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Learning Outcomes

Unit 2: Machines & Models

1. Understand the difference between empirical running time and algorithm analysis.

2. Understand worst / best / average case models for input data.

3. Know the RAM machine model.

4. Know the definitions of asymptotic notation (Big-Oh classes and relatives).

5. Understand the reasons to make asymptotic approximations.

6. Be able to analyze simple algorithms.
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What is an algorithm?
An algorithm is a sequence

think: recipe

of instructions.

More precisely:
1. mechanically executable

e. g. Python script

⇝ no “common sense” needed

2. finite description ≠ finite computation!

3. solves a problem
𝑥 + 𝑦, not only 17 + 4

, i. e., a class of problem instances

▶ input-processing-output abstraction

3Algorithm
input(s) output(s)

Typical example: bubblesort
⇝ not a specific program

but the underlying idea
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What is a data structure?

A data structure is
1. a rule for encoding data

(in computer memory), plus

2. algorithms to work with it
(queries, updates, etc.)

typical example: binary search tree
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2.1 Algorithm analysis



Good algorithms
Our goal: Find good (best?) algorithms and data structures for a task.

Good “usually” means

▶ fast running time
can be complicated in distributed systems

▶ moderate memory space usage

Algorithm analysis is a way to

▶ compare different algorithms,

▶ predict their performance in an application

4



Running time experiments
Why not simply run and time it?

▶ results only apply to
▶ single test machine
▶ tested inputs
▶ tested implementation
▶ . . .
≠ universal truths

▶ instead: consider and analyze algorithms on an abstract
survives Pentium 4

machine
⇝ provable statements for model
⇝ testable model hypotheses

⇝ Need precise model of machine (costs), input data and algorithms.
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Data Models
Algorithm analysis typically uses one of the following simple data models:

▶ worst-case performance:
consider the worst of all inputs as our cost metric

▶ best-case performance:
consider the best of all inputs as our cost metric

▶ average-case performance:
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size 𝑛.

⇝ performance is only a function of 𝑛.
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2.2 The RAM Model



Clicker Question

 → sli.do/cs566

What is the cost of adding two 𝑑-digit integers?
(For example, for 𝑑 = 5, what is 45 235 + 91 342?)

A constant time

B logarithmic in 𝑑

C proportional to 𝑑

D quadratic in 𝑑

E no idea what you are talking about



Clicker Question

 → sli.do/cs566

What is the cost of adding two 𝑑-digit integers?
(For example, for 𝑑 = 5, what is 45 235 + 91 342?)

A constant time✓
B logarithmic in 𝑑

C proportional to 𝑑✓
D quadratic in 𝑑

E no idea what you are talking about✓



Machine models
The machine model decides

▶ what algorithms are possible

▶ how they are described (= programming language)

▶ what an execution costs

Goal: Machine models should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.
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Machine models
The machine model decides

▶ what algorithms are possible

▶ how they are described (= programming language)

▶ what an execution costs

Goal: Machine models should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

⇝ usually some compromise is needed

honest

smart investment
banker
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Random Access Machines
Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

▶ unlimited memory MEM[0], MEM[1], MEM[2], . . .
▶ fixed number of registers 𝑅1 , . . . , 𝑅𝑟 (say 𝑟 = 100)
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Random Access Machines
Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

▶ unlimited memory MEM[0], MEM[1], MEM[2], . . .
▶ fixed number of registers 𝑅1 , . . . , 𝑅𝑟 (say 𝑟 = 100)

▶ memory cells MEM[𝑖] and registers 𝑅𝑖 store 𝑤-bit integers, i. e., numbers in [0..2𝑤 − 1]
𝑤 is the word width/size; typically 𝑤 ∝ lg 𝑛 ⇝ 2𝑤 ≈ 𝑛
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Random Access Machines
Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

▶ unlimited memory MEM[0], MEM[1], MEM[2], . . .
▶ fixed number of registers 𝑅1 , . . . , 𝑅𝑟 (say 𝑟 = 100)

▶ memory cells MEM[𝑖] and registers 𝑅𝑖 store 𝑤-bit integers, i. e., numbers in [0..2𝑤 − 1]
𝑤 is the word width/size; typically 𝑤 ∝ lg 𝑛 ⇝ 2𝑤 ≈ 𝑛

▶ Instructions:
▶ load & store: 𝑅𝑖 := MEM[𝑅𝑗] MEM[𝑅𝑗] := 𝑅𝑖
▶ operations on registers: 𝑅𝑘 := 𝑅𝑖 + 𝑅𝑗 (arithmetic is modulo 2𝑤 !)

also 𝑅𝑖 − 𝑅𝑗 , 𝑅𝑖 · 𝑅𝑗 , 𝑅𝑖 div 𝑅𝑗 , 𝑅𝑖 mod 𝑅𝑗
C-style operations (bitwise and/or/xor, left/right shift)

▶ conditional and unconditional jumps

▶ cost: number of executed instructions

⇝ The RAM is the standard model for sequential

we will see further models later

computation.
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RAM-Program Example

