

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25) Philipps-Universität Marburg version 2024-10-28 15:42

Learning Outcomes

Unit 3: Fundamental Data Structures

- 1. Understand and demonstrate the difference between *abstract data type (ADT)* and its *implementation*
- 2. Be able to define the ADTs stack, queue, priority queue and dictionary/symbol table
- 3. Understand array-based implementations of stack and queue
- 4. Understand *linked lists* and the corresponding implementations of stack and queue
- 5. Know *binary heaps* and their performance characteristics
- 6. Understand *binary search trees* and their performance characteristics
- 7. Know high-level idea of basic hashing strategies and their performance characteristics

Outline

3 Fundamental Data Structures

- 3.1 Stacks & Queues
- 3.2 Resizable Arrays
- 3.3 Priority Queues & Binary Heaps
- 3.4 Operations on Binary Heaps
- 3.5 Symbol Tables
- 3.6 Binary Search Trees
- 3.7 Ordered Symbol Tables
- 3.8 Balanced BSTs
- 3.9 Hashing

Recap: The Random Access Machine

▶ Data structures make heavy use of pointers and dynamically allocated memory.

Recall: Our RAM model supports

- ▶ basic pseudocode (≈ simple Python/Java code)
- creating arrays of a fixed/known size.
- creating instances (objects) of a known class.

Recap: The Random Access Machine

- ▶ Data structures make heavy use of pointers and dynamically allocated memory.
- Recall: Our RAM model supports
 - ▶ basic pseudocode (≈ simple Python/Java code)
 - creating arrays of a fixed/known size.
 - creating instances (objects) of a known class.

Python abstracts this away!

But: Python implementations create lists based on fixed-size arrays (stay tuned!)

Not every built-in Python instruction runs in O(1) time!

3.1 Stacks & Queues

Abstract Data Types

abstract data type (ADT)

- list of supported operations
- what should happen
- not: how to do it
- not: how to store data

≈ Java interface, Python ABCs (with comments)

data structures

VS.

abstract base classes

- specify exactly
 how data is represented
- algorithms for operations
- has concrete costs (space and running time)
- ≈ Java/Python class (non abstract)

Abstract Data Types

abstract data type (ADT)

- list of supported operations
- what should happen
- not: how to do it
- not: how to store data
- ≈ Java interface, Python ABČs (with comments)

Why separate?

Can swap out implementations ~~ "drop-in replacements"

abstract base classes

VS.

- $\rightsquigarrow \ reusable \ code!$
- ► (Often) better abstractions
- Prove generic lower bounds (\rightarrow Unit \mathfrak{z})

data structures

- specify exactly
 how data is represented
- algorithms for operations
- has concrete costs (space and running time)
- ≈ Java/Python class (non abstract)

Abstract Data Types

abstract data type (ADT)

- list of supported operation
- what should happen
- not: how to do it
- not: how to store data
- ≈ Java interface, Python A (with comments)

Why separate?

- Can swap out implement reusable code!
- ~~ Teusable coue:
- (Often) better abstractions
- ▶ Prove generic lower bounds (→ Unit 3)

abs

Stacks

Stack ADT

top()

Return the topmost item on the stack Does not modify the stack.

- push(x)Add x onto the top of the stack.
- ▶ pop()

Remove the topmost item from the stack (and return it).

isEmpty()Returns true iff stack is empty.

create()

Create and return an new empty stack.

Linked-list implementation for Stack

Invariants:

- maintain pointer *top* to topmost element
- each element points to the element below it (or null if bottommost)

1 class Node

- 2 value
 - next

3 4

10

- 5 class Stack
- 6 top := null
- 7 procedure top()
- 8 return top.value
- 9 procedure push(x)
 - top := new Node(x, top)
- 11 procedure pop()
- t := top()
- 13 top := top.next
- 14 return t

Linked-list implementation for Stack – Discussion

Linked stacks:

 \square require $\Theta(n)$ space when *n* elements on stack

Can we avoid extra space for pointers?

Array-based implementation for Stack

If we want no pointers \rightarrow array-based implementation

Invariants:

▶ maintain array *S* of elements, from bottommost to topmost

TOF

maintain index *top* of position of topmost element in S.

Array-based implementation for Stack

If we want no pointers \rightsquigarrow array-based implementation

Invariants:

- ▶ maintain array *S* of elements, from bottommost to topmost
- ▶ maintain index *top* of position of topmost element in S.

What to do if stack is full upon push?

Array stacks:

- require *fixed capacity* C (decided at creation time)!
- require $\Theta(C)$ space for a capacity of *C* elements
- ▶ all operations take *O*(1) time

Queues

Operations:

- enqueue(x) Add x at the end of the queue.
- dequeue()

Remove item at the front of the queue and return it.

Implementations similar to stacks.

Bags

What do Stack and Queue have in common?

Bags

What do Stack and Queue have in common?

They are special cases of a **Bag**!

