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Learning Outcomes

Unit 3: Fundamental Data Structures

1. Understand and demonstrate the difference between abstract data type (ADT) and its
implementation

2. Be able to define the ADTs stack, queue, priority queue and dictionary / symbol table

3. Understand array-based implementations of stack and queue

4. Understand linked lists and the corresponding implementations of stack and queue

5. Know binary heaps and their performance characteristics

6. Understand binary search trees and their performance characteristics

7. Know high-level idea of basic hashing strategies and their performance characteristics
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Clicker Question

 → sli.do/cs566

What’s the running time (on our word-RAM model with word size 𝑤)
of this Java instruction?
Object[] A = new Object[𝑛];

A 1

B Θ(1)

C Θ(log 𝑛)

D Θ(𝑤)

E Θ(𝑛/𝑤)

F Θ(𝑛)

G Θ(𝑛 log 𝑛)

H Θ(𝑛𝑤)

I Θ(𝑛2)



Clicker Question

 → sli.do/cs566

What’s the running time (on our word-RAM model with word size 𝑤)
of this Java instruction?
Object[] A = new Object[𝑛];

A 1

B Θ(1)

C Θ(log 𝑛)

D Θ(𝑤)

E Θ(𝑛/𝑤)✓
F Θ(𝑛)✓

G Θ(𝑛 log 𝑛)

H Θ(𝑛𝑤)

I Θ(𝑛2)



Recap: The Random Access Machine
▶ Data structures make heavy use of pointers and dynamically allocated memory.

▶ Recall: Our RAM model supports
▶ basic pseudocode (≈ simple Python/Java code)
▶ creating arrays of a fixed/known size.
▶ creating instances (objects) of a known class.
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Recap: The Random Access Machine
▶ Data structures make heavy use of pointers and dynamically allocated memory.

▶ Recall: Our RAM model supports
▶ basic pseudocode (≈ simple Python/Java code)
▶ creating arrays of a fixed/known size.
▶ creating instances (objects) of a known class.

Python abstracts this away!
There are no arrays in Python, only its built-in lists

no predefined capacity!

.

But: Python implementations create lists based on fixed-size arrays (stay tuned!)

Python ≠ RAM: Not every built-in Python instruction runs in 𝑂(1) time!
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3.1 Stacks & Queues



Abstract Data Types

abstract data type (ADT)

▶ list of supported operations
▶ what should happen
▶ not: how to do it
▶ not: how to store data

≈ Java interface, Python ABCs

abstract base classes

(with comments)

vs.
data structures

▶ specify exactly
how data is represented

▶ algorithms for operations
▶ has concrete costs

(space and running time)

≈ Java/Python class
(non abstract)
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⇝ reusable code!
▶ (Often) better abstractions
▶ Prove generic lower bounds ( ⇝ Unit 3)
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Clicker Question

 → sli.do/cs566

Which of the following are examples of abstract data types?

A ADT

B Stack

C Deque

D Linked list

E binary search tree

F Queue

G resizable array

H heap

I priority queue

J dictionary/symbol table

K hash table



Clicker Question

 → sli.do/cs566

Which of the following are examples of abstract data types?

A ADT

B Stack✓
C Deque✓
D Linked list

E binary search tree

F Queue✓

G resizable array

H heap

I priority queue✓
J dictionary/symbol

table✓
K hash table



Stacks

Stack ADT

▶ top()
Return the topmost item on the stack
Does not modify the stack.

▶ push(𝑥)
Add 𝑥 onto the top of the stack.

▶ pop()
Remove the topmost item from the stack
(and return it).

▶ isEmpty()
Returns true iff stack is empty.

▶ create()
Create and return an new empty stack.
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Linked-list implementation for Stack
Invariants:

▶ maintain pointer top to topmost element

▶ each element points to the element below it
(or null if bottommost)

1 class Node
2 value
3 next
4

5 class Stack
6 top := null
7 procedure top()
8 return top.value
9 procedure push(𝑥)

10 top := new Node(𝑥, top)
11 procedure pop()
12 𝑡 := top()
13 top := top.next
14 return 𝑡
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Linked-list implementation for Stack – Discussion
Linked stacks:

require Θ(𝑛) space when 𝑛 elements on stack

All operations take 𝑂(1) time

require Θ(𝑛) space when 𝑛 elements on stack

Can we avoid extra space for pointers?
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Array-based implementation for Stack
If we want no pointers ⇝ array-based implementation

Invariants:

▶ maintain array 𝑆 of elements, from bottommost to topmost
▶ maintain index top of position of topmost element in S.
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Array-based implementation for Stack
If we want no pointers ⇝ array-based implementation

Invariants:

▶ maintain array 𝑆 of elements, from bottommost to topmost
▶ maintain index top of position of topmost element in S.