Example RAM program

1 // Assume: 𝑅1 stores number 𝑁
2 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
3 𝑅2 := 𝑅1;
4 𝑅3 := 𝑅1 − 2;
5 𝑅4 := MEM[𝑅3];
6 𝑅5 := 𝑅3 + 1;
7 𝑅6 := MEM[𝑅5];
8 if (𝑅4 ≤ 𝑅6) goto line 12;
9 MEM[𝑅3] := 𝑅6;

10 MEM[𝑅5] := 𝑅4;
11 𝑅3 := 𝑅3 − 1;
12 if (𝑅3 ≥ 0) goto line 6;
13 𝑅2 := 𝑅2 − 1;
14 if (𝑅2 > 0) goto line 5;
15 // Done:
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Clicker Question

 → sli.do/cs566

What algorithm does the RAM program on the previous slide
implement?



RAM-Program Example

Example RAM program

1 // Assume: 𝑅1 stores number 𝑁
2 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
3 𝑅2 := 𝑅1;
4 𝑅3 := 𝑅1 − 2;
5 𝑅4 := MEM[𝑅3];
6 𝑅5 := 𝑅3 + 1;
7 𝑅6 := MEM[𝑅5];
8 if (𝑅4 ≤ 𝑅6) goto line 12;
9 MEM[𝑅3] := 𝑅6;

10 MEM[𝑅5] := 𝑅4;
11 𝑅3 := 𝑅3 − 1;
12 if (𝑅3 ≥ 0) goto line 6;
13 𝑅2 := 𝑅2 − 1;
14 if (𝑅2 > 0) goto line 5;
15 // Done: MEM[0..𝑁) sorted
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Pseudocode
▶ Programs for the random-access machine are very low level and detailed

≈ assembly/machine language

Typical simplifications when describing and analyzing algorithms:

▶ more abstract pseudocode
code that humans understand (easily)

▶ control flow using if, for, while, etc.
▶ variable names instead of fixed registers and memory cells
▶ memory management (more below)

▶ count dominant elementary operations (e. g. memory accesses)
instead of all RAM instructions

In both cases: We can go to full detail where needed/desired.

honest

smart investment
banker
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Pseudocode – Example
RAM-Program

1 // Bubblesort
2 // Assume: 𝑅1 stores number 𝑁
3 // Assume: MEM[0..𝑁) contains list of 𝑁 numbers
4 𝑅2 := 𝑅1;
5 𝑅3 := 𝑅1 − 2;
6 𝑅4 := MEM[𝑅3];
7 𝑅5 := 𝑅3 + 1;
8 𝑅6 := MEM[𝑅5];
9 if (𝑅4 ≤ 𝑅6) goto line 12;

10 MEM[𝑅3] := 𝑅6;
11 MEM[𝑅5] := 𝑅4;
12 𝑅3 := 𝑅3 − 1;
13 if (𝑅3 ≥ 0) goto line 6;
14 𝑅2 := 𝑅2 − 1;
15 if (𝑅2 > 0) goto line 5;
16 // Done: MEM[0..𝑁) sorted

Pseudocode Algorithm

1 procedure bubblesort(𝐴[0..𝑁)):
2 for 𝑖 := 𝑁 ,𝑁 − 1, . . . , 1
3 for 𝑗 := 𝑁 − 2,𝑁 − 3, . . . , 0
4 if 𝐴[𝑗] > 𝐴[𝑗 + 1]:
5 Swap 𝐴[𝑗] and 𝐴[𝑗 + 1]
6 end if
7 end for
8 end for

⇝ much more readable

▶ closer to modern high-level
programming languages

▶ but: only allow primitive
operations that correspond to
𝑂(1) RAM instructions
⇝ analysis
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Memory management & Pointers
▶ A random-access machine is a bit like a bare CPU . . . without any operating system

⇝ cumbersome to use

▶ All high-level programming languages / operating systems add memory management:
▶ Instruction to allocate a contiguous piece of memory of a given size (like malloc).

▶ used to allocate a new array (of a fixed size) or
▶ a new object/record (with a known list of instance variables)
▶ There’s a similar instruction to free allocated memory again

or an automated garbage collector.

⇝ A pointer is a memory address (i. e., the 𝑖 of MEM[𝑖]).

▶ Support for procedures (a.k.a. functions, methods) calls including recursive calls
▶ (this internally requires maintaining call stack)

We will mostly ignore how all this works here.

