ALGORITHMS\$EF F Т E С CIENTALGORITHMS \$ EFF MS\$ EFFI C F. N Т Δ G Ω R. тнмѕ\$ ENTAL GO RI E ਜ ਜ S F F N S E Т C E Т Δ C Π RT н Т F Δ S E R C^{1}

Machines & Models

21 October 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25) Philipps-Universität Marburg version 2024-10-22 13:03

Learning Outcomes

Unit 2: Machines & Models

- 1. Understand the difference between empirical *running time* and algorithm *analysis*.
- 2. Understand *worst/best/average case* models for input data.
- 3. Know the *RAM machine* model.
- 4. Know the definitions of *asymptotic notation* (Big-Oh classes and relatives).
- 5. Understand the reasons to make *asymptotic approximations*.
- **6.** Be able to *analyze* simple *algorithms*.

Outline

2 Machines & Models

- 2.1 Algorithm analysis
- 2.2 The RAM Model
- 2.3 Asymptotics & Big-Oh
- 2.4 Teaser: Maximum subarray problem

What is an algorithm?

An algorithm is a sequence of instructions.

More precisely:

e.g. Python script

- **1**. mechanically executable
 - \rightsquigarrow no "common sense" needed
- **2.** finite description ≠ finite computation!
- 3. solves a *problem*, i. e., a class of problem instances x + y, not only 17 + 4
- input-processing-output abstraction

Typical example: bubblesort

not a specific program
 but the underlying idea

What is a data structure?

A data structure is

- 1. a rule for **encoding data** (in computer memory), plus
- 2. **algorithms** to work with it (queries, updates, etc.)

typical example: binary search tree

2.1 Algorithm analysis

Good algorithms

Our goal: Find good (best?) algorithms and data structures for a task.

Good "usually" means

- fast running time
- moderate memory *space* usage

Algorithm analysis is a way to

- compare different algorithms,
- predict their performance in an application

Running time experiments

Why not simply run and time it?

- results only apply to
 - ▶ single *test* machine
 - tested inputs
 - tested implementation
 - ▶ ...
 - \neq universal truths

- ▶ instead: consider and analyze algorithms on an abstract machine
 - $\rightsquigarrow\,$ provable statements for model

survives Pentium 4

 $\rightsquigarrow \ testable \ model \ hypotheses$

→ Need precise model of machine (costs), input data and algorithms.

Data Models

Algorithm analysis typically uses one of the following simple data models:

worst-case performance: consider the *worst* of all inputs as our cost metric

best-case performance:

consider the best of all inputs as our cost metric

average-case performance:

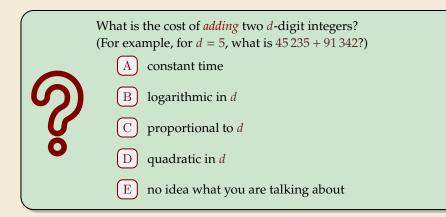
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for *inputs of same size n*.

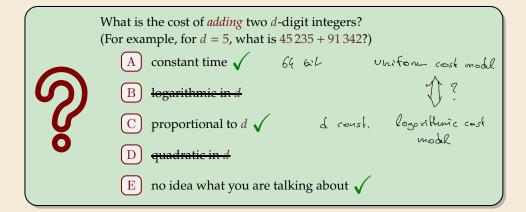
 \rightsquigarrow performance is only a **function of** *n*.

2.2 The RAM Model

Clicker Question



Clicker Question



Machine models

The machine model decides

- what algorithms are possible
- how they are described (= programming language)
- what an execution *costs*
- Goal: Machine models should be

detailed and powerful enough to reflect actual machines, abstract enough to unify architectures, simple enough to analyze.

Machine models

The machine model decides

- what algorithms are possible
- how they are described (= programming language)
- what an execution *costs*
- Goal: Machine models should be

detailed and powerful enough to reflect actual machines, abstract enough to unify architectures, simple enough to analyze. honest

 \rightsquigarrow usually some compromise is needed

Random Access Machines

Random access machine (RAM)

- ▶ unlimited *memory* MEM[0], MEM[1], MEM[2], ...
- fixed number of *registers* R_1, \ldots, R_r (say r = 100)

more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

Random Access Machines

Random access machine (RAM)

- ▶ unlimited *memory* MEM[0], MEM[1], MEM[2], ...
- fixed number of *registers* R_1, \ldots, R_r (say r = 100)
- ▶ memory cells MEM[*i*] and registers R_i store <u>w</u>-bit integers, i. e., numbers in $[0..2^w 1]$ w is the word width/size; typically $w \propto \lg n \rightarrow 2^w \approx n$

more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

w E O(logn)

Random Access Machines

Random access machine (RAM)

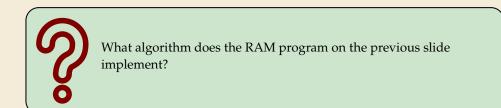
- ▶ unlimited *memory* MEM[0], MEM[1], MEM[2], ...
- fixed number of *registers* R_1, \ldots, R_r (say r = 100)
- ▶ memory cells MEM[*i*] and registers R_i store *w*-bit integers, i. e., numbers in $[0..2^w 1]$ *w* is the word width/size; typically $w \propto \lg n \rightarrow 2^w \approx n$
- Instructions:
 - load & store: $R_i := MEM[R_i] MEM[R_i] := R_i$
 - ► operations on registers: $R_k := R_i + R_j$ (arithmetic is *modulo* 2^w!) also $R_i - R_j$, $R_i \cdot R_j$, $R_i \text{ div } R_j$, $R_i \text{ mod } R_j$ C-style operations (bitwise and/or/xor, left/right shift)
 - conditional and unconditional jumps
- cost: number of executed instructions
- → The RAM is the standard model for sequential computation.

more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

Example RAM program

- $_1$ // Assume: R_1 stores number N
- $_2$ // Assume: MEM[0..N) contains list of N numbers
- 3 R₂ := R₁;
- 4 $R_3 := R_1 2;$
- 5 $R_4 := MEM[R_3];$
- 6 $R_5 := R_3 + 1;$
- 7 $R_6 := MEM[R_5];$
- * **if** $(R_4 \le R_6)$ goto line 12;
- 9 $MEM[R_3] := R_6;$
- 10 $MEM[R_5] := R_4;$
- 11 $R_3 := R_3 1;$
- ¹² **if** $(R_3 \ge 0)$ goto line 6;
- 13 *R*₂ := *R*₂ − 1;
- ¹⁴ **if** $(R_2 > 0)$ goto line 5;
- 15 // Done:

