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Learning Outcomes

Unit 2: Machines & Models

1. Understand the difference between empirical running time and algorithm analysis.

2. Understand worst / best / average case models for input data.

3. Know the RAM machine model.

4. Know the definitions of asymptotic notation (Big-Oh classes and relatives).

5. Understand the reasons to make asymptotic approximations.

6. Be able to analyze simple algorithms.
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What is an algorithm?
An algorithm is a sequence

think: recipe

of instructions.

More precisely:
1. mechanically executable

e. g. Python script

⇝ no “common sense” needed

2. finite description ≠ finite computation!

3. solves a problem
𝑥 + 𝑦, not only 17 + 4

, i. e., a class of problem instances

▶ input-processing-output abstraction

3Algorithm
input(s) output(s)

Typical example: bubblesort
⇝ not a specific program

but the underlying idea
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What is a data structure?

A data structure is
1. a rule for encoding data

(in computer memory), plus

2. algorithms to work with it
(queries, updates, etc.)

typical example: binary search tree
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2.1 Algorithm analysis



Good algorithms
Our goal: Find good (best?) algorithms and data structures for a task.

Good “usually” means

▶ fast running time
can be complicated in distributed systems

▶ moderate memory space usage

Algorithm analysis is a way to

▶ compare different algorithms,

▶ predict their performance in an application
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Running time experiments
Why not simply run and time it?

▶ results only apply to
▶ single test machine
▶ tested inputs
▶ tested implementation
▶ . . .
≠ universal truths

▶ instead: consider and analyze algorithms on an abstract
survives Pentium 4

machine
⇝ provable statements for model
⇝ testable model hypotheses

⇝ Need precise model of machine (costs), input data and algorithms.
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Data Models
Algorithm analysis typically uses one of the following simple data models:

▶ worst-case performance:
consider the worst of all inputs as our cost metric

▶ best-case performance:
consider the best of all inputs as our cost metric

▶ average-case performance:
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size 𝑛.

⇝ performance is only a function of 𝑛.
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2.2 The RAM Model



Clicker Question

� → sli.do/cs566

What is the cost of adding two 𝑑-digit integers?
(For example, for 𝑑 = 5, what is 45 235 + 91 342?)

A constant time

B logarithmic in 𝑑

C proportional to 𝑑

D quadratic in 𝑑

E no idea what you are talking about



Clicker Question

� → sli.do/cs566

What is the cost of adding two 𝑑-digit integers?
(For example, for 𝑑 = 5, what is 45 235 + 91 342?)

A constant time✓
B logarithmic in 𝑑

C proportional to 𝑑✓
D quadratic in 𝑑

E no idea what you are talking about✓



Machine models
The machine model decides

▶ what algorithms are possible

▶ how they are described (= programming language)

▶ what an execution costs

Goal: Machine models should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.
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Machine models
The machine model decides

▶ what algorithms are possible

▶ how they are described (= programming language)

▶ what an execution costs

Goal: Machine models should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

⇝ usually some compromise is needed

honest

smart investment
banker
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Random Access Machines
Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

▶ unlimited memory MEM[0], MEM[1], MEM[2], . . .
▶ fixed number of registers 𝑅1 , . . . , 𝑅𝑟 (say 𝑟 = 100)
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Random Access Machines
Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

▶ unlimited memory MEM[0], MEM[1], MEM[2], . . .
▶ fixed number of registers 𝑅1 , . . . , 𝑅𝑟 (say 𝑟 = 100)

▶ memory cells MEM[𝑖] and registers 𝑅𝑖 store 𝑤-bit integers, i. e., numbers in [0..2𝑤 − 1]
𝑤 is the word width/size; typically 𝑤 ∝ lg 𝑛 ⇝ 2𝑤 ≈ 𝑛
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Random Access Machines
Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

▶ unlimited memory MEM[0], MEM[1], MEM[2], . . .
▶ fixed number of registers 𝑅1 , . . . , 𝑅𝑟 (say 𝑟 = 100)

▶ memory cells MEM[𝑖] and registers 𝑅𝑖 store 𝑤-bit integers, i. e., numbers in [0..2𝑤 − 1]
𝑤 is the word width/size; typically 𝑤 ∝ lg 𝑛 ⇝ 2𝑤 ≈ 𝑛

▶ Instructions:
▶ load & store: 𝑅𝑖 := MEM[𝑅𝑗] MEM[𝑅𝑗] := 𝑅𝑖
▶ operations on registers: 𝑅𝑘 := 𝑅𝑖 + 𝑅𝑗 (arithmetic is modulo 2𝑤 !)

also 𝑅𝑖 − 𝑅𝑗 , 𝑅𝑖 · 𝑅𝑗 , 𝑅𝑖 div 𝑅𝑗 , 𝑅𝑖 mod 𝑅𝑗
C-style operations (bitwise and/or/xor, left/right shift)

▶ conditional and unconditional jumps

▶ cost: number of executed instructions

⇝ The RAM is the standard model for sequential

we will see further models later

computation.
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RAM-Program Example

Example RAM program

1 // Assume: 𝑅1 stores number 𝑁
2 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
3 𝑅2 := 𝑅1;
4 𝑅3 := 𝑅1 − 2;
5 𝑅4 := MEM[𝑅3];
6 𝑅5 := 𝑅3 + 1;
7 𝑅6 := MEM[𝑅5];
8 if (𝑅4 ≤ 𝑅6) goto line 12;
9 MEM[𝑅3] := 𝑅6;

10 MEM[𝑅5] := 𝑅4;
11 𝑅3 := 𝑅3 − 1;
12 if (𝑅3 ≥ 0) goto line 6;
13 𝑅2 := 𝑅2 − 1;
14 if (𝑅2 > 0) goto line 5;
15 // Done:
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Clicker Question

� → sli.do/cs566

What algorithm does the RAM program on the previous slide
implement?