13



2.3 Asymptotics & Big-Oh



Clicker Question

 → sli.do/cs566

What is the correct way to complete the equation?
8𝑛 + 1

2𝑛
2 + 1024 =

A 𝑂(1)

B 𝑂(𝑛)

C 𝑂(𝑛 log(𝑛))

D 𝑂(𝑛2)

E I don’t know 𝑂(·)



Clicker Question

 → sli.do/cs566

What is the correct way to complete the equation?
8𝑛 + 1

2𝑛
2 + 1024 =

A 𝑂(1)

B 𝑂(𝑛)

C 𝑂(𝑛 log(𝑛))

D 𝑂(𝑛2)✓
E I don’t know 𝑂(·)



Why asymptotics?
Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.
▶ abstracts from unnecessary detail
▶ simplifies analysis
▶ often necessary for sensible comparison

Asymptotics = approximation around ∞
Example: Consider a function 𝑓 (𝑛) given by
2𝑛2 − 3𝑛⌊ log2(𝑛 + 1)⌋ + 7𝑛 − 3⌊ log2(𝑛 + 1)⌋ + 120

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
·104
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Why asymptotics?
Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.
▶ abstracts from unnecessary detail
▶ simplifies analysis
▶ often necessary for sensible comparison

Asymptotics = approximation around ∞
Example: Consider a function 𝑓 (𝑛) given by
2𝑛2 − 3𝑛⌊ log2(𝑛 + 1)⌋ + 7𝑛 − 3⌊ log2(𝑛 + 1)⌋ + 120 ∼ 2𝒏2
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Asymptotic tools – Formal & definitive definition
▶ “Tilde Notation”: 𝑓 (𝑛) ∼ 𝑔(𝑛) iff

if, and only if

lim
𝑛→∞

𝑓 (𝑛)
𝑔(𝑛) = 1

„ 𝑓 and 𝑔 are asymptotically equivalent”
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Asymptotic tools – Formal & definitive definition
▶ “Tilde Notation”: 𝑓 (𝑛) ∼ 𝑔(𝑛) iff

if, and only if

lim
𝑛→∞

𝑓 (𝑛)
𝑔(𝑛) = 1

„ 𝑓 and 𝑔 are asymptotically equivalent”

▶ “Big-Oh Notation”: 𝑓 (𝑛) ∈
also write ‘=’ instead

𝑂

𝑔(𝑛)� iff

����� 𝑓 (𝑛)𝑔(𝑛)

����� is bounded for 𝑛 ≥ 𝑛0

iff lim sup
need supremum since limit might not exist!

𝑛→∞

����� 𝑓 (𝑛)𝑔(𝑛)

����� < ∞
Variants:

▶ 𝑓 (𝑛) ∈ Ω

“Big-Omega”
𝑔(𝑛)� iff 𝑔(𝑛) ∈ 𝑂


𝑓 (𝑛)�

▶ 𝑓 (𝑛) ∈ Θ

“Big-Theta”


𝑔(𝑛)� iff 𝑓 (𝑛) ∈ 𝑂


𝑔(𝑛)� and 𝑓 (𝑛) ∈ Ω


𝑔(𝑛)�
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▶ 𝑓 (𝑛) ∈ Θ

“Big-Theta”


𝑔(𝑛)� iff 𝑓 (𝑛) ∈ 𝑂


𝑔(𝑛)� and 𝑓 (𝑛) ∈ Ω


𝑔(𝑛)�

▶ “Little-Oh Notation”: 𝑓 (𝑛) ∈ 𝑜

𝑔(𝑛)� iff lim

𝑛→∞

����� 𝑓 (𝑛)𝑔(𝑛)

����� = 0

similarly: 𝑓 (𝑛) ∈ 𝜔

𝑔(𝑛)� if lim = ∞

(Benefit of this definition: Works for any 𝑓 , 𝑔 : ℝ → ℝ and is easy to generalize to limits other than 𝑛 → ∞)
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Asymptotic tools – Intuition

▶ 𝑓 (𝑛) = 𝑂(𝑔(𝑛)): 𝑓 (𝑛) is at most 𝑔(𝑛)
up to constant factors and
for sufficiently large 𝑛

𝑐 𝑔(𝑛)

𝑓 (𝑛)

𝑛0

𝑓 (𝑛) ≤ 𝑐𝑔(𝑛)

𝑛

▶ 𝑓 (𝑛) = Θ(𝑔(𝑛)): 𝑓 (𝑛) is equal to 𝑔(𝑛)
up to constant factors and
for sufficiently large 𝑛

𝑐2 𝑔(𝑛)

𝑐1 𝑔(𝑛)
𝑓 (𝑛)

𝑛0

𝑐1𝑔(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐2𝑔(𝑛)

𝑛

Plots can be misleading! Example
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Clicker Question

 → sli.do/cs566

Assume 𝑓 (𝑛) ∈ 𝑂(𝑔(𝑛)). What can we say about 𝑔(𝑛)?
A 𝑔(𝑛) = 𝑂( 𝑓 (𝑛))

B 𝑔(𝑛) = Ω( 𝑓 (𝑛))

C 𝑔(𝑛) = Θ( 𝑓 (𝑛))

D Nothing (it depends on 𝑓 and 𝑔)
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A 𝑔(𝑛) = 𝑂( 𝑓 (𝑛))
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C 𝑔(𝑛) = Θ( 𝑓 (𝑛))
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Clicker Question

 → sli.do/cs566

Assume 𝑓 (𝑛) ∈ 𝑂(𝑔(𝑛)). What can we say about 𝑔(𝑛)?
A 𝑔(𝑛) = 𝑂( 𝑓 (𝑛))