What to do if stack is full upon push?

Array stacks:

▶ require fixed capacity 𝐶 (decided at creation time)!
▶ require Θ(𝐶) space for a capacity of 𝐶 elements
▶ all operations take 𝑂(1) time
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Queues
Operations:

▶ enqueue(𝑥)
Add 𝑥 at the end of the queue.

▶ dequeue()
Remove item at the front of the queue and return it.

Implementations similar to stacks.
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Bags
What do Stack and Queue have in common?
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Bags
What do Stack and Queue have in common?

They are special cases of a Bag!

Operations:

▶ insert(𝑥)
Add 𝑥 to the items in the bag.

▶ delAny()
Remove any one item from the bag and return it.
(Not specified which; any choice is fine.)

▶ roughly similar to Java’s java.util.Collection
Python’s collections.abc.Collection

Sometimes it is useful to state that order is irrelevant ⇝ Bag
Implementation of Bag usually just a Stack or a Queue
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3.2 Resizable Arrays



Digression – Arrays as ADT
Arrays can also be seen as an ADT!

Array operations:
▶ create(𝑛) Java: A = new int[𝑛]; Python: A = [0] * 𝑛

Create a new array with 𝑛 cells, with positions 0, 1, . . . , 𝑛 − 1;
we write 𝐴[0..𝑛) = 𝐴[0..𝑛 − 1]

▶ get(𝑖) Java/Python: A[𝑖]
Return the content of cell 𝑖

▶ set(𝑖,𝑥) Java/Python: A[𝑖] = 𝑥;
Set the content of cell 𝑖 to 𝑥.

⇝ Arrays have fixed size (supplied at creation). (≠ lists in Python)
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Digression – Arrays as ADT
Arrays can also be seen as an ADT! . . . but are commonly seen as specific data structure

Array operations:
▶ create(𝑛) Java: A = new int[𝑛]; Python: A = [0] * 𝑛

Create a new array with 𝑛 cells, with positions 0, 1, . . . , 𝑛 − 1;
we write 𝐴[0..𝑛) = 𝐴[0..𝑛 − 1]

▶ get(𝑖) Java/Python: A[𝑖]
Return the content of cell 𝑖

▶ set(𝑖,𝑥) Java/Python: A[𝑖] = 𝑥;
Set the content of cell 𝑖 to 𝑥.

⇝ Arrays have fixed size (supplied at creation). (≠ lists in Python)

Usually directly implemented by compiler + operating system / virtual machine.

Difference to “real” ADTs: Implementation usually fixed
to “a contiguous chunk of memory”.
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Doubling trick
Can we have unbounded stacks based on arrays? Yes!
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Doubling trick
Can we have unbounded stacks based on arrays? Yes!

Invariants:

▶ maintain array 𝑆 of elements, from bottommost to topmost
▶ maintain index top of position of topmost element in S

▶ maintain capacity 𝐶 = 𝑆.length so that 1
4𝐶 ≤ 𝑛 ≤ 𝐶

⇝ can always push more elements!
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Doubling trick
Can we have unbounded stacks based on arrays? Yes!

Invariants:

▶ maintain array 𝑆 of elements, from bottommost to topmost
▶ maintain index top of position of topmost element in S

▶ maintain capacity 𝐶 = 𝑆.length so that 1
4𝐶 ≤ 𝑛 ≤ 𝐶

⇝ can always push more elements!

How to maintain the last invariant?

▶ before push
If 𝑛 = 𝐶, allocate new array of size 2𝑛, copy all elements.