Operations:

- insert(x)Add x to the items in the bag.
- delAny()

Remove any one item from the bag and return it. (Not specified which; any choice is fine.)

roughly similar to Java's java.util.Collection Python's collections.abc.Collection

Sometimes it is useful to state that order is irrelevant \rightsquigarrow Bag Implementation of Bag usually just a Stack or a Queue

3.2 Resizable Arrays

Digression – Arrays as ADT

Arrays can also be seen as an ADT!

Array operations:

- ► create(*n*) Java: A = new int[*n*]; Python: A = [0] * nCreate a new array with *n* cells, with positions 0, 1, ..., n - 1; we write A[0..n) = A[0..n - 1]
- get(i) Java/Python: A[i]
 Return the content of cell i
- set(i,x) Java/Python: A[i] = x; Set the content of cell i to x.
- → Arrays have *fixed* size (supplied at creation). (≠ lists in Python)

Digression – Arrays as ADT

Arrays can also be seen as an ADT! ... but are commonly seen as specific data structure

Array operations:

- ► create(*n*) Java: A = new int[*n*]; Python: A = [0] * nCreate a new array with *n* cells, with positions 0, 1, ..., n - 1; we write A[0..n) = A[0..n - 1]
- get(i) Java/Python: A[i]
 Return the content of cell i
- set(i,x) Java/Python: A[i] = x; Set the content of cell i to x.
- → Arrays have *fixed* size (supplied at creation). (≠ lists in Python)

Usually directly implemented by compiler + operating system / virtual machine.

Difference to "real" ADTs: Implementation usually fixed to "a contiguous chunk of memory".

Doubling trick

Can we have unbounded stacks based on arrays? Yes!

Doubling trick

Can we have unbounded stacks based on arrays? Yes!

Invariants:

- ▶ maintain array *S* of elements, from bottommost to topmost
- maintain index top of position of topmost element in S
- maintain capacity C = S.length so that $\frac{1}{4}C \le n \le C$
- \rightsquigarrow can always push more elements!

Doubling trick

Can we have unbounded stacks based on arrays? Yes!

Invariants:

- ▶ maintain array *S* of elements, from bottommost to topmost
- ▶ maintain index *top* of position of topmost element in S
- maintain capacity C = S.length so that $\frac{1}{4}C \le n \le C$
- \rightsquigarrow can always push more elements!

for a element, we use O(w) space

How to maintain the last invariant?

before push

If n = C, allocate new array of size 2n, copy all elements.

after pop

If $n < \frac{1}{4}C$, allocate new array of size 2n, copy all elements.

→ "Resizing Arrays"

an implementation technique, not an ADT!

Which of the following statements about resizable array that currently stores n elements is correct?

The elements are stored in an array of size 2n.

Adding or deleting an element at the end takes constant time.

A sequence of *m* insertions or deletions at the end of the array takes time O(n + m).

Inserting and deleting any element takes O(1) amortized time.

Amortized Analysis

Any individual operation push / pop can be expensive!
 Θ(n) time to copy all elements to new array.

But: An one expensive operation of cost *T* means $\Omega(T)$ next operations are cheap!

Amortined analysis w/ potential function

$$c_i = actual cost of operation i$$

 $\overline{\Phi}_i = potential after operation i$
 $a_i = amortized cost of operation i$
 $:= c_i - 4(\overline{\Phi}_i - \overline{\Phi}_{i-1})$
 $\overline{\Phi}_i = distance to dangerous boundary = min i (C-n, n - \frac{1}{4}C)$

Amortized Analysis

- ► Any individual operation push / pop can be expensive! Θ(n) time to copy all elements to new array.
- **But:** An one expensive operation of cost *T* means $\Omega(T)$ next operations are cheap!

distance to boundary $since n \le C \le 4n$ **Formally:** consider "credits/potential" $\Phi = min\{n - \frac{1}{4}C, C - n\} \in [0, 0.6n]$

- amortized cost of an operation = actual cost (array accesses) $-4 \cdot$ change in Φ
 - ▶ cheap push/pop: actual cost 1 array access, consumes ≤ 1 credits \rightarrow amortized cost ≤ 5
 - ▶ copying push: actual cost 2n + 1 array accesses, creates $\frac{1}{2}n + 1$ credits \rightarrow amortized cost ≤ 5
 - copying pop: actual cost 2n + 1 array accesses, creates $\frac{1}{2}n 1$ credits \rightarrow amortized cost 5
- → **sequence** of *m* operations: total actual cost \leq total amortized cost + final credits

here: $\leq 5m + 4 \cdot 0.6n = \Theta(m+n)$

$$5m \geqslant \sum_{i=1}^{m} a_i = \sum_{i=1}^{m} c_i - 4 \left(\Phi_i - \Phi_{i-1} \right)$$

$$= \sum_{i=1}^{m} c_i - 4 \sum_{i=1}^{m} \left(\Phi_i - \Phi_{i-1} \right) + telescopius sum$$

$$= 11 - 4 \left(\Phi_m - \Phi_n \right) \qquad \sum_{i=1}^{s} \Phi_i - \Phi_{i-1}$$

$$\sum_{i=1}^{m} c_i \leq 5m + 4\left(\underline{\Phi}_m - \underline{\Phi}_o\right) \qquad \begin{array}{c} -(\underline{\Psi}_{\mathbf{y}}, \underline{\Phi}_{\mathbf{y}}) \\ \# \left(\underline{\Phi}_{\mathbf{y}} - \underline{\Phi}_o\right) \\ \# \left(\underline{\Phi}_{\mathbf{y}} - \underline$$