B 𝑔(𝑛) = Ω( 𝑓 (𝑛)) (if 𝑓 (𝑛) ≠ 0)✓
C 𝑔(𝑛) = Θ( 𝑓 (𝑛))

D Nothing (it depends on 𝑓 and 𝑔)✓



Asymptotics – Example 1
Basic examples:

▶ 20𝑛3 + 10𝑛 ln(𝑛) + 5 ∼ 20𝑛3 = Θ(𝑛3)
▶ 3 lg(𝑛2) + lg(lg(𝑛)) = Θ(log 𝑛)
▶ 10100 = 𝑂(1)

Use wolframalpha to compute/check limits, but also practice it with pen and paper!
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Clicker Question

 → sli.do/cs566

Is (sin(𝑛) + 2)𝑛2 = Θ(𝑛2)?

A Yes B No



Clicker Question

 → sli.do/cs566

Is (sin(𝑛) + 2)𝑛2 = Θ(𝑛2)?

A Yes✓ B No



Asymptotics – Basic facts
Rules to work with Big-Oh classes:

▶ 𝑓 = Θ( 𝑓 ) (reflexivity)

▶ 𝑓 = Θ(𝑔) ∧ 𝑔 = Θ(ℎ) =⇒ 𝑓 = Θ(ℎ)
▶ 𝑐 · 𝑓 (𝑛) = Θ( 𝑓 (𝑛)) for constant 𝑐 ≠ 0

▶ 𝑓 ∼ 𝑔 ⇐⇒ 𝑓 = 𝑔 · (1 ± 𝑜(1))
▶ Θ( 𝑓 ) · Θ(𝑔) = Θ( 𝑓 · 𝑔)
▶ Θ( 𝑓 ) + Θ(𝑔) = Θ( 𝑓 + 𝑔) = Θ(max{ 𝑓 , 𝑔}) largest summand determines Θ-class
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Asymptotics – Frequently encountered classes
Frequently used orders of growth:

▶ constant Θ(1)
▶ logarithmic Θ(log 𝑛) Note: 𝑎 , 𝑏 > 0 constants ⇝ Θ(log𝑎 (𝑛)) = Θ(log𝑏 (𝑛))

▶ linear Θ(𝑛)
▶ linearithmic Θ(𝑛 log 𝑛)
▶ quadratic Θ(𝑛2)
▶ cubic Θ(𝑛3)

▶ polynomial 𝑂(𝑛𝑐) for some constant 𝑐

▶ exponential 𝑂(𝑐𝑛) for some constant 𝑐 > 1 Note: 𝑎 > 𝑏 > 0 constants ⇝ 𝑏𝑛 = 𝑜(𝑎𝑛 )

19



Asymptotics – Example 2
Square-and-multiply algorithm
for computing 𝑥𝑚 with 𝑚 ∈ ℕ

Inputs:
▶ 𝑚 as binary number (array of bits)
▶ 𝑛 = #bits in 𝑚

▶ 𝑥 a floating-point number

1 def pow(𝑥, 𝑚):
2 # compute binary representation of exponent
3 exponent_bits = bin(𝑚)[2:]
4 result = 1
5 for bit in exponent_bits:
6 result ‗= result
7 if bit == '1':
8 result ‗= 𝑥
9 return result

▶ Cost: 𝐶 = # multiplications
▶ 𝐶 = 𝑛 (line 6) + #one-bits in binary representation of 𝑚 (line 8)

⇝ 𝑛 ≤ 𝐶 ≤ 2𝑛
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Clicker Question

 → sli.do/cs566

We showed 𝑛 ≤ 𝐶(𝑛) ≤ 2𝑛; what is the most precise
asymptotic approximation for 𝐶(𝑛) that we can make?

Write e. g. O(n^2) for 𝑂(𝑛2) or Theta(sqrt(n)) for Θ(√𝑛).



Asymptotics – Example 2
Square-and-multiply algorithm
for computing 𝑥𝑚 with 𝑚 ∈ ℕ

Inputs:
▶ 𝑚 as binary number (array of bits)
▶ 𝑛 = #bits in 𝑚

▶ 𝑥 a floating-point number

1 def pow(𝑥, 𝑚):
2 # compute binary representation of exponent
3 exponent_bits = bin(𝑚)[2:]
4 result = 1
5 for bit in exponent_bits:
6 result ‗= result
7 if bit == '1':
8 result ‗= 𝑥
9 return result

▶ Cost: 𝐶 = # multiplications
▶ 𝐶 = 𝑛 (line 6) + #one-bits in binary representation of 𝑚 (line 8)

⇝ 𝑛 ≤ 𝐶 ≤ 2𝑛
⇝ 𝐶 = Θ(𝑛) = Θ(log𝑚)


Often, you can pretend Θ is “like ∼ with an unknown constant”
but in this case, no such constant exists!

0 200 400 600 800 1000
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shift-and-multiply-exponentiation
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Asymptotics with several variables
▶ Example: Algorithms on graphs with 𝑛 vertices and 𝑚 edges.