▶ after pop
If 𝑛 < 1

4𝐶, allocate new array of size 2𝑛, copy all elements.
⇝ “Resizing Arrays

an implementation technique, not an ADT!
”
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Clicker Question

 → sli.do/cs566

Which of the following statements about resizable array that
currently stores 𝑛 elements is correct?

A The elements are stored in an array of size 2𝑛.

B Adding or deleting an element at the end takes constant
time.

C A sequence of 𝑚 insertions or deletions at the end of the
array takes time 𝑂(𝑛 + 𝑚).

D Inserting and deleting any element takes 𝑂(1) amortized
time.



Amortized Analysis
▶ Any individual operation push / pop can be expensive!

Θ(𝑛) time to copy all elements to new array.

▶ But: An one expensive operation of cost 𝑇 means Ω(𝑇) next operations are cheap!
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Amortized Analysis
▶ Any individual operation push / pop can be expensive!

Θ(𝑛) time to copy all elements to new array.

▶ But: An one expensive operation of cost 𝑇 means Ω(𝑇) next operations are cheap!

Formally: consider “credits/potential”

distance to boundary

Φ = min{𝑛 − 1
4𝐶 , 𝐶 − 𝑛} ∈ [0, 0.6

since 𝑛 ≤ 𝐶 ≤ 4𝑛

𝑛]
▶ amortized cost of an operation = actual cost (array accesses) − 4 · change in Φ

▶ cheap push/pop: actual cost 1 array access, consumes ≤ 1 credits ⇝ amortized cost ≤ 5
▶ copying push: actual cost 2𝑛 + 1 array accesses, creates 1

2𝑛 + 1 credits ⇝ amortized cost ≤ 5
▶ copying pop: actual cost 2𝑛 + 1 array accesses, creates 1

2𝑛 − 1 credits ⇝ amortized cost 5

⇝ sequence of 𝑚 operations: total actual cost ≤ total amortized cost + final credits
here: ≤ 5𝑚 + 4 · 0.6𝑛 = Θ(𝑚 + 𝑛)
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Clicker Question

 → sli.do/cs566

Which of the following statements about resizable array that
currently stores 𝑛 elements is correct?

A The elements are stored in an array of size 2𝑛.

B Adding or deleting an element at the end takes constant
time.
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D Inserting and deleting any element takes 𝑂(1) amortized
time.



Clicker Question

 → sli.do/cs566

Which of the following statements about resizable array that
currently stores 𝑛 elements is correct?

A The elements are stored in an array of size 2𝑛.

B Adding or deleting an element at the end takes constant
time.

C A sequence of 𝑚 insertions or deletions at the end of the
array takes time 𝑂(𝑛 + 𝑚).✓

D Inserting and deleting any element takes 𝑂(1) amortized
time.



Deamortized Resizable Arrays
What if we need 𝑂(1) worst case time?
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▶ It’s possible to de-amortize the resizing arrays solution!
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of twice and half the size of 𝑆
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▶ upon resize, “shift” arrays up/down ⇝ 𝑆2 resp. 𝑆1/2 become new 𝑆
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▶ every insert or delete copies 2 slots from last resize
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Deamortized Resizable Arrays
What if we need 𝑂(1) worst case time?

▶ It’s possible to de-amortize the resizing arrays solution!
▶ maintain 3 arrays: 𝑆 (as before) and 𝑆2 and 𝑆1/2

of twice and half the size of 𝑆

▶ write operations go to all 3 arrays
▶ upon resize, “shift” arrays up/down ⇝ 𝑆2 resp. 𝑆1/2 become new 𝑆

▶ allocate new array, but delay filling it with elements
general strategy!

▶ every insert or delete copies 2 slots from last resize

⇝ by time for next resize, we have caught up and 𝑆2 resp. 𝑆1/2 ready to use

Analysis:

▶ 𝑂(1) worst case

assuming memory allocation in 𝑂(1) ⇝ needs to be uninitialized!

time for read/write by index, push, and pop!
▶ up to 7 array accesses

other time-space trade-offs possible

per operation
▶ up to 7𝑛 space
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Rabbit Hole: Can we do this more space-efficiently?
▶ It might appear as if every efficient implementation of a stack needs Ω(𝑛) extra space on

top of space for storing the 𝑛 elements in the stack.
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Rabbit Hole: Can we do this more space-efficiently?
▶ It might appear as if every efficient implementation of a stack needs Ω(𝑛) extra space on

top of space for storing the 𝑛 elements in the stack.