Which of the following statements about resizable array that currently stores n elements is correct?

- The elements are stored in an array of size 2n.
- Adding or deleting an element at the end takes constant time.
- A sequence of *m* insertions or deletions at the end of the array takes time O(n + m).
- D Inserting and deleting any element takes O(1) amortized time.

Deamortized Resizable Arrays

What if we need O(1) worst case time?

Deamortized Resizable Arrays

What if we need O(1) worst case time?

- ▶ It's possible to *de-amortize* the resizing arrays solution!
- maintain 3 arrays: S (as before) and S₂ and S_{1/2} of twice and half the size of S
Deamortized Resizable Arrays

What if we need O(1) worst case time?

- ▶ It's possible to *de-amortize* the resizing arrays solution!
- maintain 3 arrays: S (as before) and S₂ and S_{1/2} of twice and half the size of S
- write operations go to all 3 arrays
- ▶ upon resize, "shift" arrays up/down \rightsquigarrow S_2 resp. $S_{1/2}$ become new S
 - allocate new array, but delay filling it with elements
 - every insert or delete copies 2 slots from last resize

 \rightsquigarrow by time for next resize, we have caught up and S_2 resp. $S_{1/2}$ ready to use

Deamortized Resizable Arrays

What if we need O(1) worst case time?

- ▶ It's possible to *de-amortize* the resizing arrays solution!
- maintain 3 arrays: S (as before) and S₂ and S_{1/2} of twice and half the size of S
- write operations go to all 3 arrays
- ▶ upon resize, "shift" arrays up/down \rightsquigarrow S_2 resp. $S_{1/2}$ become new S
 - allocate new array, but delay filling it with elements
 - every insert or delete copies 2 slots from last resize
- \rightsquigarrow by time for next resize, we have caught up and S_2 resp. $S_{1/2}$ ready to use

Analysis:

, assuming memory allocation in $O(1) \iff$ needs to be uninitialized!

- O(1) worst case time for read/write by index, push, and pop!
- up to 7 array accesses per operation
- ▶ up to 7*n* space \other time-space trade-offs possible

Rabbit Hole: Can we do this more space-efficiently?

It might appear as if every efficient implementation of a stack needs Ω(n) extra space on top of space for storing the n elements in the stack.

Rabbit Hole: Can we do this more space-efficiently?

It might appear as if every efficient implementation of a stack needs Ω(n) extra space on top of space for storing the n elements in the stack.

But this is not true!

Rabbit Hole: Can we do this more space-efficiently?

It might appear as if every efficient implementation of a stack needs Ω(n) extra space on top of space for storing the n elements in the stack.

But this is not true!

- Can get operations in O(1) worst-case time with $O(\sqrt{n})$ extra space at any time (!)
 - Maintain a collection of small arrays (plus header with pointers to them)
 - Clever choice of block sizes guarantees $O(\sqrt{n})$ blocks of $O(\sqrt{n})$ elements throughout and fast calculation of address for an index. imaginary "superblocks" of sizes 2^k , $k = 0, 1, ..., \lg n$

th superblock consists of
$$2^{k/2}$$
 actual blocks of $2^{k/2}$ elements each.

• $O(\sqrt{n})$ extra space is best possible

& exam

Resizable Arrays in Optimal Time and Space Andrej Brodnik, Svante Carlsson, Erik D. Demaine, J. Ian Munro & Robert Sedgewick WADS 1999 3.3 Priority Queues & Binary Heaps

Clicker Question

What is a heap-ordered tree?

- A tree in which every node has exactly 2 children.
- A tree where all keys in the left subtree are smaller than the key at the root and all keys in the right subtree are bigger than the key at the root.
- A tree where all keys in the left subtree and right subtree are smaller than the key at the root.
- An tree that is stored in the heap-area of the memory.

Priority Queue ADT

Now: elements in the bag have different *priorities*.

(Max-oriented) Priority Queue (MaxPQ):

- construct(A)
 Construct from from elements in array A.
- insert(x, p) Insert item x with priority p into PQ.
- ▶ max()

Return item with largest priority. (Does not modify the PQ.)

delMax()

Remove the item with largest priority and return it.