▶ want to say: Algorithm 𝐴 takes time Θ(𝑛 + 𝑚).
▶ But what does that even mean formally?!

22



Asymptotics with several variables
▶ Example: Algorithms on graphs with 𝑛 vertices and 𝑚 edges.

▶ want to say: Algorithm 𝐴 takes time Θ(𝑛 + 𝑚).
▶ But what does that even mean formally?!

 Inconsistent and incompatible definitions used in the literature!

▶ Here:
▶ (implicitly) always have a single “main” variable 𝑛: with 𝑛 → ∞
▶ all other variables are functions of 𝑛: 𝑚 = 𝑚(𝑛)
▶ must make conditions on functions explicit: 𝑚(𝑛) ∈ Ω(𝑛) and 𝑚(𝑛) ∈ 𝑂(𝑛2).
⇝ Can make statements like

𝑂(𝑛 + 𝑚) ⊆ 𝑂(𝑛𝑚) (𝑛 → ∞, 𝑚 ∈ Ω(1))
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2.4 Teaser: Maximum subarray problem



Bring on the puzzles!
Time for a concrete example of algorithm design!

▶ we will illustrate the algorithm design process on a “toy problem”
▶ clean abstract problem, but nontrivial to solve!
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Bring on the puzzles!
Time for a concrete example of algorithm design!

▶ we will illustrate the algorithm design process on a “toy problem”
▶ clean abstract problem, but nontrivial to solve!

Maximum (sum) subarray problem

▶ Given: 𝐴[0..𝑛) with 𝐴[𝑖] ∈ ℤ for 0 ≤ 𝑖 < 𝑛.

▶ Abbreviate 𝑠(𝑖 , 𝑗) ≔
𝑗−1Õ
𝑘=𝑖

𝐴[𝑘]

▶ Goal: Compute 𝑠 ≔ max
�
𝑠(𝑖 , 𝑗) : 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

	
and a pair

will ignore that here; easy to modify algorithms

(𝑖 , 𝑗) with 𝑠 = 𝑠(𝑖 , 𝑗).
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and a pair

will ignore that here; easy to modify algorithms

(𝑖 , 𝑗) with 𝑠 = 𝑠(𝑖 , 𝑗).

Applications:

▶ largest gain of a stock
𝐴[𝑖] price change on day 𝑖

▶ signal detection in
biological sequence
analysis

▶ 2D generalization used in
image analysis
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Bring on the puzzles!
Time for a concrete example of algorithm design!

▶ we will illustrate the algorithm design process on a “toy problem”
▶ clean abstract problem, but nontrivial to solve!

Maximum (sum) subarray problem

▶ Given: 𝐴[0..𝑛) with 𝐴[𝑖] ∈ ℤ for 0 ≤ 𝑖 < 𝑛.

▶ Abbreviate 𝑠(𝑖 , 𝑗) ≔
𝑗−1Õ
𝑘=𝑖

𝐴[𝑘]

▶ Goal: Compute 𝑠 ≔ max
�
𝑠(𝑖 , 𝑗) : 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

	
and a pair

will ignore that here; easy to modify algorithms

(𝑖 , 𝑗) with 𝑠 = 𝑠(𝑖 , 𝑗).

Applications:

▶ largest gain of a stock
𝐴[𝑖] price change on day 𝑖

▶ signal detection in
biological sequence
analysis

▶ 2D generalization used in
image analysis

Modeling decisions:
▶ input size: # numbers 𝑛
▶ assume all integers (and sums) fit in 𝑂(1) words
⇝ count # additions as elementary operation
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Clicker Question

What do you think is the Θ-class of the running time of the fastest
algorithm for the maximal sum subarray problem?



Template for Describing an Algorithm
1.  Algorithmic Idea

Abstract idea that makes the algorithm work (prose)
(an expert could fill in the rest from here)

2. / Pseudocode
structured description of procedure including edge cases
should be unambiguous and close to real code

3. ◎ Correctness proof
argument why the correct result is computed
often uses induction and invariants

4.  Algorithm analysis
analysis of the efficiency of the algorithm
usually want Θ-class of worst-case running time
where interesting, also space usage
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Brute force approach
▶ Let’s start with the simplest thinkable solution

Maximal subarray problem

▶ Given: 𝐴[0..𝑛) with 𝐴[𝑖] ∈ ℤ for 0 ≤ 𝑖 < 𝑛.

▶ Abbreviate 𝑠(𝑖 , 𝑗) ≔
𝑗−1Õ
𝑘=𝑖

𝐴[𝑘]

▶ Goal: Compute 𝑠 ≔ max
�
𝑠(𝑖 , 𝑗) : 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

	
and a pair (𝑖 , 𝑗) with 𝑠 = 𝑠(𝑖 , 𝑗).