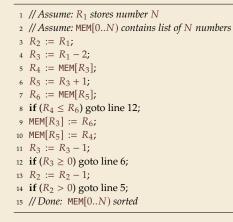
Clicker Question

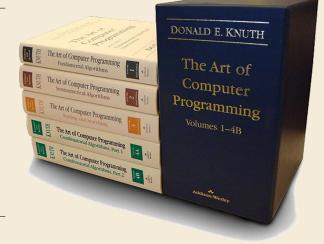


Example RAM program

- $_1$ // Assume: R_1 stores number N
- $_2$ // Assume: MEM[0..N) contains list of N numbers
- 3 R₂ := R₁;
- 4 $R_3 := R_1 2;$
- 5 $R_4 := MEM[R_3];$
- 6 $R_5 := R_3 + 1;$
- 7 $R_6 := MEM[R_5];$
- * if $(R_4 \le R_6)$ goto line 12;
- 9 $MEM[R_3] := R_6;$
- 10 $MEM[R_5] := R_4;$
- 11 $R_3 := R_3 1;$
- ¹² **if** $(R_3 \ge 0)$ goto line 6;
- 13 $R_2 := R_2 1;$
- ¹⁴ **if** $(R_2 > 0)$ goto line 5;
- 15 // Done: MEM[0..N) sorted

Example RAM program





Example RAM program

- $_1$ // Assume: R_1 stores number N
- $_2$ // Assume: MEM[0..N) contains list of N number
- $3 R_2 := R_1;$
- 4 $R_3 := R_1 2;$
- 5 $R_4 := MEM[R_3];$
- $6 R_5 := R_3 + 1;$
- 7 $R_6 := MEM[R_5];$
- s **if** $(R_4 \le R_6)$ goto line 12;
- 9 $MEM[R_3] := R_6;$
- 10 $MEM[R_5] := R_4;$
- 11 $R_3 := R_3 1;$
- 12 **if** $(R_3 \ge 0)$ goto line 6;
- 13 R₂ := R₂ − 1;
- 14 **if** $(R_2 > 0)$ goto line 5;
- 15 // Done: MEM[0..N) sorted

5.2.2

they need not be examined on subsequent passes. Horizontal lines in Fig. 14 show the progress of the sorting from this standapoint; notice, for example, that five more elements are known to be in final position as a result of Pass 4. On the final pass, no exchanges are performed at all. With these observations we are ready to formulate the algorithm.

Algorithm B (Bubble sort). Records R_1, \ldots, R_N are rearranged in place; after sorting is complete their keys will be in order, $K_1 \leq \cdots \leq K_N$.

- B1. [Initialize BOUND.] Set BOUND ← N. (BOUND is the highest index for which the record is not known to be in its final position; thus we are indicating that nothing is known at this point.)
- **B2.** [Loop on j.] Set $t \leftarrow 0$. Perform step B3 for $j = 1, 2, \ldots$, BOUND 1, and then go to step B4. (If BOUND = 1, this means go directly to B4.)
- **B3.** [Compare/exchange $R_j: R_{j+1}$.] If $K_j > K_{j+1}$, interchange $R_j \leftrightarrow R_{j+1}$ and set $t \leftarrow j$.
- **B4.** [Any exchanges?] If t = 0, terminate the algorithm. Otherwise set BOUND $\leftarrow t$ and return to step B2.

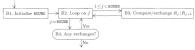


Fig. 15. Flow chart for bubble sorting.

Program (5 (Bubble sort): As in previous MIX programs of this chapter, we assume that the them to be sorted are in locations INPUT+1 through INPUT+N, ril = t; ril = j.

01	START	ENT1	N	1	B1. Initialize BOUND. $t \leftarrow N$.
02	1H	ST1	BOUND(1:2)	A	$BOUND \leftarrow t.$
03		ENT2	1	A	B2. Loop on $j, j \leftarrow 1$.
04		ENT1	0	A	$t \leftarrow 0.$
05		JMP	BOUND	A	Exit if $j \ge BOUND$.
06	ЗH	LDA	INPUT,2	C	B3. Compare/exchange R _i : R _{i+1} .
07		CMPA	INPUT+1,2	C	
08		JLE	2F	C	No exchange if $K_i \leq K_{i+1}$.
09		LDX	INPUT+1,2	B	R_{j+1}
10		STX	INPUT,2		$\rightarrow R_j$.
11		STA	INPUT+1,2	B	$(old R_j) \rightarrow R_{j+1}.$
12		ENT1	0,2	B	$t \leftarrow j$.
13	2H	INC2	1	C	$j \leftarrow j + 1$.
14	BOUND	ENTX	-*,2	A + C	$rX \leftarrow j - BOUND$. [Instruction modified
15		JXN	3B	A + C	Do step B3 for $1 \le j < BGUND$.
16	4H	J1P	1B	A	<u>B4. Any exchanges?</u> To B2 if $t > 0$.



Pseudocode

- Programs for the random-access machine are very low level and detailed
- \approx assembly/machine language

Typical simplifications when describing and analyzing algorithms:

- more abstract pseudocode code that humans understand (easily)
 - control flow using if, for, while, etc.
 - variable names instead of fixed registers and memory cells
 - memory management (more below)
- count dominant *elementary operations* (e.g. memory accesses) instead of all RAM instructions

In both cases: We *can* go to full detail where needed/desired.