- changeKey(x, p')
 Update x's priority to p'.
 Sometimes restricted to *increasing* priority.
- ▶ isEmpty()

Fundamental building block in many applications.

Priority Queue ADT – min-oriented version

Now: elements in the bag have different *priorities*. <u>Min</u> (Max-oriented) Priority Queue (MaxPQ):

construct(A)

Construct from from elements in array A.

insert(x,p)

Insert item x with priority p into PQ.

▶ min max()

Return item with largest priority. (Does not modify the PQ.)

▶ delMax()

Remove the item with largest priority and return it.

- changeKey(x, p')
 Update x's priority to p' de Sometimes restricted to *increasing* priority.
- ▶ isEmpty()

Fundamental building block in many applications.

PQ implementations

Elementary implementations

- ▶ unordered list $\rightsquigarrow \Theta(1)$ insert, but $\Theta(n)$ delMax
- ▶ sorted list $\rightarrow \Theta(1) \text{ delMax}, \text{ but } \Theta(n) \text{ insert}$

PQ implementations

Elementary implementations

- ▶ unordered list $\rightsquigarrow \Theta(1)$ insert, but $\Theta(n)$ delMax
- ▶ sorted list $\rightarrow \Theta(1)$ delMax, but $\Theta(n)$ insert (both bulked & over y)

Can we get something between these extremes? Like a "slightly sorted" list?

PQ implementations

Elementary implementations

- ▶ unordered list $\rightsquigarrow \Theta(1)$ insert, but $\Theta(n)$ delMax
- ▶ sorted list $\rightarrow \Theta(1)$ delMax, but $\Theta(n)$ insert

Can we get something between these extremes? Like a "slightly sorted" list?

Yes! Binary heaps.

Array view

Binary heap example

Why heap-shaped trees?

Why complete binary tree shape?

- ▶ only one possible tree shape → keep it simple!
- complete binary trees have minimal height among all binary trees
- simple formulas for moving from a node to parent or children:
 For a node at index k in A
 A Recall: nodes at indices [1..n]
 - parent at $\lfloor k/2 \rfloor$ (for $k \ge 2$)
 - left child at 2k
 - right child at 2k + 1

Why heap-shaped trees?

Why complete binary tree shape?

- ▶ only one possible tree shape → keep it simple!
- complete binary trees have minimal height among all binary trees
- ► simple formulas for moving from a node to parent or children: For a node at index k in A ▲ Recall: nodes at indices [1..n]
 - parent at $\lfloor k/2 \rfloor$ (for $k \ge 2$)
 - ▶ left child at 2*k*
 - right child at 2k + 1

Why heap ordered?

- ► Maximum must be at root! ~~ max() is trivial!
- But: Sorted only along paths of the tree; leaves lots of leeway for fast inserts

how? ... stay tuned

Clicker Question

What is a heap-ordered tree? tree in which every node has exactly 2 children. A tree where all keys in the left subtree are small key at the root and all keys in the right subtree are bigger than the key at the root. A tree where all keys in the left subtree and right subtree are smaller than the key at the root. \checkmark An tree that is stored in the heap area of the memory.

3.4 Operations on Binary Heaps

Insert

- **1.** Add new element at only possible place: bottom-most level, next free spot.
- 2. Let element *swim* up to repair heap order.

Delete Max

- **1.** Remove max (must be in root).
- 2. Move last element (bottom-most, rightmost) into root.
- 3. Let root key *sink* in heap to repair heap order.

Heap construction

- *n* times insert $\rightsquigarrow \Theta(n \log n)$
- ▶ instead:
 - 1. Start with singleton heaps (one element)
 - 2. Repeatedly merge two heaps of height k with new element into heap of height k + 1

Analysis

Height of binary heaps:

- *height* of a tree: # edges on longest root-to-leaf path
- ► *depth/level* of a node: # edges from root \rightsquigarrow root has depth 0
- ► How many nodes on first *k full* levels?

$$\sum_{\ell=0}^{k} 2^{\ell} = 2^{k+1} - 1$$

→ Height of binary heap: $h = \min k \text{ s.t. } 2^{k+1} - 1 \ge n = \lfloor \lg(n) \rfloor$

Analysis

Height of binary heaps:

- *height* of a tree: # edges on longest root-to-leaf path
- ► *depth/level* of a node: #edges from root ~ root has depth 0
- ► How many nodes on first *k full* levels?

$$\sum_{\ell=0}^{k} 2^{\ell} = 2^{k+1} - 1$$

→ Height of binary heap: $h = \min k \text{ s.t. } 2^{k+1} - 1 \ge n = \lfloor \lg(n) \rfloor$

Analysis:

- ▶ insert: new element "swims" up $\rightarrow \leq h$ steps (h cmps)
- ▶ delMax: last element "sinks" down $\rightarrow = h$ steps (2h cmps)
- construct from n elements:

cost = cost of letting *each node* in heap sink!

