S v V’O}< 9) ullrMn.\' = Alj]
= . 10 jo=j+1
ey (g u /()
A[)} > auc Mox = Mmax A[L’l 12 end while
R 13 //(D)
-+ kelo 3" a 14 return curMax
rad 2.9 axc Max = A1 Q- Fall ALY ¢ cur Moy
L=
= wax AlL)
kefo .. 3) Afﬂ & cr Moy = wmax A[L]
. L keto..g-T
nach 2. 10 -~ 4l c(o..3-1
[eXVN Max = wax /’\g(ﬁ?) = e A[(A‘l
N ke(D..)
keid. ;-03 5)
!/ V\ocl'\ 2 o Caxe Mu;x = wox AS\(KB
ket ;-1

—

15

“ o

T
ber ® JEV A jenm Ad jEu-]
=
naeh 2.10 e _{«-[
= J=un be &)
(ii) I A cond at (B) = Iat(C)
(iii) I A —~cond = post condition
(;ca e SC(LRM v Mn?* ZJUVE(‘(C
(I\ con Max = Luox %\UA
e (Q--5-1)
JSM A “cend
S~
= 52n
2 =N Py aanc Mex
@)

/(z)

as AL

kelo-u-D

1 procedure arrayMax(A,n) o
2 // input: array of n elements) n > 1

3 // output: the maximum element in ;4[0..n -1]
4 curMax := A[0]; j:=1

s /@A) -

6 while j < 1 do

7
8
9

//(B)
if A[i] > curMax
curMax := Alj]
10 j=j+1
n 7(©)
12 end while
13 //(D)
14 return curMax

Ve