RAM-Program Example

Example RAM program

1 // Assume: 𝑅1 stores number 𝑁
2 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
3 𝑅2 := 𝑅1;
4 𝑅3 := 𝑅1 − 2;
5 𝑅4 := MEM[𝑅3];
6 𝑅5 := 𝑅3 + 1;
7 𝑅6 := MEM[𝑅5];
8 if (𝑅4 ≤ 𝑅6) goto line 12;
9 MEM[𝑅3] := 𝑅6;

10 MEM[𝑅5] := 𝑅4;
11 𝑅3 := 𝑅3 − 1;
12 if (𝑅3 ≥ 0) goto line 6;
13 𝑅2 := 𝑅2 − 1;
14 if (𝑅2 > 0) goto line 5;
15 // Done: MEM[0..𝑁) sorted
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4 𝑅3 := 𝑅1 − 2;
5 𝑅4 := MEM[𝑅3];
6 𝑅5 := 𝑅3 + 1;
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Pseudocode
▶ Programs for the random-access machine are very low level and detailed

≈ assembly/machine language

Typical simplifications when describing and analyzing algorithms:

▶ more abstract pseudocode
code that humans understand (easily)

▶ control flow using if, for, while, etc.
▶ variable names instead of fixed registers and memory cells
▶ memory management (more below)

▶ count dominant elementary operations (e. g. memory accesses)
instead of all RAM instructions

In both cases: We can go to full detail where needed/desired.

honest

smart investment
banker
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Pseudocode – Example
RAM-Program

1 // Bubblesort
2 // Assume: 𝑅1 stores number 𝑁
3 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
4 𝑅2 := 𝑅1;
5 𝑅3 := 𝑅1 − 2;
6 𝑅4 := MEM[𝑅3];
7 𝑅5 := 𝑅3 + 1;
8 𝑅6 := MEM[𝑅5];
9 if (𝑅4 ≤ 𝑅6) goto line 12;

10 MEM[𝑅3] := 𝑅6;
11 MEM[𝑅5] := 𝑅4;
12 𝑅3 := 𝑅3 − 1;
13 if (𝑅3 ≥ 0) goto line 6;
14 𝑅2 := 𝑅2 − 1;
15 if (𝑅2 > 0) goto line 5;
16 // Done: MEM[0..𝑁) sorted

Pseudocode Algorithm

1 procedure bubblesort(𝐴[0..𝑁)):
2 for 𝑖 := 𝑁 ,𝑁 − 1, . . . , 1
3 for 𝑗 := 𝑁 − 2,𝑁 − 3, . . . , 0
4 if 𝐴[𝑗] > 𝐴[𝑗 + 1]:
5 Swap 𝐴[𝑗] and 𝐴[𝑗 + 1]
6 end if
7 end for
8 end for

⇝ much more readable

▶ closer to modern high-level
programming languages

▶ but: only allow primitive
operations that correspond to
𝑂(1) RAM instructions
⇝ analysis
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Memory management & Pointers
▶ A random-access machine is a bit like a bare CPU . . . without any operating system

⇝ cumbersome to use

▶ All high-level programming languages / operating systems add memory management:
▶ Instruction to allocate a contiguous piece of memory of a given size (like malloc).

▶ used to allocate a new array (of a fixed size) or
▶ a new object/record (with a known list of instance variables)
▶ There’s a similar instruction to free allocated memory again

or an automated garbage collector.

⇝ A pointer is a memory address (i. e., the 𝑖 of MEM[𝑖]).

▶ Support for procedures (a.k.a. functions, methods) calls including recursive calls
▶ (this internally requires maintaining call stack)

We will mostly ignore how all this works here.
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2.3 Asymptotics & Big-Oh



Clicker Question

� → sli.do/cs566

What is the correct way to complete the equation?
8𝑛 + 1

2𝑛
2 + 1024 =

A 𝑂(1)

B 𝑂(𝑛)

C 𝑂(𝑛 log(𝑛))

D 𝑂(𝑛2)

E I don’t know 𝑂(·)



Clicker Question

� → sli.do/cs566

What is the correct way to complete the equation?
8𝑛 + 1

2𝑛
2 + 1024 =

A 𝑂(1)

B 𝑂(𝑛)

C 𝑂(𝑛 log(𝑛))

D 𝑂(𝑛2)✓
E I don’t know 𝑂(·)



Why asymptotics?
Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.
▶ abstracts from unnecessary detail
▶ simplifies analysis
▶ often necessary for sensible comparison

Asymptotics = approximation around ∞
Example: Consider a function 𝑓 (𝑛) given by
2𝑛2 − 3𝑛⌊ log2(𝑛 + 1)⌋ + 7𝑛 − 3⌊ log2(𝑛 + 1)⌋ + 120

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
·104
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Why asymptotics?
Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.
▶ abstracts from unnecessary detail
▶ simplifies analysis
▶ often necessary for sensible comparison

Asymptotics = approximation around ∞
Example: Consider a function 𝑓 (𝑛) given by
2𝑛2 − 3𝑛⌊ log2(𝑛 + 1)⌋ + 7𝑛 − 3⌊ log2(𝑛 + 1)⌋ + 120 ∼ 2𝒏2
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Asymptotic tools – Formal & definitive definition
▶ “Tilde Notation”: 𝑓 (𝑛) ∼ 𝑔(𝑛) iff

if, and only if

lim
𝑛→∞

𝑓 (𝑛)
𝑔(𝑛) = 1

„ 𝑓 and 𝑔 are asymptotically equivalent”