Pseudocode – Example

RAM-Program

1 // Bubblesort 2 // Assume: R₁ stores number N $_{3}$ // Assume: MEM[0..N) contains list of N numbers 4 $R_2 := R_1;$ 5 $R_3 := R_1 - 2$; 6 $R_4 := \text{MEM}[R_3]$: $7 R_5 := R_3 + 1$: $R_6 := MEM[R_5];$ 9 **if** $(R_4 \leq R_6)$ goto line 12; 10 $MEM[R_3] := R_6;$ 11 $MEM[R_5] := R_4;$ 12 $R_3 := R_3 - 1$: 13 if $(R_3 \ge 0)$ goto line 6; 14 $R_2 := R_2 - 1;$ 15 **if** $(R_2 > 0)$ goto line 5; 16 // Done: MEM[0..N] sorted

Pseudocode Algorithm

1	procedure bubblesort(<i>A</i> [0 <i>N</i>)):
2	for $i := N, N - 1, \dots, 1$
3	for $j := N - 2, N - 3, \dots, 0$
4	if $A[j] > A[j+1]$:
5	Swap $A[j]$ and $A[j+1]$
6	end if
7	end for
8	end for

- → much more **readable**
- closer to modern high-level programming languages
- but: only allow primitive operations that correspond to O(1) RAM instructions

 Analysis

Memory management & Pointers

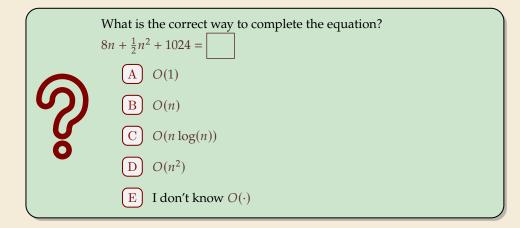
- A random-access machine is a bit like a bare CPU . . . without any operating system

 cumbersome to use
- ► All high-level programming languages / operating systems add *memory management*:
 - Instruction to allocate a contiguous piece of memory of a given size (like malloc).
 - used to allocate a new array (of a fixed size) or
 - a new object/record (with a known list of instance variables)
 - There's a similar instruction to free allocated memory again or an automated garbage collector.
 - \rightsquigarrow A *pointer* is a memory address (i. e., the *i* of MEM[*i*]).
 - Support for procedures (a.k.a. functions, methods) calls including recursive calls
 - (this internally requires maintaining call stack)

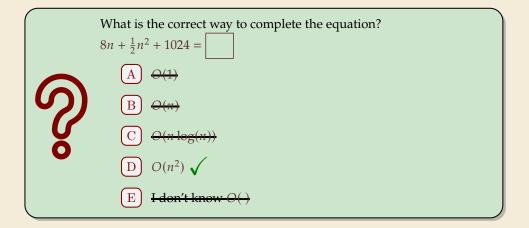
We will mostly ignore *how* all this works here.

2.3 Asymptotics & Big-Oh

Clicker Question



Clicker Question



Why asymptotics?

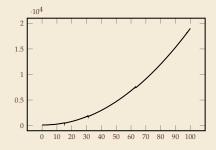
Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

Ŋ

- abstracts from unnecessary detail
- simplifies analysis
- often necessary for sensible comparison

Asymptotics = approximation around ∞

Example: Consider a function f(n) given by $2n^2 - 3n\lfloor \log_2(n+1) \rfloor + 7n - 3\lfloor \log_2(n+1) \rfloor + 120$



Why asymptotics?

Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

- abstracts from unnecessary detail
- simplifies analysis
- often necessary for sensible comparison

Asymptotics = approximation around ∞

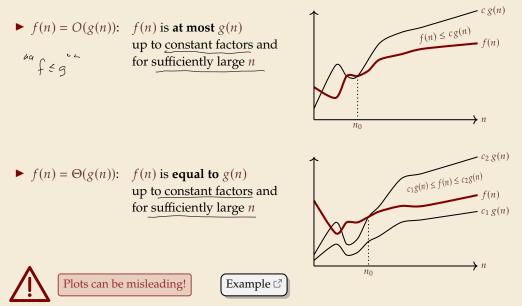
Example: Consider a function f(n) given by $2n^2 - 3n \lfloor \log_2(n+1) \rfloor + 7n - 3 \lfloor \log_2(n+1) \rfloor + 120 \sim 2n^2$

Asymptotic tools – Formal & definitive definition

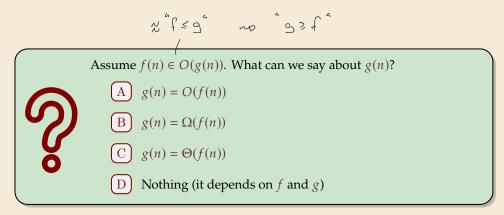
► "Tilde Notation": $f(n) \sim g(n)$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$ "f and g are asymptotically equivalent" Asymptotic tools – Formal & definitive definition if, and only if ► "Tilde Notation": $f(n) \sim g(n)$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$ iff ", f and g are asymptotically equivalent" "Big-Oh Notation": $f(n) \in O(g(n))$ iff $\left| \frac{f(n)}{g(n)} \right|$ is bounded for $n \ge n_0$ need supremum since limit might not exist. iff $\lim_{n \to \infty} \sup \left| \frac{f(n)}{g(n)} \right| < \infty$ Variants: "Big-Omega" ► $f(n) \in \Omega(g(n))$ iff $g(n) \in O(f(n))$ ► $f(n) \in \Theta(g(n))$ iff $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$ Asymptotic tools – Formal & definitive definition ▶ "Tilde Notation": $f(n) \sim g(n)$ iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$ ", f and g are asymptotically equivalent" "Big-Oh Notation": $f(n) \in O(g(n))$ iff $\left| \frac{f(n)}{g(n)} \right|$ is bounded for $n \ge n_0$ need supremum since limit might not exist $\inf \lim_{n \to \infty} \sup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| < \infty$ Variants: "Big-Omega" $f(n) \in \Omega(g(n))$ iff $g(n) \in O(f(n))$ $f(n) \in \Theta(g(n)) \quad \text{iff} \quad f(n) \in O(g(n)) \text{ and } f(n) \in \Omega(g(n))$ "Big-Theta" "Little-Oh Notation": $f(n) \in o(g(n)) \quad \text{iff} \quad \lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = 0$ similarly: $f(n) \in \omega(g(n))$ if $\lim n = \infty$

(Benefit of this definition: Works for any $f, g: \mathbb{R} \to \mathbb{R}$ and is easy to generalize to limits other than $n \to \infty$)