1.  Algorithmic Idea
try all contiguous subarrays 𝐴[𝑖.. 𝑗)
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1 𝑠 = 0
2 for 𝑖 = 0, . . . , 𝑛 − 1
3 for 𝑗 = 𝑖 , . . . , 𝑛
4 𝑡 = 0
5 for 𝑘 = 𝑖 , . . . , 𝑗 − 1
6 𝑡 = 𝑡 + 𝐴[𝑘]
7 end for
8 if 𝑡 > 𝑠 then 𝑠 := 𝑡
9 end for

10 end for
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10 end for

3. ◎ Correctness proof
direct by definition of 𝑠
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4 𝑡 = 0
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6 𝑡 = 𝑡 + 𝐴[𝑘]
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10 end for

3. ◎ Correctness proof
direct by definition of 𝑠

4.  Algorithm analysis

# additions
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Brute force approach
▶ Let’s start with the simplest thinkable solution
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𝐴[𝑘]

▶ Goal: Compute 𝑠 ≔ max
�
𝑠(𝑖 , 𝑗) : 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

	
and a pair (𝑖 , 𝑗) with 𝑠 = 𝑠(𝑖 , 𝑗).

1.  Algorithmic Idea
try all contiguous subarrays 𝐴[𝑖.. 𝑗)

2. / Pseudocode
1 𝑠 = 0
2 for 𝑖 = 0, . . . , 𝑛 − 1
3 for 𝑗 = 𝑖 , . . . , 𝑛
4 𝑡 = 0
5 for 𝑘 = 𝑖 , . . . , 𝑗 − 1
6 𝑡 = 𝑡 + 𝐴[𝑘]
7 end for
8 if 𝑡 > 𝑠 then 𝑠 := 𝑡
9 end for

10 end for

3. ◎ Correctness proof
direct by definition of 𝑠

4.  Algorithm analysis

# additions

=
𝑛−1Õ
𝑖=0

𝑛Õ
𝑗=𝑖

𝑗−1Õ
𝑘=𝑖

1 =
𝑛−1Õ
𝑖=0

𝑛Õ
𝑗=𝑖

(𝑗 − 𝑖)

=
𝑛−1Õ
𝑖=0

𝑛−𝑖Õ
𝑗=0

𝑗 =
𝑛−1Õ
𝑖=0

(𝑛 − 𝑖)(𝑛 − 𝑖 + 1)
2

=
1
2

𝑛Õ
𝑖=1

𝑖(𝑖 + 1) =
1
2

𝑛Õ
𝑖=1

𝑖2 + 1
2

𝑛Õ
𝑖=1

𝑖

=
𝑛(𝑛 + 1)(2𝑛 + 1)

12 + 𝑛(𝑛 + 1)
4

=
𝑛(𝑛 + 1)(𝑛 + 2)

6 ∼ 1
6𝑛

3 = Θ(𝑛3)
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Reusing sums
1.  Algorithmic Idea

▶ brute force algorithm is unnecessarily wasteful!
▶ can use 𝑠(𝑖 , 𝑗) = 𝑠(𝑖 , 𝑗 − 1) + 𝐴[𝑗 − 1]
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Reusing sums
1.  Algorithmic Idea

▶ brute force algorithm is unnecessarily wasteful!
▶ can use 𝑠(𝑖 , 𝑗) = 𝑠(𝑖 , 𝑗 − 1) + 𝐴[𝑗 − 1]

2. / Pseudocode
1 𝑠 = 0
2 for 𝑖 = 0, . . . , 𝑛 − 1
3 𝑡 = 0
4 for 𝑗 = 𝑖 + 1, . . . , 𝑛
5 𝑡 = 𝑡 + 𝐴[𝑗 − 1]
6 if 𝑡 > 𝑠 then 𝑠 := 𝑡
7 end for
8 end for

3. ◎ Correctness proof: as above

4.  Algorithm analysis:
𝑛−1Õ
𝑖=0

𝑛Õ
𝑗=𝑖+1

1 =
𝑛(𝑛 + 1)

2 ∼ 1
2𝑛

2 = Θ(𝑛2) additions
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Reusing sums
1.  Algorithmic Idea

▶ brute force algorithm is unnecessarily wasteful!
▶ can use 𝑠(𝑖 , 𝑗) = 𝑠(𝑖 , 𝑗 − 1) + 𝐴[𝑗 − 1]

2. / Pseudocode
1 𝑠 = 0
2 for 𝑖 = 0, . . . , 𝑛 − 1
3 𝑡 = 0
4 for 𝑗 = 𝑖 + 1, . . . , 𝑛
5 𝑡 = 𝑡 + 𝐴[𝑗 − 1]
6 if 𝑡 > 𝑠 then 𝑠 := 𝑡
7 end for
8 end for

3. ◎ Correctness proof: as above

4.  Algorithm analysis:
𝑛−1Õ
𝑖=0

𝑛Õ
𝑗=𝑖+1

1 =
𝑛(𝑛 + 1)

2 ∼ 1
2𝑛

2 = Θ(𝑛2) additions

Can we possibly do better?
▶ There are

𝑛
2
� ∼ 1

2𝑛
2 different 𝑠(𝑖 , 𝑗) . . .