15



Asymptotic tools – Formal & definitive definition
▶ “Tilde Notation”: 𝑓 (𝑛) ∼ 𝑔(𝑛) iff

if, and only if

lim
𝑛→∞

𝑓 (𝑛)
𝑔(𝑛) = 1

„ 𝑓 and 𝑔 are asymptotically equivalent”

▶ “Big-Oh Notation”: 𝑓 (𝑛) ∈
also write ‘=’ instead

𝑂
�
𝑔(𝑛)� iff

����� 𝑓 (𝑛)𝑔(𝑛)

����� is bounded for 𝑛 ≥ 𝑛0

iff lim sup
need supremum since limit might not exist!

𝑛→∞

����� 𝑓 (𝑛)𝑔(𝑛)

����� < ∞
Variants:

▶ 𝑓 (𝑛) ∈ Ω

“Big-Omega”�
𝑔(𝑛)� iff 𝑔(𝑛) ∈ 𝑂

�
𝑓 (𝑛)�

▶ 𝑓 (𝑛) ∈ Θ

“Big-Theta”

�
𝑔(𝑛)� iff 𝑓 (𝑛) ∈ 𝑂

�
𝑔(𝑛)� and 𝑓 (𝑛) ∈ Ω

�
𝑔(𝑛)�
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iff lim sup
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�
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▶ 𝑓 (𝑛) ∈ Θ

“Big-Theta”

�
𝑔(𝑛)� iff 𝑓 (𝑛) ∈ 𝑂

�
𝑔(𝑛)� and 𝑓 (𝑛) ∈ Ω

�
𝑔(𝑛)�

▶ “Little-Oh Notation”: 𝑓 (𝑛) ∈ 𝑜
�
𝑔(𝑛)� iff lim

𝑛→∞

����� 𝑓 (𝑛)𝑔(𝑛)

����� = 0

similarly: 𝑓 (𝑛) ∈ 𝜔
�
𝑔(𝑛)� if lim = ∞

(Benefit of this definition: Works for any 𝑓 , 𝑔 : ℝ → ℝ and is easy to generalize to limits other than 𝑛 → ∞)
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Asymptotic tools – Intuition

▶ 𝑓 (𝑛) = 𝑂(𝑔(𝑛)): 𝑓 (𝑛) is at most 𝑔(𝑛)
up to constant factors and
for sufficiently large 𝑛

𝑐 𝑔(𝑛)

𝑓 (𝑛)

𝑛0

𝑓 (𝑛) ≤ 𝑐𝑔(𝑛)

𝑛

▶ 𝑓 (𝑛) = Θ(𝑔(𝑛)): 𝑓 (𝑛) is equal to 𝑔(𝑛)
up to constant factors and
for sufficiently large 𝑛

𝑐2 𝑔(𝑛)

𝑐1 𝑔(𝑛)
𝑓 (𝑛)

𝑛0

𝑐1𝑔(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐2𝑔(𝑛)

𝑛

Plots can be misleading! Example
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Clicker Question

� → sli.do/cs566

Assume 𝑓 (𝑛) ∈ 𝑂(𝑔(𝑛)). What can we say about 𝑔(𝑛)?
A 𝑔(𝑛) = 𝑂( 𝑓 (𝑛))

B 𝑔(𝑛) = Ω( 𝑓 (𝑛))

C 𝑔(𝑛) = Θ( 𝑓 (𝑛))

D Nothing (it depends on 𝑓 and 𝑔)



Clicker Question

� → sli.do/cs566

Assume 𝑓 (𝑛) ∈ 𝑂(𝑔(𝑛)). What can we say about 𝑔(𝑛)?
A 𝑔(𝑛) = 𝑂( 𝑓 (𝑛))

B 𝑔(𝑛) = Ω( 𝑓 (𝑛))✓
C 𝑔(𝑛) = Θ( 𝑓 (𝑛))
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Clicker Question

� → sli.do/cs566

Assume 𝑓 (𝑛) ∈ 𝑂(𝑔(𝑛)). What can we say about 𝑔(𝑛)?
A 𝑔(𝑛) = 𝑂( 𝑓 (𝑛))

B 𝑔(𝑛) = Ω( 𝑓 (𝑛)) (if 𝑓 (𝑛) ≠ 0)✓
C 𝑔(𝑛) = Θ( 𝑓 (𝑛))

D Nothing (it depends on 𝑓 and 𝑔)✓



Asymptotics – Example 1
Basic examples:

▶ 20𝑛3 + 10𝑛 ln(𝑛) + 5 ∼ 20𝑛3 = Θ(𝑛3)
▶ 3 lg(𝑛2) + lg(lg(𝑛)) = Θ(log 𝑛)
▶ 10100 = 𝑂(1)

Use wolframalpha to compute/check limits, but also practice it with pen and paper!
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Clicker Question

� → sli.do/cs566

Is (sin(𝑛) + 2)𝑛2 = Θ(𝑛2)?

A Yes B No



Clicker Question

� → sli.do/cs566

Is (sin(𝑛) + 2)𝑛2 = Θ(𝑛2)?