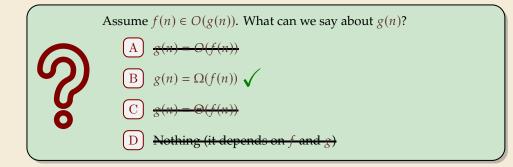
Asymptotic tools – Intuition

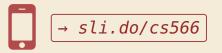


Clicker Question

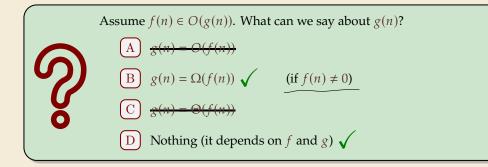


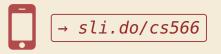
Clicker Question





Clicker Question



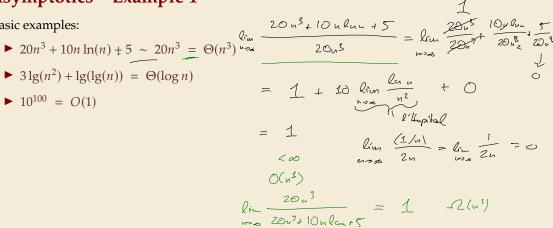


Asymptotics – Example 1

Basic examples:

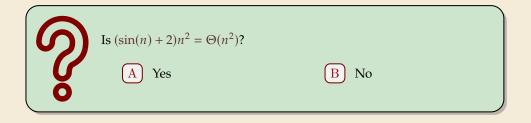
►
$$3 \lg(n^2) + \lg(\lg(n)) = \Theta(\log n)$$

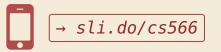
 $\blacktriangleright 10^{100} = O(1)$



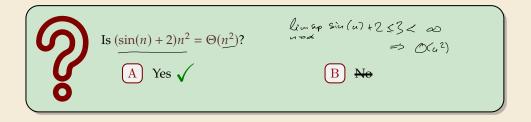
Use *wolfram alpha* to compute/check limits, but also practice it with pen and paper!

Clicker Question





Clicker Question



Asymptotics – Basic facts

Rules to work with Big-Oh classes:

• $f = \Theta(f)$ (reflexivity)

•
$$f = \Theta(g) \land g = \Theta(h) \implies f = \Theta(h)$$

• $c \cdot f(n) = \Theta(f(n))$ for constant $c \neq 0$

$$\blacktriangleright f \sim g \iff f = g \cdot (1 \pm o(1))$$

$$\blacktriangleright \ \Theta(f) \cdot \Theta(g) = \Theta(f \cdot g)$$

• $\Theta(f) + \Theta(g) = \Theta(f + g) = \Theta(\max\{f, g\})$ largest summand determines Θ -class

Asymptotics – Frequently encountered classes

Frequently used orders of growth:

- constant $\Theta(1)$
- ▶ logarithmic $\Theta(\log n)$ Note: a, b > 0 constants $\rightsquigarrow \Theta(\log_a(n)) = \Theta(\log_b(n))$
- linear $\Theta(n)$
- linearithmic $\Theta(n \log n)$
- quadratic $\Theta(n^2)$
- cubic $\Theta(n^3)$
- polynomial $O(n^c)$ for some constant c
- exponential $O(c^n)$ for some constant c > 1 Note: a > b > 0 constants $\rightsquigarrow b^n = o(a^n)$

Asymptotics – Example 2

Square-and-multiply algorithm

for computing x^m with $m \in \mathbb{N}$

Inputs:

- *m* as binary number (array of bits)
- \blacktriangleright *n* = #bits in *m*
- ► *x* a floating-point number

1	def pow (<i>x</i> , <i>m</i>):	1
2	<i># compute binary representation of exponent</i>	
3	exponent_bits = $bin(m)[2:]$	
4	result = 1	
5	for bit in exponent_bits:	
6	result *= result	
7	if bit == '1':	
8	result $*= x$	
9	return result	

- ► Cost: *C* = # multiplications
- $C = n \pmod{6} + \text{#one-bits in binary representation of } m \pmod{8}$ $\therefore n \le C \le 2n$

Clicker Question

We showed $n \le C(n) \le 2n$; what is the most precise asymptotic approximation for C(n) that we can make?

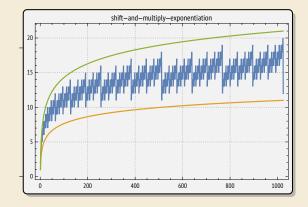
Write e.g. $O(n^2)$ for $O(n^2)$ or Theta(sqrt(n)) for $\Theta(\sqrt{n})$.

Asymptotics – Example 2

Square-and-multiply algorithm for computing x^m with $m \in \mathbb{N}$

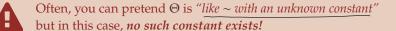
Inputs:

- *m* as binary number (array of bits)
- n =#bits in m
- x a floating-point number



- Cost: C = # multiplications
- C = n (line 6) + #one-bits in binary representation of *m* (line 8)
- $\rightsquigarrow n \leq C \leq 2n$

 $\rightsquigarrow C = \Theta(n) = \Theta(\log m)$



Asymptotics with several variables

- **Example:** Algorithms on graphs with *n* vertices and *m* edges.
 - want to say: Algorithm A takes time $\Theta(n + m)$.
 - But what does that even mean formally?!

$$D \neq S \qquad (m \gg n)$$

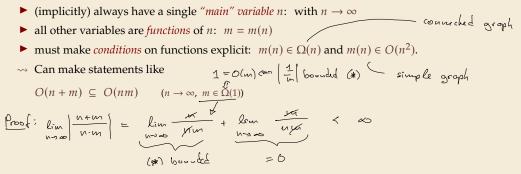
$$O(m) \qquad f \qquad abj. \ bistr$$

$$(n \gg m)$$

Asymptotics with several variables

- **Example:** Algorithms on graphs with *n* vertices and *m* edges.
 - want to say: Algorithm *A* takes time $\Theta(n + m)$.
 - But what does that even mean formally?!
- A Inconsistent and incompatible definitions used in the literature!

► Here:



2.4 Teaser: Maximum subarray problem

Time for a concrete example of algorithm design!

- ▶ we will illustrate the algorithm design process on a "toy problem"
- clean abstract problem, but nontrivial to solve!

Time for a concrete example of algorithm design!

- ▶ we will illustrate the algorithm design process on a "toy problem"
- clean abstract problem, but nontrivial to solve!