▶ But this is not true!

▶ Can get operations in 𝑂(1) worst-case time with 𝑂(√𝑛) extra space at any time (!)
▶ Maintain a collection of small arrays (plus header with pointers to them)
▶ Clever choice of block sizes guarantees

𝑂(√𝑛) blocks of 𝑂(√𝑛) elements throughout
and fast calculation of address for an index.
imaginary “superblocks” of sizes 2𝑘 , 𝑘 = 0, 1, . . . , lg 𝑛
𝑘th superblock consists of 2𝑘/2 actual blocks of 2𝑘/2 elements each.

▶ 𝑂(√𝑛) extra space is best possible

Resizable Arrays in Optimal Time and Space
Andrej Brodnik, Svante Carlsson, Erik D. Demaine, J. Ian Munro & Robert Sedgewick
WADS 1999
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3.3 Priority Queues & Binary Heaps



Clicker Question

 → sli.do/cs566

What is a heap-ordered tree?

A A tree in which every node has exactly 2 children.

B A tree where all keys in the left subtree are smaller than the
key at the root and all keys in the right subtree are bigger
than the key at the root.

C A tree where all keys in the left subtree and right subtree are
smaller than the key at the root.

D An tree that is stored in the heap-area of the memory.



Priority Queue ADT
Now: elements in the bag have different priorities.

(Max-oriented) Priority Queue (MaxPQ):

▶ construct(𝐴)
Construct from from elements in array 𝐴.

▶ insert(𝑥,𝑝)
Insert item 𝑥 with priority 𝑝 into PQ.

▶ max()
Return item with largest priority. (Does not modify the PQ.)

▶ delMax()
Remove the item with largest priority and return it.

▶ changeKey(𝑥,𝑝′)
Update 𝑥’s priority to 𝑝′.
Sometimes restricted to increasing priority.

▶ isEmpty()

Fundamental building block in many applications.
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Priority Queue ADT – min-oriented version
Now: elements in the bag have different priorities.

(Max-
Min-

oriented) Priority Queue (Max
Min

PQ):

▶ construct(𝐴)
Construct from from elements in array 𝐴.

▶ insert(𝑥,𝑝)
Insert item 𝑥 with priority 𝑝 into PQ.

▶ maxmin()
Return item with largest

smallest
priority. (Does not modify the PQ.)

▶ delMax
Min

()
Remove the item with largest

smallest
priority and return it.

▶ changeKey(𝑥,𝑝′)
Update 𝑥’s priority to 𝑝′.
Sometimes restricted to in

de
creasing priority.

▶ isEmpty()

Fundamental building block in many applications.
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PQ implementations
Elementary implementations

▶ unordered list ⇝ Θ(1) insert, but Θ(𝑛) delMax
▶ sorted list ⇝ Θ(1) delMax, but Θ(𝑛) insert
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PQ implementations
Elementary implementations

▶ unordered list ⇝ Θ(1) insert, but Θ(𝑛) delMax
▶ sorted list ⇝ Θ(1) delMax, but Θ(𝑛) insert

Can we get something between these extremes? Like a “slightly sorted” list?
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PQ implementations
Elementary implementations

▶ unordered list ⇝ Θ(1) insert, but Θ(𝑛) delMax
▶ sorted list ⇝ Θ(1) delMax, but Θ(𝑛) insert

Can we get something between these extremes? Like a “slightly sorted” list?

Yes! Binary heaps.

Array view

Heap = array 𝐴 with
∀𝑖 ∈ [𝑛] : 𝐴[⌊ 𝑖/2⌋] ≥ 𝐴[𝑖] ≡

store nodes
in level order

in 𝐴[1..𝑛]

Tree view

Heap = tree that is
(i) a complete binary tree

all but last level full
last level flush left

(ii) heap ordered

parent ≥ children

16



Binary heap example
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Why heap-shaped trees?
Why complete binary tree shape?