A Yes✓ B No



Asymptotics – Basic facts
Rules to work with Big-Oh classes:

▶ 𝑓 = Θ( 𝑓 ) (reflexivity)

▶ 𝑓 = Θ(𝑔) ∧ 𝑔 = Θ(ℎ) =⇒ 𝑓 = Θ(ℎ)
▶ 𝑐 · 𝑓 (𝑛) = Θ( 𝑓 (𝑛)) for constant 𝑐 ≠ 0

▶ 𝑓 ∼ 𝑔 ⇐⇒ 𝑓 = 𝑔 · (1 ± 𝑜(1))
▶ Θ( 𝑓 ) · Θ(𝑔) = Θ( 𝑓 · 𝑔)
▶ Θ( 𝑓 ) + Θ(𝑔) = Θ( 𝑓 + 𝑔) = Θ(max{ 𝑓 , 𝑔}) largest summand determines Θ-class
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Asymptotics – Frequently encountered classes
Frequently used orders of growth:

▶ constant Θ(1)
▶ logarithmic Θ(log 𝑛) Note: 𝑎 , 𝑏 > 0 constants ⇝ Θ(log𝑎 (𝑛)) = Θ(log𝑏 (𝑛))

▶ linear Θ(𝑛)
▶ linearithmic Θ(𝑛 log 𝑛)
▶ quadratic Θ(𝑛2)
▶ cubic Θ(𝑛3)

▶ polynomial 𝑂(𝑛𝑐) for some constant 𝑐

▶ exponential 𝑂(𝑐𝑛) for some constant 𝑐 > 1 Note: 𝑎 > 𝑏 > 0 constants ⇝ 𝑏𝑛 = 𝑜(𝑎𝑛 )
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Asymptotics – Example 2
Square-and-multiply algorithm
for computing 𝑥𝑚 with 𝑚 ∈ ℕ

Inputs:
▶ 𝑚 as binary number (array of bits)
▶ 𝑛 = #bits in 𝑚

▶ 𝑥 a floating-point number

1 def pow(𝑥, 𝑚):
2 # compute binary representation of exponent
3 exponent_bits = bin(𝑚)[2:]
4 result = 1
5 for bit in exponent_bits:
6 result ‗= result
7 if bit == '1':
8 result ‗= 𝑥
9 return result

▶ Cost: 𝐶 = # multiplications
▶ 𝐶 = 𝑛 (line 6) + #one-bits in binary representation of 𝑚 (line 8)

⇝ 𝑛 ≤ 𝐶 ≤ 2𝑛
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Clicker Question

� → sli.do/cs566

We showed 𝑛 ≤ 𝐶(𝑛) ≤ 2𝑛; what is the most precise
asymptotic approximation for 𝐶(𝑛) that we can make?

Write e. g. O(n^2) for 𝑂(𝑛2) or Theta(sqrt(n)) for Θ(√𝑛).



Asymptotics – Example 2
Square-and-multiply algorithm
for computing 𝑥𝑚 with 𝑚 ∈ ℕ

Inputs:
▶ 𝑚 as binary number (array of bits)
▶ 𝑛 = #bits in 𝑚

▶ 𝑥 a floating-point number

1 def pow(𝑥, 𝑚):
2 # compute binary representation of exponent
3 exponent_bits = bin(𝑚)[2:]
4 result = 1
5 for bit in exponent_bits:
6 result ‗= result
7 if bit == '1':
8 result ‗= 𝑥
9 return result

▶ Cost: 𝐶 = # multiplications
▶ 𝐶 = 𝑛 (line 6) + #one-bits in binary representation of 𝑚 (line 8)

⇝ 𝑛 ≤ 𝐶 ≤ 2𝑛
⇝ 𝐶 = Θ(𝑛) = Θ(log𝑚)

�
Often, you can pretend Θ is “like ∼ with an unknown constant”
but in this case, no such constant exists!
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shift-and-multiply-exponentiation
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Asymptotics with several variables
▶ Example: Algorithms on graphs with 𝑛 vertices and 𝑚 edges.

▶ want to say: Algorithm 𝐴 takes time Θ(𝑛 + 𝑚).
▶ But what does that even mean formally?!
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Asymptotics with several variables
▶ Example: Algorithms on graphs with 𝑛 vertices and 𝑚 edges.

▶ want to say: Algorithm 𝐴 takes time Θ(𝑛 + 𝑚).
▶ But what does that even mean formally?!

� Inconsistent and incompatible definitions used in the literature!

▶ Here:
▶ (implicitly) always have a single “main” variable 𝑛: with 𝑛 → ∞
▶ all other variables are functions of 𝑛: 𝑚 = 𝑚(𝑛)
▶ must make conditions on functions explicit: 𝑚(𝑛) ∈ Ω(𝑛) and 𝑚(𝑛) ∈ 𝑂(𝑛2).
⇝ Can make statements like

𝑂(𝑛 + 𝑚) ⊆ 𝑂(𝑛𝑚) (𝑛 → ∞, 𝑚 ∈ Ω(1))
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2.4 Teaser: Maximum subarray problem



Bring on the puzzles!
Time for a concrete example of algorithm design!

▶ we will illustrate the algorithm design process on a “toy problem”
▶ clean abstract problem, but nontrivial to solve!
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Bring on the puzzles!
Time for a concrete example of algorithm design!

▶ we will illustrate the algorithm design process on a “toy problem”
▶ clean abstract problem, but nontrivial to solve!

Maximum (sum) subarray problem

▶ Given: 𝐴[0..𝑛) with 𝐴[𝑖] ∈ ℤ for 0 ≤ 𝑖 < 𝑛.