⇝ Can’t look at all of them
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A subquadratic solution
 Algorithmic idea:

Consider 𝑛/2-mark.
Only 3 options for optimal solution 𝑠(𝑖 , 𝑗):

(a) 0 ≤ 𝑖 ≤ 𝑗 < ⌈ 𝑛
2 ⌉ (left)

(b) ⌈ 𝑛
2 ⌉ ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 (right)

(c) 𝑖 < ⌈ 𝑛
2 ⌉ ≤ 𝑗 (straddle) 0 𝑛/2 𝑛

(a) (b)
(c)
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A subquadratic solution
 Algorithmic idea:

Consider 𝑛/2-mark.
Only 3 options for optimal solution 𝑠(𝑖 , 𝑗):

(a) 0 ≤ 𝑖 ≤ 𝑗 < ⌈ 𝑛
2 ⌉ (left)

(b) ⌈ 𝑛
2 ⌉ ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 (right)

(c) 𝑖 < ⌈ 𝑛
2 ⌉ ≤ 𝑗 (straddle) 0 𝑛/2 𝑛

(a) (b)
(c)

 optimal straddle easy to compute!
▶ independently find best left endpoint 𝑖 for 𝑠(𝑖 , ⌈ 𝑛2 ⌉) and

best right endpoint 𝑗 for 𝑠(⌈ 𝑛2 ⌉ , 𝑗)

▶ for (a) and (b), recurse on instance of half the size!
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A subquadratic solution – Pseudocode & Correctness
1 procedure findMaxSubarraySum(𝐴[ℓ ..𝑟)):
2 if 𝑟 − ℓ ≤ 0
3 return 0
4 if 𝑟 − ℓ == 1
5 return max{0,𝐴[ℓ ]}
6 𝑚 := ⌈(ℓ + 𝑟)/2⌉
7 𝑠(a) := findMaxSubarraySum(𝐴[ℓ ,𝑚))
8 𝑠(b) := findMaxSubarraySum(𝐴[𝑚 , 𝑟))
9 // Find left endpoint of straddle:

10 𝑠ℓ := 0; 𝑡 := 0
11 for 𝑖 = 𝑚 − 1,𝑚 − 2, . . . , ℓ
12 𝑡 := 𝐴[𝑖] + 𝑡
13 𝑠ℓ := max{𝑠ℓ , 𝑡}
14 end for
15 // Find right endpoint of straddle:
16 𝑠𝑟 := 0; 𝑡 := 0
17 for 𝑗 = 𝑚 + 1, . . . , 𝑟
18 𝑡 := 𝑡 + 𝐴[𝑗 − 1]
19 𝑠𝑟 := max{𝑠𝑟 , 𝑡}
20 end for
21 𝑠(c) := 𝑠ℓ + 𝑠𝑟
22 return max{𝑠(a) , 𝑠(b) , 𝑠(c)}
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A subquadratic solution – Pseudocode & Correctness
1 procedure findMaxSubarraySum(𝐴[ℓ ..𝑟)):
2 if 𝑟 − ℓ ≤ 0
3 return 0
4 if 𝑟 − ℓ == 1
5 return max{0,𝐴[ℓ ]}
6 𝑚 := ⌈(ℓ + 𝑟)/2⌉
7 𝑠(a) := findMaxSubarraySum(𝐴[ℓ ,𝑚))
8 𝑠(b) := findMaxSubarraySum(𝐴[𝑚 , 𝑟))
9 // Find left endpoint of straddle:

10 𝑠ℓ := 0; 𝑡 := 0
11 for 𝑖 = 𝑚 − 1,𝑚 − 2, . . . , ℓ
12 𝑡 := 𝐴[𝑖] + 𝑡
13 𝑠ℓ := max{𝑠ℓ , 𝑡}
14 end for
15 // Find right endpoint of straddle:
16 𝑠𝑟 := 0; 𝑡 := 0
17 for 𝑗 = 𝑚 + 1, . . . , 𝑟
18 𝑡 := 𝑡 + 𝐴[𝑗 − 1]
19 𝑠𝑟 := max{𝑠𝑟 , 𝑡}
20 end for
21 𝑠(c) := 𝑠ℓ + 𝑠𝑟
22 return max{𝑠(a) , 𝑠(b) , 𝑠(c)}

◎ Correctness proof:
▶ Induction over 𝑛 = 𝑟 − ℓ

▶ basis: for 𝑛 ≤ 1 ✓
▶ hypothesis: Assume

findMaxSubarraySum returns correct
result for all arrays of up to 𝑛 − 1
elements

▶ step: For array of 𝑛 ≥ 2 elements,
distinguish cases (a), (b), (c)
(a) and (b) ⇝ IH ✓
(c) “from inspection of the code”
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A subquadratic solution – Analysis
1 procedure findMaxSubarraySum(𝐴[ℓ ..𝑟)):
2 if 𝑟 − ℓ ≤ 0
3 return 0
4 if 𝑟 − ℓ == 1
5 return max{0,𝐴[ℓ ]}
6 𝑚 := ⌈(ℓ + 𝑟)/2⌉
7 𝑠(a) := findMaxSubarraySum(𝐴[ℓ ,𝑚))
8 𝑠(b) := findMaxSubarraySum(𝐴[𝑚 , 𝑟))
9 // Find left endpoint of straddle:

10 𝑠ℓ := 0; 𝑡 := 0
11 for 𝑖 = 𝑚 − 1,𝑚 − 2, . . . , ℓ
12 𝑡 := 𝐴[𝑖] + 𝑡
13 𝑠ℓ := max{𝑠ℓ , 𝑡}
14 end for
15 // Find right endpoint of straddle:
16 𝑠𝑟 := 0; 𝑡 := 0
17 for 𝑗 = 𝑚 + 1, . . . , 𝑟
18 𝑡 := 𝑡 + 𝐴[𝑗 − 1]
19 𝑠𝑟 := max{𝑠𝑟 , 𝑡}
20 end for
21 𝑠(c) := 𝑠ℓ + 𝑠𝑟
22 return max{𝑠(a) , 𝑠(b) , 𝑠(c)}

 Algorithm analysis:
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A subquadratic solution – Analysis
1 procedure findMaxSubarraySum(𝐴[ℓ ..𝑟)):
2 if 𝑟 − ℓ ≤ 0
3 return 0
4 if 𝑟 − ℓ == 1
5 return max{0,𝐴[ℓ ]}
6 𝑚 := ⌈(ℓ + 𝑟)/2⌉
7 𝑠(a) := findMaxSubarraySum(𝐴[ℓ ,𝑚))
8 𝑠(b) := findMaxSubarraySum(𝐴[𝑚 , 𝑟))
9 // Find left endpoint of straddle:

10 𝑠ℓ := 0; 𝑡 := 0
11 for 𝑖 = 𝑚 − 1,𝑚 − 2, . . . , ℓ
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13 𝑠ℓ := max{𝑠ℓ , 𝑡}
14 end for
15 // Find right endpoint of straddle:
16 𝑠𝑟 := 0; 𝑡 := 0
17 for 𝑗 = 𝑚 + 1, . . . , 𝑟
18 𝑡 := 𝑡 + 𝐴[𝑗 − 1]
19 𝑠𝑟 := max{𝑠𝑟 , 𝑡}
20 end for
21 𝑠(c) := 𝑠ℓ + 𝑠𝑟
22 return max{𝑠(a) , 𝑠(b) , 𝑠(c)}

 Algorithm analysis:

▶ Write 𝑛 = 𝑟 − ℓ

▶ # additions in non-recursive part:
(𝑚 − ℓ ) + (𝑟 − 𝑚) + 1 = 𝑛 + 1

▶ Write 𝐶(𝑛) for total # additions for 𝑛
elements

⇝ 𝐶(𝑛) = 𝐶(⌈ 𝑛
2 ⌉) + 𝐶(⌊ 𝑛

2 ⌋) + 𝑛 + 1

▶ for 𝑛 = 2𝑘 for 𝑘 ∈ ℕ0, this simplifies to

𝐶(2𝑘) = 2𝐶(2𝑘−1) + 2𝑘 + 1
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19 𝑠𝑟 := max{𝑠𝑟 , 𝑡}
20 end for
21 𝑠(c) := 𝑠ℓ + 𝑠𝑟
22 return max{𝑠(a) , 𝑠(b) , 𝑠(c)}

 Algorithm analysis:

▶ Write 𝑛 = 𝑟 − ℓ

▶ # additions in non-recursive part:
(𝑚 − ℓ ) + (𝑟 − 𝑚) + 1 = 𝑛 + 1

▶ Write 𝐶(𝑛) for total # additions for 𝑛
elements

⇝ 𝐶(𝑛) = 𝐶(⌈ 𝑛
2 ⌉) + 𝐶(⌊ 𝑛

2 ⌋) + 𝑛 + 1

▶ for 𝑛 = 2𝑘 for 𝑘 ∈ ℕ0, this simplifies to

𝐶(2𝑘) = 2𝐶(2𝑘−1) + 2𝑘 + 1

⇝ 𝐶(𝑛) ∼ 𝑛 log2(𝑛)

29



A lower bound
▶ Theorem: Every correct algorithm has a running time of Ω(𝑛).
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An optimal algorithm
 Algorithmic idea:

In a clever sweep, we can compute best 𝑠(𝑖 , 𝑟) and best 𝑠(𝑖 , 𝑗) with 𝑖 ≤ 𝑗 ≤ 𝑟 for all 𝑟.

/ Pseudocode
1 procedure findMaxSubarraySum(𝐴[0..𝑛))
2 suffixMax := 0; globalMax := 0
3 for 𝑟 = 1, . . . , 𝑛
4 suffixMax := max{suffixMax + 𝐴[𝑟 − 1], 0}
5 globalMax := max{globalMax, suffixMax}
6 return globalMax

31

Correctness:  Proof by induction over r that suffixMax and globalMax correct up to here.

Analysis:  n additions.