$$\leq 1 \cdot h + 2 \cdot (h - 1) + 4 \cdot (h - 2) + \dots + 2^{\ell} \cdot (h - \ell) + \dots + 2^{h - 1} \cdot 1 + 2^{h} \cdot 0$$

= $\sum_{\ell=0}^{h} 2^{\ell} (h - \ell) = \sum_{i=0}^{h} \frac{2^{h}}{2^{i}} i = 2^{h} \sum_{i=0}^{h} \frac{i}{2^{i}} \leq 2 \cdot 2^{h} \leq 4n$

Binary heap summary

Operation	Running Time
construct(A[1n])	O(n)
max()	O(1)
<pre>insert(x,p)</pre>	$O(\log n)$
delMax()	$O(\log n)$
changeKey(x, p')	$O(\log n)$
isEmpty()	<i>O</i> (1)
size()	<i>O</i> (1)

3.5 Symbol Tables

Symbol table ADT

.Java: java.util.Map<K,V>

Symbol table / Dictionary / Map / Associative array / key-value store:

Latin: related to DICTATE like a dictator. 2 overbea laver orially adv. [Latin: re laks. TATOR diction /'dikf(ə)n/ n. ma t into ciation in speaking or dictio from dico dict- say dictionary /'dikjənəri/ isky, book listing (usu. alpha explaining the words of digiving corresponding wo ned language. 2 reference be to the terms of a parti

Python dict {k:v}

- put(k,v) Python dict: d[k] = v Put key-value pair (k, v) into table
- get(k) Python dict: d[k]
 Return value associated with key k
- delete(k) Python dict: del d[k]
 Remove key k (any associated value) form table
- contains(k) Python dict: k in d Returns whether the table has a value for key k
- isEmpty(), size()
- create()

Most fundamental building block in computer science.

(Every programming library has a symbol table implementation.)

Symbol tables vs. mathematical functions

- similar interface
- but: mathematical functions are *static/immutable* (never change their mapping) (Different mapping is a *different* function)
- symbol table = *dynamic* mapping
 Function may change over time

Elementary implementations

Unordered (linked) list:

🖒 Fast put

$$k_1 | v_1 = (L_2 | v_2 - 5) (15) | v_2$$

- $\Theta(n)$ time for get
 - $\rightsquigarrow\,$ Too slow to be useful

Elementary implementations

Unordered (linked) list:

🖒 Fast put

 $\mathbf{\nabla} \ \Theta(n)$ time for get

 $\rightsquigarrow\,$ Too slow to be useful

Sorted linked list: $\Theta(n)$ time for put $\Theta(n)$ time for get \sim Too slow to be useful

→ Sorted order does not help us at all?!

It does help . . . if we have a sorted array!

Example: search for 69

It does help . . . if we have a sorted array!

It does help ... if we have a sorted array!

Example: search for 69

It does help ... if we have a sorted array!

Example: search for 69

It does help . . . if we have a sorted array!

Example: search for 69.1

3.6 Binary Search Trees

Clicker Question

What is a binary search tree (tree in symmetric order)?

- A tree in which every node has exactly 2 children.
- A tree where all keys in the left subtree are smaller than the key at the root and all keys in the right subtree are bigger than the key at the root.
- A tree where all keys in the left subtree and right subtree are bigger than the key at the root.
- A tree that is stored in the heap-area of the memory.

Clicker Question

Binary search trees

Binary search trees (BSTs) \approx dynamic sorted array

- binary tree
 - Each node has left and right child
 - Either can be empty (null)
- Keys satisfy *search-tree property*

all keys in left subtree \leq root key \leq all keys in right subtree

BST insert

Example: Insert 88

BST insert

⊊ Example: Insert 8≸

BST insert

Example: Insert 88

BST delete

Analysis

cmps = length of search path + 1 < height of BST + 1 h

total time O(h)

Insert: O(h) unsuccessful search as one path + O(1) effort
Delete: O(h) at most one root - to - leaf path

BST summary

Operation	Running Time
construct(A[1n])	O(nh)
put(k,v)	O(h)
get(k)	O(h)
delete(k)	O(h)
contains(<i>k</i>)	O(h)
isEmpty()	<i>O</i> (1)
size()	O(1)

What is the height of a BST?

What is the height of a BST?