▶ Abbreviate 𝑠(𝑖 , 𝑗) ≔
𝑗−1Õ
𝑘=𝑖

𝐴[𝑘]

▶ Goal: Compute 𝑠 ≔ max
�
𝑠(𝑖 , 𝑗) : 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

	
and a pair

will ignore that here; easy to modify algorithms

(𝑖 , 𝑗) with 𝑠 = 𝑠(𝑖 , 𝑗).
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and a pair

will ignore that here; easy to modify algorithms

(𝑖 , 𝑗) with 𝑠 = 𝑠(𝑖 , 𝑗).

Applications:

▶ largest gain of a stock
𝐴[𝑖] price change on day 𝑖

▶ signal detection in
biological sequence
analysis

▶ 2D generalization used in
image analysis
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Bring on the puzzles!
Time for a concrete example of algorithm design!

▶ we will illustrate the algorithm design process on a “toy problem”
▶ clean abstract problem, but nontrivial to solve!

Maximum (sum) subarray problem

▶ Given: 𝐴[0..𝑛) with 𝐴[𝑖] ∈ ℤ for 0 ≤ 𝑖 < 𝑛.

▶ Abbreviate 𝑠(𝑖 , 𝑗) ≔
𝑗−1Õ
𝑘=𝑖

𝐴[𝑘]

▶ Goal: Compute 𝑠 ≔ max
�
𝑠(𝑖 , 𝑗) : 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

	
and a pair

will ignore that here; easy to modify algorithms

(𝑖 , 𝑗) with 𝑠 = 𝑠(𝑖 , 𝑗).

Applications:

▶ largest gain of a stock
𝐴[𝑖] price change on day 𝑖

▶ signal detection in
biological sequence
analysis

▶ 2D generalization used in
image analysis

Modeling decisions:
▶ input size: # numbers 𝑛
▶ assume all integers (and sums) fit in 𝑂(1) words
⇝ count # additions as elementary operation
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Clicker Question

What do you think is the Θ-class of the running time of the fastest
algorithm for the maximal sum subarray problem?



Template for Describing an Algorithm
1. � Algorithmic Idea

Abstract idea that makes the algorithm work (prose)
(an expert could fill in the rest from here)

2. / Pseudocode
structured description of procedure including edge cases
should be unambiguous and close to real code

3. ◎ Correctness proof
argument why the correct result is computed
often uses induction and invariants

4. � Algorithm analysis
analysis of the efficiency of the algorithm
usually want Θ-class of worst-case running time
where interesting, also space usage
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Brute force approach
▶ Let’s start with the simplest thinkable solution

Maximal subarray problem

▶ Given: 𝐴[0..𝑛) with 𝐴[𝑖] ∈ ℤ for 0 ≤ 𝑖 < 𝑛.

▶ Abbreviate 𝑠(𝑖 , 𝑗) ≔
𝑗−1Õ
𝑘=𝑖

𝐴[𝑘]

▶ Goal: Compute 𝑠 ≔ max
�
𝑠(𝑖 , 𝑗) : 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

	
and a pair (𝑖 , 𝑗) with 𝑠 = 𝑠(𝑖 , 𝑗).

1. � Algorithmic Idea
try all contiguous subarrays 𝐴[𝑖.. 𝑗)
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2. / Pseudocode
1 𝑠 = 0
2 for 𝑖 = 0, . . . , 𝑛 − 1
3 for 𝑗 = 𝑖 , . . . , 𝑛
4 𝑡 = 0
5 for 𝑘 = 𝑖 , . . . , 𝑗 − 1
6 𝑡 = 𝑡 + 𝐴[𝑘]
7 end for
8 if 𝑡 > 𝑠 then 𝑠 := 𝑡
9 end for

10 end for

25



Brute force approach
▶ Let’s start with the simplest thinkable solution

Maximal subarray problem

▶ Given: 𝐴[0..𝑛) with 𝐴[𝑖] ∈ ℤ for 0 ≤ 𝑖 < 𝑛.

▶ Abbreviate 𝑠(𝑖 , 𝑗) ≔
𝑗−1Õ
𝑘=𝑖

𝐴[𝑘]

▶ Goal: Compute 𝑠 ≔ max
�
𝑠(𝑖 , 𝑗) : 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

	
and a pair (𝑖 , 𝑗) with 𝑠 = 𝑠(𝑖 , 𝑗).

1. � Algorithmic Idea
try all contiguous subarrays 𝐴[𝑖.. 𝑗)

2. / Pseudocode
1 𝑠 = 0
2 for 𝑖 = 0, . . . , 𝑛 − 1
3 for 𝑗 = 𝑖 , . . . , 𝑛
4 𝑡 = 0
5 for 𝑘 = 𝑖 , . . . , 𝑗 − 1
6 𝑡 = 𝑡 + 𝐴[𝑘]
7 end for
8 if 𝑡 > 𝑠 then 𝑠 := 𝑡
9 end for

10 end for

3. ◎ Correctness proof
direct by definition of 𝑠
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4. � Algorithm analysis

# additions

25



Brute force approach
▶ Let’s start with the simplest thinkable solution

Maximal subarray problem

▶ Given: 𝐴[0..𝑛) with 𝐴[𝑖] ∈ ℤ for 0 ≤ 𝑖 < 𝑛.

▶ Abbreviate 𝑠(𝑖 , 𝑗) ≔
𝑗−1Õ
𝑘=𝑖

𝐴[𝑘]

▶ Goal: Compute 𝑠 ≔ max
�
𝑠(𝑖 , 𝑗) : 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

	
and a pair (𝑖 , 𝑗) with 𝑠 = 𝑠(𝑖 , 𝑗).