Maximum (sum) subarray problem

• **Given:** A[0..n) with $A[i] \in \mathbb{Z}$ for $0 \le i < n$.

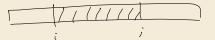
• Abbreviate
$$s(i, j) := \sum_{k=i}^{j-1} A[k]$$
 $s \ \xi \ i \dots \ j)$

► Goal: Compute
$$s := \max\{s(i, j) : 0 \le i \le j \le n\}$$

and a pair (i, j) with $s = s(i, j)$.

will ignore that here; easy to modify algorithms

Alo...n)



(0....) = {0,1,2,..., n-1]

$$\sum_{k \in [i_1, i-1]} = \sum_{k=i}^{i-1} i = 0$$

$$\mathcal{N}$$

Time for a concrete example of algorithm design!

- we will illustrate the algorithm design process on a "toy problem"
- clean abstract problem, but nontrivial to solve!

Maximum (sum) subarray problem

• **Given:** A[0..n) with $A[i] \in \mathbb{Z}$ for $0 \le i < n$.

• Abbreviate
$$s(i, j) \coloneqq \sum_{k=i}^{j-1} A[k]$$

► **Goal:** Compute
$$s := \max\{s(i, j) : 0 \le i \le j \le n\}$$

and a pair (i, j) with $s = s(i, j)$.

will ignore that here; easy to modify algorithms

Applications:

- largest gain of a stock
 A[i] price change on day i
- signal detection in biological sequence analysis
- 2D generalization used in image analysis

Time for a concrete example of algorithm design!

- we will illustrate the algorithm design process on a "toy problem"
- clean abstract problem, but nontrivial to solve!

Maximum (sum) subarray problem

• **Given:**
$$A[0..n)$$
 with $A[i] \in \mathbb{Z}$ for $0 \le i < n$.

• Abbreviate
$$s(i, j) := \sum_{k=i}^{j-1} A[k]$$

► **Goal:** Compute
$$s := \max\{s(i, j) : 0 \le i \le j \le n\}$$

and a pair (i, j) with $s = s(i, j)$.

2 1

will ignore that here; easy to modify algorithms

Modeling decisions:

- ▶ input size: # numbers *n*
- ▶ assume all integers (and sums) fit in *O*(1) words
- → count # additions as elementary operation

Applications:

- largest gain of a stock
 A[i] price change on day i
- signal detection in biological sequence analysis
- 2D generalization used in image analysis

Clicker Question

What do you think is the Θ -class of the running time of the fastest algorithm for the maximal sum subarray problem?

Template for Describing an Algorithm

1. Q Algorithmic Idea

Abstract idea that makes the algorithm work (prose) (an expert could fill in the rest from here)

2. </> Pseudocode

structured description of procedure including edge cases should be unambiguous and close to real code

3. Correctness proof

argument why the correct result is computed often uses induction and invariants

4. 📥 Algorithm analysis

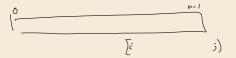
analysis of the efficiency of the algorithm usually want Θ -class of worst-case running time where interesting, also space usage

- Let's start with the simplest thinkable solution
- **1. ◊ Algorithmic Idea** try all contiguous subarrays *A*[*i..j*)

Maximal subarray problem

• Given: A[0..n) with $A[i] \in \mathbb{Z}$ for $0 \le i < n$.

Abbreviate
$$s(i, j) := \sum_{k=i}^{j-1} A[k]$$



• Let's start with the simplest thinkable solution

1. ◊ Algorithmic Idea try all contiguous subarrays *A*[*i..j*)

2. </>> Pseudocode

1
$$s = 0$$

2 for $i = 0, ..., n - 1$
3 for $j = i, ..., n$
4 $t = 0$
5 for $k = i, ..., j - 1$
6 $t = t + A[k]$
7 end for
8 if $t > s$ then $s := t$
9 end for
10 end for

Maximal subarray problem

• Given: A[0..n) with $A[i] \in \mathbb{Z}$ for $0 \le i < n$.

Let's start with the simplest thinkable solution

1. ◊ Algorithmic Idea try all contiguous subarrays *A*[*i..j*)

2. </>> Pseudocode

1
$$s = 0$$

2 for $i = 0, ..., n - 1$
3 for $j = i, ..., n$
4 $t = 0$
5 for $k = i, ..., j - 1$
6 $t = t + A[k]$
7 end for
8 if $t > s$ then $s := t$
9 end for
10 end for

3. (a) Correctness proof direct by definition of *s*

Maximal subarray problem Given: A[0..n) with A[i] ∈ Z for 0 ≤ i < n. Abbreviate s(i, j) := ∑_{k=i}^{j-1} A[k] Goal: Compute s := max{s(i, j) : 0 ≤ i ≤ j ≤ n} and a pair (i, j) with s = s(i, j).

- Let's start with the simplest thinkable solution
- **1.** ♀ **Algorithmic Idea** try all contiguous subarrays *A*[*i*..*j*)
- 2. </>> Pseudocode

$$1 \ s = 0$$

$$2 \ \text{for } i = 0, \dots, n-1$$

$$3 \ \text{for } j = i, \dots, n$$

$$4 \ t = 0$$

$$5 \ \text{for } k = i, \dots, j-1$$

$$6 \ (t = t + A[k]) \ 1$$

$$7 \ \text{end for}$$

$$8 \ \text{if } t > s \text{ then } s := t$$

$$9 \ \text{end for}$$

$$10 \ \text{end for}$$

$$10 \ \text{end for}$$

3. (a) Correctness proof direct by definition of *s*

Maximal subarray problem

• Given: A[0..n) with $A[i] \in \mathbb{Z}$ for $0 \le i < n$.

▶ Goal: Compute s := max{s(i, j) : 0 ≤ i ≤ j ≤ n} and a pair (i, j) with s = s(i, j).

4. 📥 Algorithm analysis

#additions

- Let's start with the simplest thinkable solution
- **1.** ♀ **Algorithmic Idea** try all contiguous subarrays *A*[*i*..*j*)

2. </>> Pseudocode

1
$$s = 0$$

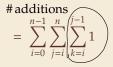
2 for $i = 0, ..., n - 1$
3 for $j = i, ..., n$
4 $t = 0$
5 for $k = i, ..., j - 1$
6 $t = t + A[k]$
7 end for
8 if $t > s$ then $s := t$
9 end for
10 end for

3. (a) Correctness proof direct by definition of *s*

Maximal subarray problem

• Given: A[0..n) with $A[i] \in \mathbb{Z}$ for $0 \le i < n$.