Worst Case: **Average Case:** = random permutation model \blacktriangleright $h = n - 1 = \Theta(n)$ Assumption: insertions come in random order no deletions \rightsquigarrow $h = \Theta(\log n)$ in expectation even "with high probability": $\forall d \exists c : \Pr[h \ge c \lg(n)] \le n^{-d}$ & exam Precise analysis: cost of finding vandous key in ST easier: EXPECTED, cost of searching ALL begs in BST random: order of inserbious n= # heys Cn of Ent again built from vandiou permetables 4 -34

(d) telescoping
$$n G_u = (n+1) C_{n-1} + 2n-1$$
]; (n)(n+1) (n=1)

$$\frac{C_n}{n+1} = \frac{C_{n-1}}{n} + \frac{2n-1}{n(n+1)}$$

 $D_{n} = \frac{L_{n}}{n+1} \qquad D_{n} = D_{n-1} + -\dots + (n \ge 1)$ $= \sum_{k=1}^{n} \frac{2k^{-1}}{k(k+1)} \quad (\text{rearsion and som})$

$$\frac{2k-1}{k(k+1)} = \frac{-1}{k} + \frac{3}{k+1}$$

$$D_{n} = \sum_{k=1}^{n} \left(\frac{3}{k+1} - \frac{1}{k}\right) = 3\sum_{k=2}^{n+1} \frac{1}{k} - \left(\sum_{k=1}^{n} \frac{1}{k}\right)$$

$$= \frac{3}{k+1} - 3 + 3H_{n} - H_{n}$$

$$= 2H_n - 3 + \frac{3}{k_+}$$

$$C_n = 2(n+1)H_n - 3(n+1) + 3 \sim 2n lnn \approx 1.38 n lgn$$

$$TCSCS$$

$$H_n \sim ln$$

3.7 Ordered Symbol Tables

Ordered symbol tables

min(), max()

Return the smallest resp. largest key in the ST

- ► floor(x), $\lfloor x \rfloor = \mathbb{Z}.floor(x)$ Return largest key k in ST with $k \le x$.
- ceiling(x) Return smallest key k in ST with $k \ge x$.
- rank(x)
 Return the number of keys k in ST k < x.</pre>
- ▶ select(*i*) Return the *i*th smallest key in ST (zero-based, i. e., $i \in [0..n)$)

With select, we can simulate access as in a truly dynamic array!. (Might not need any keys at all then!)

Clicker Question

Why store subtree sizes?

- ▶ Note that in an augmented BST, each node stores the **size of its subtree**.
- ... why not directly store the rank?

Would make rank/select much simpler!

Why store subtree sizes?

- ▶ Note that in an augmented BST, each node stores the size of its subtree.
- ▶ ... why not directly store the rank? Would make rank/select much simpler!
- Problem: Single insertion/deletion can change all node ranks!
- $\rightsquigarrow~$ Cannot efficiently maintain node ranks.

Subtree sizes only change along search path $\rightsquigarrow O(h)$ nodes affected

3.8 Balanced BSTs

Clicker Question

Balanced BSTs

Balanced binary search trees:

- ▶ imposes shape invariant that guarantees *O*(log *n*) height
- adds rules to restore invariant after updates

Balanced BSTs

Balanced binary search trees:

- ▶ imposes shape invariant that guarantees *O*(log *n*) height
- adds rules to restore invariant after updates
- many examples known
 - AVL trees (height-balanced trees)
 - red-black trees
 - weight-balanced trees (BB[α] trees)
 - ▶ ...

Balanced BSTs

Balanced binary search trees:

- ▶ imposes shape invariant that guarantees *O*(log *n*) height
- adds rules to restore invariant after updates
- many examples known
 - AVL trees (height-balanced trees)
 - red-black trees
 - weight-balanced trees (BB[α] trees)
 - ▶ ...

Other options:

I'd love to talk more about all of these . . . (Maybe another time)

- amortization: splay trees, scapegoat trees
 COLA (cache oblivious lookahead array)
- randomization: randomized BSTs, treaps, skip lists

Balanced binary search tree

Binary heaps

Operation	Running Time	Operation	Running Time
construct(A[1n])	$O(n \log n)$	construct(A[1n])	O(n)
put(k,v)	$O(\log n)$	<pre>insert(x,p)</pre>	$O(\log n)$
get(k)	$O(\log n)$	delMax()	$O(\log n)$
delete(<i>k</i>)	$O(\log n)$	changeKey(x , p')	$O(\log n)$
contains(<i>k</i>)	$O(\log n)$	max()	O(1)
isEmpty()	<i>O</i> (1)	isEmpty()	<i>O</i> (1)
size()	<i>O</i> (1)	size()	<i>O</i> (1)
<pre>min() / max()</pre>	$O(\log n) \rightsquigarrow O(1)$		
floor(<i>x</i>)	$O(\log n)$		
ceiling(x)	$O(\log n)$		
rank(x)	$O(\log n)$		
<pre>select(i)</pre>	$O(\log n)$		

Balanced binary search tree

Binary heaps

Operation	Running Time	Ope	ration	Running Time
construct(A[1n])	$O(n \log n)$	cons	truct(A[1n])	O(n)
put(<i>k</i> , <i>v</i>)	$O(\log n)$	inse	rt(x,p)	$O(\log n)$
get(k)	$O(\log n)$	delM	ax()	$O(\log n)$
delete(<i>k</i>)	$O(\log n)$	chan	geKey(x, p')	$O(\log n)$
contains(<i>k</i>)	$O(\log n)$	max()	O(1)
isEmpty()	<i>O</i> (1)	isEm	pty()	<i>O</i> (1)
size()	<i>O</i> (1)	size	()	<i>O</i> (1)
min() / max()	$O(\log n) \rightsquigarrow O(1)$			
floor(<i>x</i>)	$O(\log n)$		 apart from faster construct, BSTs always as good as binary heat 	
ceiling(x)	$O(\log n)$			
<pre>rank(x)</pre>	$O(\log n)$	E		
<pre>select(i)</pre>	$O(\log n)$			