1. � Algorithmic Idea
try all contiguous subarrays 𝐴[𝑖.. 𝑗)

2. / Pseudocode
1 𝑠 = 0
2 for 𝑖 = 0, . . . , 𝑛 − 1
3 for 𝑗 = 𝑖 , . . . , 𝑛
4 𝑡 = 0
5 for 𝑘 = 𝑖 , . . . , 𝑗 − 1
6 𝑡 = 𝑡 + 𝐴[𝑘]
7 end for
8 if 𝑡 > 𝑠 then 𝑠 := 𝑡
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Brute force approach
▶ Let’s start with the simplest thinkable solution

Maximal subarray problem

▶ Given: 𝐴[0..𝑛) with 𝐴[𝑖] ∈ ℤ for 0 ≤ 𝑖 < 𝑛.
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𝑛(𝑛 + 1)(2𝑛 + 1)

12 + 𝑛(𝑛 + 1)
4
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Brute force approach
▶ Let’s start with the simplest thinkable solution
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12 + 𝑛(𝑛 + 1)
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▶ Given: 𝐴[0..𝑛) with 𝐴[𝑖] ∈ ℤ for 0 ≤ 𝑖 < 𝑛.

▶ Abbreviate 𝑠(𝑖 , 𝑗) ≔
𝑗−1Õ
𝑘=𝑖

𝐴[𝑘]

▶ Goal: Compute 𝑠 ≔ max
�
𝑠(𝑖 , 𝑗) : 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

	
and a pair (𝑖 , 𝑗) with 𝑠 = 𝑠(𝑖 , 𝑗).

1. � Algorithmic Idea
try all contiguous subarrays 𝐴[𝑖.. 𝑗)

2. / Pseudocode
1 𝑠 = 0
2 for 𝑖 = 0, . . . , 𝑛 − 1
3 for 𝑗 = 𝑖 , . . . , 𝑛
4 𝑡 = 0
5 for 𝑘 = 𝑖 , . . . , 𝑗 − 1
6 𝑡 = 𝑡 + 𝐴[𝑘]
7 end for
8 if 𝑡 > 𝑠 then 𝑠 := 𝑡
9 end for

10 end for

3. ◎ Correctness proof
direct by definition of 𝑠

4. � Algorithm analysis

# additions

=
𝑛−1Õ
𝑖=0

𝑛Õ
𝑗=𝑖

𝑗−1Õ
𝑘=𝑖

1 =
𝑛−1Õ
𝑖=0

𝑛Õ
𝑗=𝑖

(𝑗 − 𝑖)

=
𝑛−1Õ
𝑖=0

𝑛−𝑖Õ
𝑗=0

𝑗 =
𝑛−1Õ
𝑖=0

(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)
2

=
1
2

𝑛Õ
𝑖=1

𝑖(𝑖 + 1) =
1
2

𝑛Õ
𝑖=1

𝑖2 + 1
2

𝑛Õ
𝑖=1

𝑖

=
𝑛(𝑛 + 1)(2𝑛 + 1)

12 + 𝑛(𝑛 + 1)
4

=
𝑛(𝑛 + 1)(𝑛 + 2)

6 ∼ 1
6𝑛

3 = Θ(𝑛3)
25



Reusing sums
1. � Algorithmic Idea

▶ brute force algorithm is unnecessarily wasteful!
▶ can use 𝑠(𝑖 , 𝑗) = 𝑠(𝑖 , 𝑗 − 1) + 𝐴[𝑗 − 1]
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Reusing sums
1. � Algorithmic Idea

▶ brute force algorithm is unnecessarily wasteful!
▶ can use 𝑠(𝑖 , 𝑗) = 𝑠(𝑖 , 𝑗 − 1) + 𝐴[𝑗 − 1]

2. / Pseudocode
1 𝑠 = 0
2 for 𝑖 = 0, . . . , 𝑛 − 1
3 𝑡 = 0
4 for 𝑗 = 𝑖 + 1, . . . , 𝑛
5 𝑡 = 𝑡 + 𝐴[𝑗 − 1]
6 if 𝑡 > 𝑠 then 𝑠 := 𝑡
7 end for
8 end for

3. ◎ Correctness proof: as above

4. � Algorithm analysis:
𝑛−1Õ
𝑖=0

𝑛Õ
𝑗=𝑖+1

1 =
𝑛(𝑛 + 1)

2 ∼ 1
2𝑛

2 = Θ(𝑛2) additions
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Reusing sums
1. � Algorithmic Idea

▶ brute force algorithm is unnecessarily wasteful!
▶ can use 𝑠(𝑖 , 𝑗) = 𝑠(𝑖 , 𝑗 − 1) + 𝐴[𝑗 − 1]

2. / Pseudocode
1 𝑠 = 0
2 for 𝑖 = 0, . . . , 𝑛 − 1
3 𝑡 = 0
4 for 𝑗 = 𝑖 + 1, . . . , 𝑛
5 𝑡 = 𝑡 + 𝐴[𝑗 − 1]
6 if 𝑡 > 𝑠 then 𝑠 := 𝑡
7 end for
8 end for

3. ◎ Correctness proof: as above

4. � Algorithm analysis:
𝑛−1Õ
𝑖=0

𝑛Õ
𝑗=𝑖+1

1 =
𝑛(𝑛 + 1)

2 ∼ 1
2𝑛

2 = Θ(𝑛2) additions

Can we possibly do better?
▶ There are

�𝑛
2
� ∼ 1

2𝑛
2 different 𝑠(𝑖 , 𝑗) . . .