• Goal: Compute $s := \max\{s(i, j) : 0 \le i \le j \le n\}$ and a pair (i, j) with s = s(i, j).



- Let's start with the simplest thinkable solution
- **1.** ♀ **Algorithmic Idea** try all contiguous subarrays *A*[*i..j*)

2. </>> Pseudocode

1
$$s = 0$$

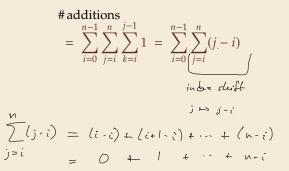
2 for $i = 0, ..., n - 1$
3 for $j = i, ..., n$
4 $t = 0$
5 for $k = i, ..., j - 1$
6 $t = t + A[k]$
7 end for
8 if $t > s$ then $s := t$
9 end for
10 end for

3. (a) Correctness proof direct by definition of *s*

Maximal subarray problem

• Given: A[0..n) with $A[i] \in \mathbb{Z}$ for $0 \le i < n$.

▶ Goal: Compute s := max {s(i, j) : 0 ≤ i ≤ j ≤ n} and a pair (i, j) with s = s(i, j).



- Let's start with the simplest thinkable solution
- **1.** ♀ **Algorithmic Idea** try all contiguous subarrays *A*[*i..j*)

2. </>> Pseudocode

1
$$s = 0$$

2 for $i = 0, ..., n - 1$
3 for $j = i, ..., n$
4 $t = 0$
5 for $k = i, ..., j - 1$
6 $t = t + A[k]$
7 end for
8 if $t > s$ then $s := t$
9 end for
10 end for

3. Orrectness proof direct by definition of *s*

Maximal subarray problem

• Given: A[0..n) with $A[i] \in \mathbb{Z}$ for $0 \le i < n$.

• Goal: Compute $s := \max\{s(i, j) : 0 \le i \le j \le n\}$ and a pair (i, j) with s = s(i, j).



- Let's start with the simplest thinkable solution
- **1. ◊ Algorithmic Idea** try all contiguous subarrays *A*[*i*..*j*)

2. </>> Pseudocode

1
$$s = 0$$

2 for $i = 0, ..., n - 1$
3 for $j = i, ..., n$
4 $t = 0$
5 for $k = i, ..., j - 1$
6 $t = t + A[k]$
7 end for
8 if $t > s$ then $s := t$
9 end for
10 end for

3. (a) Correctness proof direct by definition of *s*

 $= \sum_{i=1}^{n} \frac{i(i+1)}{2}$

Maximal subarray problem

• Goal: Compute
$$s := \max\{s(i, j) : 0 \le i \le j \le n\}$$

and a pair (i, j) with $s = s(i, j)$.

- Let's start with the simplest thinkable solution
- **1.** ♀ **Algorithmic Idea** try all contiguous subarrays *A*[*i..j*)

2. </>> Pseudocode

$$1 \ s = 0$$
2 for $i = 0, ..., n - 1$
3 for $j = i, ..., n$
4 $t = 0$
5 for $k = i, ..., j - 1$
6 $t = t + A[k]$
7 end for
8 if $t > s$ then $s := t$
9 end for
10 end for
$$\sum_{i=1}^{n} i^{2} = \frac{4}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6},$$

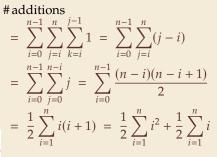
Maximal subarray problem

• Given: A[0..n) with $A[i] \in \mathbb{Z}$ for $0 \le i < n$.

• Abbreviate
$$s(i, j) := \sum_{j=1}^{j-1} A[k]$$

▶ Goal: Compute s := max {s(i, j) : 0 ≤ i ≤ j ≤ n} and a pair (i, j) with s = s(i, j).

4. 🔺 Algorithm analysis



3. Orrectness proof direct by definition of *s*

- Let's start with the simplest thinkable solution
- **1.** ♀ **Algorithmic Idea** try all contiguous subarrays *A*[*i..j*)

2. </>> Pseudocode

1
$$s = 0$$

2 for $i = 0, ..., n - 1$
3 for $j = i, ..., n$
4 $t = 0$
5 for $k = i, ..., j - 1$
6 $t = t + A[k]$
7 end for
8 if $t > s$ then $s := t$
9 end for
10 end for

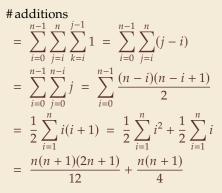
3. (a) Correctness proof direct by definition of *s*

Maximal subarray problem

• Given: A[0..n) with $A[i] \in \mathbb{Z}$ for $0 \le i < n$.

• Abbreviate
$$s(i, j) := \sum_{j=1}^{j-1} A[k]$$

▶ Goal: Compute s := max {s(i, j) : 0 ≤ i ≤ j ≤ n} and a pair (i, j) with s = s(i, j).



- Let's start with the simplest thinkable solution
- **1.** ♀ **Algorithmic Idea** try all contiguous subarrays *A*[*i..j*)

2. </>> Pseudocode

1
$$s = 0$$

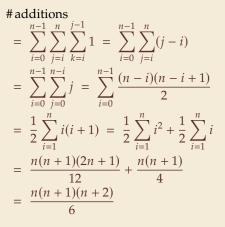
2 for $i = 0, ..., n - 1$
3 for $j = i, ..., n$
4 $t = 0$
5 for $k = i, ..., j - 1$
6 $t = t + A[k]$
7 end for
8 if $t > s$ then $s := t$
9 end for
10 end for

3. Orrectness proof direct by definition of *s*

Maximal subarray problem

• Goal: Compute
$$s := \max\{s(i, j) : 0 \le i \le j \le n\}$$

and a pair (i, j) with $s = s(i, j)$.