▶ only one possible tree shape ⇝ keep it simple!
▶ complete binary trees have minimal height among all binary trees
▶ simple formulas for moving from a node to parent or children:

For a node at index 𝑘 in 𝐴  Recall: nodes at indices [1..𝑛]
▶ parent at ⌊ 𝑘/2⌋ (for 𝑘 ≥ 2)
▶ left child at 2𝑘
▶ right child at 2𝑘 + 1
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Why heap-shaped trees?
Why complete binary tree shape?

▶ only one possible tree shape ⇝ keep it simple!
▶ complete binary trees have minimal height among all binary trees
▶ simple formulas for moving from a node to parent or children:

For a node at index 𝑘 in 𝐴  Recall: nodes at indices [1..𝑛]
▶ parent at ⌊ 𝑘/2⌋ (for 𝑘 ≥ 2)
▶ left child at 2𝑘
▶ right child at 2𝑘 + 1

Why heap ordered?

▶ Maximum must be at root! ⇝ max() is trivial!
▶ But: Sorted only along paths of the tree; leaves lots of leeway for fast

how? . . . stay tuned

inserts
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Clicker Question

 → sli.do/cs566

What is a heap-ordered tree?

A A tree in which every node has exactly 2 children.

B A tree where all keys in the left subtree are smaller than the
key at the root and all keys in the right subtree are bigger
than the key at the root.

C A tree where all keys in the left subtree and right subtree are
smaller than the key at the root.✓

D An tree that is stored in the heap-area of the memory.



3.4 Operations on Binary Heaps



Insert
1. Add new element at only possible place: bottom-most level, next free spot.

2. Let element swim up to repair heap order.
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Delete Max
1. Remove max (must be in root).

2. Move last element (bottom-most, rightmost) into root.

3. Let root key sink in heap to repair heap order.
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Heap construction
▶ 𝑛 times insert ⇝ Θ(𝑛 log 𝑛)
▶ instead:

1. Start with singleton heaps (one element)
2. Repeatedly merge two heaps of height 𝑘 with new element into heap of height 𝑘 + 1

21



Analysis
Height of binary heaps:
▶ height of a tree: # edges on longest root-to-leaf path
▶ depth/level of a node: # edges from root ⇝ root has depth 0

▶ How many nodes on first 𝑘 full levels?
𝑘Õ

ℓ=0
2ℓ = 2𝑘+1 − 1

⇝ Height of binary heap: ℎ = min 𝑘 s.t. 2𝑘+1 − 1 ≥ 𝑛 = ⌊ lg(𝑛)⌋
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Analysis
Height of binary heaps:
▶ height of a tree: # edges on longest root-to-leaf path
▶ depth/level of a node: # edges from root ⇝ root has depth 0

▶ How many nodes on first 𝑘 full levels?
𝑘Õ

ℓ=0
2ℓ = 2𝑘+1 − 1

⇝ Height of binary heap: ℎ = min 𝑘 s.t. 2𝑘+1 − 1 ≥ 𝑛 = ⌊ lg(𝑛)⌋
Analysis:
▶ insert: new element “swims” up ⇝ ≤ ℎ steps (ℎ cmps)
▶ delMax: last element “sinks” down ⇝ ≤ ℎ steps (2ℎ cmps)
▶ construct from 𝑛 elements:

cost = cost of letting each node in heap sink!

≤ 1 · ℎ + 2 · (ℎ − 1) + 4 · (ℎ − 2) + · · · + 2ℓ · (ℎ − ℓ ) + · · · + 2ℎ−1 · 1 + 2ℎ · 0

=
ℎÕ

ℓ=0
2ℓ (ℎ − ℓ ) =

ℎÕ
𝑖=0

2ℎ

2𝑖
𝑖 = 2ℎ

ℎÕ
𝑖=0

𝑖
2𝑖

≤ 2 · 2ℎ ≤ 4𝑛
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Binary heap summary

Operation Running Time

construct(𝐴[1..𝑛]) 𝑂(𝑛)
max() 𝑂(1)
insert(𝑥,𝑝) 𝑂(log 𝑛)
delMax() 𝑂(log 𝑛)
changeKey(𝑥,𝑝′) 𝑂(log 𝑛)
isEmpty() 𝑂(1)
size() 𝑂(1)
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3.5 Symbol Tables