Balanced binary search tree

Binary heaps

Operation	Running Time	Operation	Running Time
construct(A[1n])	$O(n \log n)$	construct(A[1n])	<i>O</i> (<i>n</i>)
put(k,v)	$O(\log n)$	insert(x,p)	$O(\log n)$
get(k)	$O(\log n)$	delMax()	$O(\log n)$
delete(k)	$O(\log n)$	changeKey(x, p')	$O(\log n)$
contains(<i>k</i>)	$O(\log n)$	max()	O(1)
isEmpty()	<i>O</i> (1)	isEmpty()	<i>O</i> (1)
size()	<i>O</i> (1)	size()	<i>O</i> (1)
min() / max()	$O(\log n) \rightsquigarrow O(1)$	-	
floor(<i>x</i>)	$O(\log n)$	a part from factor construct	oon of much
ceiling(x)	$O(\log n)$	 Apart from faster construct, BSTs always as good as binary heaj MaxPQ abstraction still helpful 	
rank(x)	$O(\log n)$		
<pre>select(i)</pre>	$O(\log n)$		

Balanced binary search tree

Binary heaps Strict Fibonacci heaps

Operation	Running Time
construct(A[1n])	$O(n \log n)$
put(k,v)	$O(\log n)$
get(k)	$O(\log n)$
delete(k)	$O(\log n)$
contains(k)	$O(\log n)$
isEmpty()	<i>O</i> (1)
size()	<i>O</i> (1)
min() / max()	$O(\log n) \rightsquigarrow O(1)$
floor(<i>x</i>)	$O(\log n)$
<pre>ceiling(x)</pre>	$O(\log n)$
rank(x)	$O(\log n)$
<pre>select(i)</pre>	$O(\log n)$

Operation	Running Time
construct(A[1n])	<i>O</i> (<i>n</i>)
insert(x,p)	$O(\log n) O(1)$
delMax()	$O(\log n)$
changeKey(x, p')	$O(\log n) O(1)$
max()	O(1)
isEmpty()	<i>O</i> (1)
size()	<i>O</i> (1)

- apart from faster construct, BSTs always as good as binary heaps
- MaxPQ abstraction still helpful
- and faster heaps exist!

3.9 Hashing

The fastest implementations of the ordered symbol table ADT require $\Theta(\log n)$ time to search among *n* items. Is this the best possible?

The fastest implementations of the ordered symbol table ADT require $\Theta(\log n)$ time to search among *n* items. Is this the best possible?

Theorem: In the comparison model (on the keys), $\Omega(\log n)$ comparisons are required to search a size-*n* dictionary.

The fastest implementations of the ordered symbol table ADT require $\Theta(\log n)$ time to search among *n* items. Is this the best possible?

Theorem: In the comparison model (on the keys), $\Omega(\log n)$ comparisons are required to search a size-*n* dictionary.

Proof: Similar to lower bound for sorting (see Unit 4). Any algorithm defines a binary decision tree with

comparisons at the nodes and actions at the leaves.

There are at least n + 1 different actions (return an item, or "not found").

So there are $\Omega(n)$ leaves, and therefore the height is $\Omega(\log n)$.

The fastest implementations of the ordered symbol table ADT require $\Theta(\log n)$ time to search among *n* items. Is this the best possible?

Theorem: In the comparison model (on the keys), $\Omega(\log n)$ comparisons are required to search a size-*n* dictionary.

Proof: Similar to lower bound for sorting (see Unit 4). Any algorithm defines a binary decision tree with comparisons at the nodes and actions at the leaves. There are at least n + 1 different actions (return an item, or "not found"). So there are $\Omega(n)$ leaves, and therefore the height is $\Omega(\log n)$.

What if we don't need the ordered symbol table operations?