- Let's start with the simplest thinkable solution
- **1.** ♀ **Algorithmic Idea** try all contiguous subarrays *A*[*i..j*)

2. </>> Pseudocode

1
$$s = 0$$

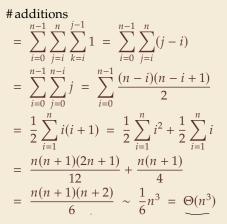
2 for $i = 0, ..., n - 1$
3 for $j = i, ..., n$
4 $t = 0$
5 for $k = i, ..., j - 1$
6 $t = t + A[k]$
7 end for
8 if $t > s$ then $s := t$
9 end for
10 end for

3. Orrectness proof direct by definition of *s*

Maximal subarray problem

► Given: A[0..n) with A[i] ∈ Z for 0 ≤ i < n.</p>

▶ Goal: Compute s := max {s(i, j) : 0 ≤ i ≤ j ≤ n} and a pair (i, j) with s = s(i, j).



Reusing sums

1. § Algorithmic Idea

- brute force algorithm is unnecessarily wasteful!
- can use s(i, j) = s(i, j 1) + A[j 1]

Reusing sums

1. § Algorithmic Idea

- brute force algorithm is unnecessarily wasteful!
- can use s(i, j) = s(i, j 1) + A[j 1]

2. </>> Pseudocode

```
1 s = 0

2 for i = 0, ..., n - 1

3 t = 0

4 for j = i + 1, ..., n

5 t = t + A[j - 1]

6 if t > s then s := t

7 end for

8 end for
```

3. (a) Correctness proof: as above

4. Algorithm analysis:
$$\sum_{i=0}^{n-1} \sum_{j=i+1}^{n} 1 = \frac{n(n+1)}{2} \sim \frac{1}{2}n^2 = \Theta(n^2) \text{ additions}$$

Reusing sums

1. Q Algorithmic Idea

- brute force algorithm is unnecessarily wasteful
- can use s(i, j) = s(i, j 1) + A[j 1]

2. </> Pseudocode

$$\begin{array}{ll} 1 & s = 0 \\ 2 & \text{for } i = 0, \dots, n-1 \\ 3 & t = 0 \\ 4 & \text{for } j = i+1, \dots, n \\ 5 & t = t+A[j-1] \\ 6 & \text{if } t > s \text{ then } s := t \\ 7 & \text{end for} \\ s & \text{end for} \end{array}$$

$$Can we possibly do better?$$

$$There are $\binom{n}{2} \sim \frac{1}{2}n^2$ different $s(i, j) \dots$

$$Can't look at all of them$$$$

 $\binom{n}{k} = \frac{n^{\frac{k}{2}}}{l_{k}} = \frac{n(n-l)(n-l_{k})\cdots(n-l_{k})}{l_{k}(l_{k}-l_{k})\cdots(l_{k})}$

3. (a) Correctness proof: as above

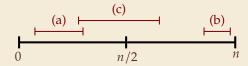
4. Algorithm analysis:
$$\sum_{i=0}^{n-1} \sum_{j=i+1}^{n} 1 = \frac{n(n+1)}{2} \sim \frac{1}{2}n^2 = \Theta(n^2) \text{ additions}$$

A subquadratic solution

V Algorithmic idea:

Consider n/2-mark. Only 3 options for optimal solution s(i, j):

- (a) $0 \le i \le j < \lceil \frac{n}{2} \rceil$ (left)
- (b) $\lceil \frac{n}{2} \rceil \le i \le j \le n$ (right)
- (c) $i < \lceil \frac{n}{2} \rceil \le j$ (straddle)

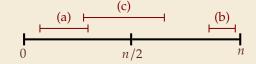


A subquadratic solution

V Algorithmic idea:

Consider n/2-mark. Only 3 options for optimal solution s(i, j):

- (a) $0 \le i \le j < \lceil \frac{n}{2} \rceil$ (left)
- (b) $\lceil \frac{n}{2} \rceil \le i \le j \le n$ (right)
- (c) $i < \lceil \frac{n}{2} \rceil \le j$ (straddle)



- **?** optimal straddle easy to compute!
 - ▶ independently find best left endpoint *i* for s(*i*, [n/2]) and best right endpoint *j* for s([n/2], *j*)
- for (a) and (b), recurse on instance of half the size!

A subquadratic solution – Pseudocode & Correctness

```
procedure findMaxSubarraySum(A[\ell..r)):
        if r - \ell < 0
 2
             return ()
 3
        if r - \ell == 1
 4
             return max\{0, A[\ell]\}
 5
        m := [(\ell + r)/2]
 6
        s_{(a)} := findMaxSubarraySum(A[\ell, m))
 7
        s_{(b)} := findMaxSubarraySum(A[m, r))
 8
        // Find left endpoint of straddle:
9
        s_{\ell} := 0; t := 0
10
        for i = m - 1, m - 2, \dots, \ell
11
             t := A[i] + t
12
             s_{\ell} := \max\{s_{\ell}, t\}
13
        end for
14
        // Find right endpoint of straddle:
15
        s_r := 0; t := 0
16
        for j = m + 1, ..., r
17
             t := t + A[j-1]
18
             s_r := \max\{s_r, t\}
19
        end for
20
        S_{(c)} := S_{\ell} + S_{r}
21
        return max{s_{(a)}, s_{(b)}, s_{(c)}}
22
```

A subquadratic solution – Pseudocode & Correctness

¹ **procedure** findMaxSubarraySum($A[\ell..r)$):

```
if r - \ell < 0
 2
             return ()
 3
        if r - \ell = 1
 4
             return max\{0, A[\ell]\}
 5
        m := [(\ell + r)/2]
 6
        s_{(a)} := findMaxSubarraySum(A[\ell, m))
 7
        s_{(b)} := findMaxSubarraySum(A[m, r))
 8
        // Find left endpoint of straddle:
 9
        s_{\ell} := 0; t := 0
10
        for i = m - 1, m - 2, \dots, \ell
11
             t := A[i] + t
12
             s_{\ell} := \max\{s_{\ell}, t\}
13
        end for
14
        // Find right endpoint of straddle:
15
        s_r := 0; t := 0
16
        for j = m + 1, ..., r
17
             t := t + A[i - 1]
18
             s_r := \max\{s_r, t\}
19
        end for
20
        S_{(c)} := S_{\ell} + S_{r}
21
        return max\{s_{(a)}, s_{(b)}, s_{(c)}\}
22
```

Correctness proof:

- Induction over $n = r \ell$
 - **basis:** for $n \le 1 \checkmark$
 - ► hypothesis: Assume findMaxSubarraySum returns correct result for all arrays of up to n - 1 elements
 - step: For array of n ≥ 2 elements, distinguish cases (a), (b), (c)
 (a) and (b) → IH √
 (c) "from inspection of the code"

A subquadratic solution – Analysis

¹ **procedure** findMaxSubarraySum($A[\ell..r)$):

```
if r - \ell < 0
 2
             return ()
 3
        if r - \ell = 1
 4
             return max\{0, A[\ell]\}
 5
        m := [(\ell + r)/2]
 6
        s_{(a)} := findMaxSubarraySum(A[\ell, m))
 7
        s_{(b)} := findMaxSubarraySum(A[m, r))
 8
        // Find left endpoint of straddle:
9
        s_{\ell} := 0; t := 0
10
        for i = m - 1, m - 2, \dots, \ell
11
            t := A[i] + t
12
             s_{\ell} := \max\{s_{\ell}, t\}
13
        end for
14
        // Find right endpoint of straddle:
15
        s_r := 0; t := 0
16
        for j = m + 1, ..., r
17
             t := t + A[i - 1]
18
             s_r := \max\{s_r, t\}
19
        end for
20
```

- 21 $S_{(c)} := S_{\ell} + S_r$
- 22 **return** $\max\{s_{(a)}, s_{(b)}, s_{(c)}\}$

" like mange sort

A subquadratic solution – Analysis

¹ **procedure** findMaxSubarraySum($A[\ell..r)$):

- if $r \ell < 0$ 2 return () 3 if $r - \ell = 1$ 4 **return** max $\{0, A[\ell]\}$ 5 $m := [(\ell + r)/2]$ 6 $s_{(a)} := findMaxSubarraySum(A[\ell, m))$ 7 $s_{(b)} := findMaxSubarraySum(A[m, r))$ 8 // Find left endpoint of straddle: 9 $s_{\ell} := 0; t := 0$ 10 for $i = m - 1, m - 2, \dots, \ell$ 11 t := A[i] + t (1) 12 $s_{\ell} := \max\{s_{\ell}, t\}$ 13 end for 14 // Find right endpoint of straddle: 15 $s_r := 0; t := 0$ 16 **for** j = m + 1, ..., r17 t := t + A[i-1] [2] 18 $s_r := \max\{s_r, t\}$ 19 end for 20 $s_{(c)} := s_{\ell} + s_r$ (2) 21
- 22 **return** $\max\{s_{(a)}, s_{(b)}, s_{(c)}\}$

🔺 Algorithm analysis:

• Write $n = r - \ell$

- ▶ #additions in non-recursive part: (m-ℓ) + (r - m) + 1 = n + 1
 Write C(n) for total #additions for n
 elements
 C(Ω) = C(Ω) = C(Ω) = Ω
- ► for $n = 2^k$ for $k \in \mathbb{N}_0$, this simplifies to $C(2^k) = 2C(2^{k-1}) + 2^k + 1$

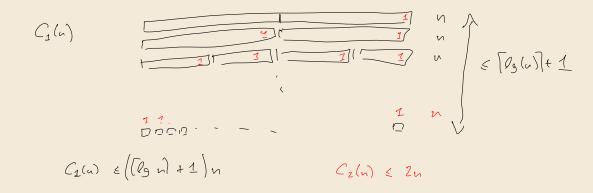
$$C(u) = C_{1}(u) + C_{2}(u)$$

$$C_{1}(u) = C_{1}(\frac{1}{2}) + C_{1}(\frac{1}{2}) + u$$

$$C_{1}(0) = C_{2}(1) = 0$$

$$C_{2}(u) = C_{1}(\frac{1}{2}) + C_{2}(\frac{1}{2}) + 1$$

$$C_{2}(0) = C_{2}(1) = 0$$



A subquadratic solution – Analysis

¹ **procedure** findMaxSubarraySum($A[\ell..r)$):

if $r - \ell < 0$ 2 return () 3 if $r - \ell = 1$ 4 **return** max $\{0, A[\ell]\}$ 5 $m := [(\ell + r)/2]$ 6 $s_{(a)} := findMaxSubarraySum(A[\ell, m))$ 7 $s_{(b)} := findMaxSubarraySum(A[m, r))$ 8 // Find left endpoint of straddle: 9 $s_{\ell} := 0; t := 0$ 10 for $i = m - 1, m - 2, \dots, \ell$ 11 t := A[i] + t12 $s_{\ell} := \max\{s_{\ell}, t\}$ 13 end for 14 // Find right endpoint of straddle: 15 $s_r := 0; t := 0$ 16 **for** j = m + 1, ..., r17 t := t + A[j-1]18 $s_r := \max\{s_r, t\}$ 19 end for 20 $S_{(c)} := S_{\ell} + S_{r}$ 21 **return** max $\{s_{(a)}, s_{(b)}, s_{(c)}\}$ 22

🔺 Algorithm analysis:

• Write $n = r - \ell$

- ► #additions in non-recursive part: $(m - \ell) + (r - m) + 1 = n + 1$
- ► Write C(n) for total # additions for n elements

$$\rightsquigarrow C(n) = C(\lceil \frac{n}{2} \rceil) + C(\lfloor \frac{n}{2} \rfloor) + n + 1$$

► for $n = 2^k$ for $k \in \mathbb{N}_0$, this simplifies to $C(2^k) = 2C(2^{k-1}) + 2^k + 1$ \downarrow_{g_2} $\longrightarrow C(n) \sim n \log_2(n) = \bigcirc (\ln \log_2(n))$

A lower bound

• **Theorem:** Every correct algorithm has a running time of $\Omega(n)$.

An optimal algorithm

Algorithmic idea:

In a clever sweep, we can compute best s(i, r) and best s(i, j) with $i \le j \le r$ for all r.


```
procedure findMaxSubarraySum(A[0..n))
```

2 suffixMax := 0; globalMax := 0

3 **for** r = 1, ..., n

- 4 suffixMax := $\max\{suffixMax + A[r-1], 0\}$
- 5 globalMax := max{globalMax, suffixMax}

```
6 return globalMax
```


Correctness: Proof by induction over r that suffixMax and globalMax correct up to here.

Analysis: n additions.