⇝ Can’t look at all of them
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A subquadratic solution
� Algorithmic idea:

Consider 𝑛/2-mark.
Only 3 options for optimal solution 𝑠(𝑖 , 𝑗):

(a) 0 ≤ 𝑖 ≤ 𝑗 < ⌈ 𝑛
2 ⌉ (left)

(b) ⌈ 𝑛
2 ⌉ ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 (right)

(c) 𝑖 < ⌈ 𝑛
2 ⌉ ≤ 𝑗 (straddle) 0 𝑛/2 𝑛

(a) (b)
(c)
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A subquadratic solution
� Algorithmic idea:

Consider 𝑛/2-mark.
Only 3 options for optimal solution 𝑠(𝑖 , 𝑗):

(a) 0 ≤ 𝑖 ≤ 𝑗 < ⌈ 𝑛
2 ⌉ (left)

(b) ⌈ 𝑛
2 ⌉ ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 (right)

(c) 𝑖 < ⌈ 𝑛
2 ⌉ ≤ 𝑗 (straddle) 0 𝑛/2 𝑛

(a) (b)
(c)

� optimal straddle easy to compute!
▶ independently find best left endpoint 𝑖 for 𝑠(𝑖 , ⌈ 𝑛2 ⌉) and

best right endpoint 𝑗 for 𝑠(⌈ 𝑛2 ⌉ , 𝑗)

▶ for (a) and (b), recurse on instance of half the size!
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A subquadratic solution – Pseudocode & Correctness
1 procedure findMaxSubarraySum(𝐴[ℓ ..𝑟)):
2 if 𝑟 − ℓ ≤ 0
3 return 0
4 if 𝑟 − ℓ == 1
5 return max{0,𝐴[ℓ ]}
6 𝑚 := ⌈(ℓ + 𝑟)/2⌉
7 𝑠(a) := findMaxSubarraySum(𝐴[ℓ ,𝑚))
8 𝑠(b) := findMaxSubarraySum(𝐴[𝑚 , 𝑟))
9 // Find left endpoint of straddle:

10 𝑠ℓ := 0; 𝑡 := 0
11 for 𝑖 = 𝑚 − 1,𝑚 − 2, . . . , ℓ
12 𝑡 := 𝐴[𝑖] + 𝑡
13 𝑠ℓ := max{𝑠ℓ , 𝑡}
14 end for
15 // Find right endpoint of straddle:
16 𝑠𝑟 := 0; 𝑡 := 0
17 for 𝑗 = 𝑚 + 1, . . . , 𝑟
18 𝑡 := 𝑡 + 𝐴[𝑗 − 1]
19 𝑠𝑟 := max{𝑠𝑟 , 𝑡}
20 end for
21 𝑠(c) := 𝑠ℓ + 𝑠𝑟
22 return max{𝑠(a) , 𝑠(b) , 𝑠(c)}
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A subquadratic solution – Pseudocode & Correctness
1 procedure findMaxSubarraySum(𝐴[ℓ ..𝑟)):
2 if 𝑟 − ℓ ≤ 0
3 return 0
4 if 𝑟 − ℓ == 1
5 return max{0,𝐴[ℓ ]}
6 𝑚 := ⌈(ℓ + 𝑟)/2⌉
7 𝑠(a) := findMaxSubarraySum(𝐴[ℓ ,𝑚))
8 𝑠(b) := findMaxSubarraySum(𝐴[𝑚 , 𝑟))
9 // Find left endpoint of straddle:

10 𝑠ℓ := 0; 𝑡 := 0
11 for 𝑖 = 𝑚 − 1,𝑚 − 2, . . . , ℓ
12 𝑡 := 𝐴[𝑖] + 𝑡
13 𝑠ℓ := max{𝑠ℓ , 𝑡}
14 end for
15 // Find right endpoint of straddle:
16 𝑠𝑟 := 0; 𝑡 := 0
17 for 𝑗 = 𝑚 + 1, . . . , 𝑟
18 𝑡 := 𝑡 + 𝐴[𝑗 − 1]
19 𝑠𝑟 := max{𝑠𝑟 , 𝑡}
20 end for
21 𝑠(c) := 𝑠ℓ + 𝑠𝑟
22 return max{𝑠(a) , 𝑠(b) , 𝑠(c)}

◎ Correctness proof:
▶ Induction over 𝑛 = 𝑟 − ℓ

▶ basis: for 𝑛 ≤ 1 ✓
▶ hypothesis: Assume

findMaxSubarraySum returns correct
result for all arrays of up to 𝑛 − 1
elements

▶ step: For array of 𝑛 ≥ 2 elements,
distinguish cases (a), (b), (c)
(a) and (b) ⇝ IH ✓
(c) “from inspection of the code”
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A subquadratic solution – Analysis
1 procedure findMaxSubarraySum(𝐴[ℓ ..𝑟)):
2 if 𝑟 − ℓ ≤ 0
3 return 0
4 if 𝑟 − ℓ == 1
5 return max{0,𝐴[ℓ ]}
6 𝑚 := ⌈(ℓ + 𝑟)/2⌉
7 𝑠(a) := findMaxSubarraySum(𝐴[ℓ ,𝑚))
8 𝑠(b) := findMaxSubarraySum(𝐴[𝑚 , 𝑟))
9 // Find left endpoint of straddle:

10 𝑠ℓ := 0; 𝑡 := 0
11 for 𝑖 = 𝑚 − 1,𝑚 − 2, . . . , ℓ
12 𝑡 := 𝐴[𝑖] + 𝑡
13 𝑠ℓ := max{𝑠ℓ , 𝑡}
14 end for
15 // Find right endpoint of straddle:
16 𝑠𝑟 := 0; 𝑡 := 0
17 for 𝑗 = 𝑚 + 1, . . . , 𝑟
18 𝑡 := 𝑡 + 𝐴[𝑗 − 1]
19 𝑠𝑟 := max{𝑠𝑟 , 𝑡}
20 end for
21 𝑠(c) := 𝑠ℓ + 𝑠𝑟
22 return max{𝑠(a) , 𝑠(b) , 𝑠(c)}

� Algorithm analysis:
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A subquadratic solution – Analysis
1 procedure findMaxSubarraySum(𝐴[ℓ ..𝑟)):
2 if 𝑟 − ℓ ≤ 0
3 return 0
4 if 𝑟 − ℓ == 1
5 return max{0,𝐴[ℓ ]}
6 𝑚 := ⌈(ℓ + 𝑟)/2⌉
7 𝑠(a) := findMaxSubarraySum(𝐴[ℓ ,𝑚))
8 𝑠(b) := findMaxSubarraySum(𝐴[𝑚 , 𝑟))
9 // Find left endpoint of straddle:

10 𝑠ℓ := 0; 𝑡 := 0
11 for 𝑖 = 𝑚 − 1,𝑚 − 2, . . . , ℓ
12 𝑡 := 𝐴[𝑖] + 𝑡
13 𝑠ℓ := max{𝑠ℓ , 𝑡}
14 end for
15 // Find right endpoint of straddle:
16 𝑠𝑟 := 0; 𝑡 := 0
17 for 𝑗 = 𝑚 + 1, . . . , 𝑟
18 𝑡 := 𝑡 + 𝐴[𝑗 − 1]
19 𝑠𝑟 := max{𝑠𝑟 , 𝑡}
20 end for
21 𝑠(c) := 𝑠ℓ + 𝑠𝑟
22 return max{𝑠(a) , 𝑠(b) , 𝑠(c)}

� Algorithm analysis:

▶ Write 𝑛 = 𝑟 − ℓ

▶ # additions in non-recursive part:
(𝑚 − ℓ ) + (𝑟 − 𝑚) + 1 = 𝑛 + 1

▶ Write 𝐶(𝑛) for total # additions for 𝑛
elements

⇝ 𝐶(𝑛) = 𝐶(⌈ 𝑛
2 ⌉) + 𝐶(⌊ 𝑛

2 ⌋) + 𝑛 + 1

▶ for 𝑛 = 2𝑘 for 𝑘 ∈ ℕ0, this simplifies to

𝐶(2𝑘) = 2𝐶(2𝑘−1) + 2𝑘 + 1
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A subquadratic solution – Analysis
1 procedure findMaxSubarraySum(𝐴[ℓ ..𝑟)):
2 if 𝑟 − ℓ ≤ 0
3 return 0
4 if 𝑟 − ℓ == 1
5 return max{0,𝐴[ℓ ]}
6 𝑚 := ⌈(ℓ + 𝑟)/2⌉
7 𝑠(a) := findMaxSubarraySum(𝐴[ℓ ,𝑚))
8 𝑠(b) := findMaxSubarraySum(𝐴[𝑚 , 𝑟))
9 // Find left endpoint of straddle:

10 𝑠ℓ := 0; 𝑡 := 0
11 for 𝑖 = 𝑚 − 1,𝑚 − 2, . . . , ℓ
12 𝑡 := 𝐴[𝑖] + 𝑡
13 𝑠ℓ := max{𝑠ℓ , 𝑡}
14 end for
15 // Find right endpoint of straddle:
16 𝑠𝑟 := 0; 𝑡 := 0
17 for 𝑗 = 𝑚 + 1, . . . , 𝑟
18 𝑡 := 𝑡 + 𝐴[𝑗 − 1]
19 𝑠𝑟 := max{𝑠𝑟 , 𝑡}
20 end for
21 𝑠(c) := 𝑠ℓ + 𝑠𝑟
22 return max{𝑠(a) , 𝑠(b) , 𝑠(c)}

� Algorithm analysis:

▶ Write 𝑛 = 𝑟 − ℓ

▶ # additions in non-recursive part:
(𝑚 − ℓ ) + (𝑟 − 𝑚) + 1 = 𝑛 + 1

▶ Write 𝐶(𝑛) for total # additions for 𝑛
elements

⇝ 𝐶(𝑛) = 𝐶(⌈ 𝑛
2 ⌉) + 𝐶(⌊ 𝑛

2 ⌋) + 𝑛 + 1

▶ for 𝑛 = 2𝑘 for 𝑘 ∈ ℕ0, this simplifies to

𝐶(2𝑘) = 2𝐶(2𝑘−1) + 2𝑘 + 1

⇝ 𝐶(𝑛) ∼ 𝑛 log2(𝑛)
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A lower bound
▶ Theorem: Every correct algorithm has a running time of Ω(𝑛).
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An optimal algorithm
� Algorithmic idea:

In a clever sweep, we can compute best 𝑠(𝑖 , 𝑟) and best 𝑠(𝑖 , 𝑗) with 𝑖 ≤ 𝑗 ≤ 𝑟 for all 𝑟.

/ Pseudocode
1 procedure findMaxSubarraySum(𝐴[0..𝑛))
2 suffixMax := 0; globalMax := 0
3 for 𝑟 = 1, . . . , 𝑛
4 suffixMax := max{suffixMax + 𝐴[𝑟 − 1], 0}
5 globalMax := max{globalMax, suffixMax}
6 return globalMax

31

Correctness:  Proof by induction over r that suffixMax and globalMax correct up to here.

Analysis:  n additions.