 \rightsquigarrow Focus on symbol table operations: get, put, contains, delete

Symbol Table without Sorting

- ▶ key idea in hashing: everything is ultimately an integer, or can be turned into one!
- \rightsquigarrow hash function $h: U \rightarrow [0..m)$
 - maps elements from universe U to integers
 - h(x) used as index in a hash table T[0..m)
- if h is quick to compute and all stored elements hash to different indices get, put, contains, delete become simple array operations!
- $\rightsquigarrow\,$ symbol table with O(1) time per operation
Symbol Table without Sorting

- ▶ key idea in hashing: everything is ultimately an integer, or can be turned into one!
- \rightsquigarrow hash function $h: U \rightarrow [0..m)$
 - maps elements from universe U to integers
 - h(x) used as index in a hash table T[0..m)
- if h is quick to compute and all stored elements hash to different indices get, put, contains, delete become simple array operations!
- $\rightsquigarrow\,$ symbol table with O(1) time per operation

(can make it so ("perfect hashing"), but usually too expensive)

- **f** Generally hash function *h* is not injective, so many keys can map to the same integer.
- We get *collisions*: we want to insert (k, v) into the table, but T[h(k)] is already occupied.
 - ▶ *Birthday Paradox:* quite likely! Some collision with prob. $\geq \frac{1}{e}$ when $n \geq 2\sqrt{m}$
 - $\rightsquigarrow~$ need to deal with them

Handling Collision

- Two basic strategies to deal with collisions:
 - Buckets/Chaining: Allow multiple items at each table location each table location points to linked list
 - Open addressing: Allow each item to go into multiple locations need strategy to define and search these locations
 - linear probing
 - quadratic probing
 - Robin Hood hashing
 - Cuckoo hashing

(for full details of these strategies, see Algorithms and Data Structures)

Handling Collision

- Two basic strategies to deal with collisions:
 - Buckets/Chaining: Allow multiple items at each table location each table location points to linked list
 - Open addressing: Allow each item to go into multiple locations need strategy to define and search these locations
 - linear probing
 - quadratic probing
 - Robin Hood hashing
 - Cuckoo hashing

(for full details of these strategies, see Algorithms and Data Structures)

- We evaluate strategies by the average cost of get, put, delete in terms of n, m, and/or the *load factor* $\alpha = n/m$.
- \rightsquigarrow Might have to rebuild the whole hash table and change the value of *m* when the load factor gets too large or too small.
 - This is called *rehashing*, and costs $\Theta(m + n)$.
 - alternative: dynamic hashing (not here; examples in Algorithms and Data Structures)

Comparison of Classic Hashing Schemes

Hash table design	Search hit	Search miss	Insert	Space	good a
Separate Chaining	$\sim \frac{1}{2}\alpha$	$\sim \alpha$	= miss	n + m	≈ 2
Linear Probing	$\sim \frac{1}{2} \left(1 + \frac{1}{1-\alpha} \right)$	$\sim \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$	= miss	т	≤ 0.5
Quadratic Probing	$\sim 1 + \ln\left(\frac{1}{1-\alpha}\right) - \frac{1}{2}\alpha$	$\sim \frac{1}{1-\alpha} - \alpha + \ln(\frac{1}{1-\alpha})$	= miss	т	≤ 0.7
Robin Hood Hashing	<i>O</i> (1)	<i>O</i> (1)	= miss	т	≤ 1 (=any!)
d-way Cuckoo Hashing	$\leq d$ worst case	$\leq d$ worst case	amort.	т	< c _d

- ► Assumption: uniform hashing (all *mⁿ* hash sequences equally likely)
- Cost: expected # (equality) comparisons
- Space usage in words on top of space for items (without space for optional optimizations)

Comparison of Classic Hashing Schemes

Hash table design	Search hit	Search miss	Insert	Space	good a
Separate Chaining	$\sim \frac{1}{2}\alpha$	$\sim \alpha$	= miss	n + m	≈ 2
Linear Probing	$\sim \frac{1}{2} \left(1 + \frac{1}{1-\alpha} \right)$	$\sim \frac{1}{2} \left(1 + \frac{1}{(1-\alpha)^2} \right)$	= miss	т	≤ 0.5
Quadratic Probing	$\sim 1 + \ln\left(\frac{1}{1-\alpha}\right) - \frac{1}{2}\alpha$	$\sim \frac{1}{1-\alpha} - \alpha + \ln(\frac{1}{1-\alpha})$	= miss	т	≤ 0.7
Robin Hood Hashing	<i>O</i> (1)	<i>O</i> (1)	= miss	т	≤ 1 (=any!)
d-way Cuckoo Hashing	$\leq d$ worst case	$\leq d$ worst case	amort.	т	< c _d

- ► Assumption: uniform hashing (all *mⁿ* hash sequences equally likely)
- Cost: expected # (equality) comparisons
- ► Space usage in words on top of space for items (without space for optional optimizations)

More improvements possible with word-RAM bitwise tricks ~~ Advanced Data Structures

Hashing vs. Balanced Search Trees

Advantages of Balanced Search Trees

- O(log n) worst-case operation cost
- Does not require any assumptions, special functions, or known properties of input distribution
- Predictable (and often smaller) space usage (exactly *n* nodes)
- Never need to rebuild the entire structure
- supports ordered dictionary operations (rank, select etc.)

Advantages of Hash Tables

- ► *O*(1) operations (if hashes well-spread and load factor small)
- We can choose space-time tradeoff via load factor
- ▶ Cuckoo hashing achieves *O*(1) worst-case for search & delete