Symbol table ADT
Symbol table / Dictionary

Python dict {k:v}

/ Map

Java: java.util.Map<K,V>

/ Associative array / key-value store:

▶ put(𝑘,𝑣) Python dict: d[𝑘] = 𝑣

Put key-value pair (𝑘 , 𝑣) into table
▶ get(𝑘) Python dict: d[𝑘]

Return value associated with key 𝑘

▶ delete(𝑘) Python dict: del d[𝑘]

Remove key 𝑘 (any associated value) form table
▶ contains(𝑘) Python dict: 𝑘 in d

Returns whether the table has a value for key 𝑘

▶ isEmpty(), size()
▶ create()

Most fundamental building block in computer science.
(Every programming library has a symbol table implementation.)
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Symbol tables vs. mathematical functions
▶ similar interface

▶ but: mathematical functions are static/immutable (never change their mapping)
(Different mapping is a different function)

▶ symbol table = dynamic mapping
Function may change over time

25



Elementary implementations
Unordered (linked) list:

Fast put

Θ(𝑛) time for get

⇝ Too slow to be useful
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Elementary implementations
Unordered (linked) list:

Fast put

Θ(𝑛) time for get

⇝ Too slow to be useful

Sorted linked list:

Θ(𝑛) time for put

Θ(𝑛) time for get

⇝ Too slow to be useful

⇝ Sorted order does not help us at all?!

26



Binary search
It does help . . . if we have a sorted array!

Example: search for 69
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 12 17 28 35 55 57 63 69 77 79 80 82 85 88 97
ℓ 𝑟𝑚
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Binary search
It does help . . . if we have a sorted array!

Example: search for 69
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 12 17 28 35 55 57 63 69 77 79 80 82 85 88 97
ℓ 𝑟𝑚

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 12 17 28 35 55 57 63 69 77 79 80 82 85 88 97
ℓ 𝑟𝑚

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 12 17 28 35 55 57 63 69 77 79 80 82 85 88 97
ℓ 𝑟𝑚

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 12 17 28 35 55 57 63 69 77 79 80 82 85 88 97
ℓ

Binary search:

▶ halve
±1

remaining
list in each step

⇝ ≤ ⌊ lg 𝑛⌋ + 1 cmps
in the worst case

needs random access!
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3.6 Binary Search Trees



Clicker Question

 → sli.do/cs566

What is a binary search tree (tree in symmetric order)?

A A tree in which every node has exactly 2 children.

B A tree where all keys in the left subtree are smaller than the
key at the root and all keys in the right subtree are bigger
than the key at the root.

C A tree where all keys in the left subtree and right subtree are
bigger than the key at the root.

D A tree that is stored in the heap-area of the memory.



Clicker Question

 → sli.do/cs566

What is a binary search tree (tree in symmetric order)?

A A tree in which every node has exactly 2 children.

B A tree where all keys in the left subtree are smaller than the
key at the root and all keys in the right subtree are bigger
than the key at the root.✓

C A tree where all keys in the left subtree and right subtree are
bigger than the key at the root.

D A tree that is stored in the heap-area of the memory.



Binary search trees
Binary search trees (BSTs) ≈ dynamic sorted array
▶ binary tree

▶ Each node has left and right child
▶ Either can be empty (null)

▶ Keys satisfy search-tree property

all keys in left subtree ≤ root key ≤ all keys in right subtree
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BST example & find

11

12

17

28

35

55

57

63

69

77

79

80

82

85

97

11 12 17 28 35 55 57 63 69 77 79 80 82 85 97
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BST insert

Example: Insert 88
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9711 12 17 28 35 55 57 63 69 77 79 80 82 85
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BST insert

Example: Insert 88
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BST insert

Example: Insert 88
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BST insert

Example: Insert 88
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57
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69

77

79
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97

9788
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11 12 17 28 35 55 57 63 69 77 79 80 82 85
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BST delete
▶ Easy case: remove leaf, e. g., 11 ⇝ replace by null
▶ Medium case: remove unary, e. g., 69 ⇝ replace by unique child
▶ Hard case: remove binary, e. g., 85 ⇝ swap with predecessor, recurse

11

12

17

28

35

55

57

63

69

77

79

80

82

85

97

88

11 12 17 28 35 55 57 63 69 77 79 80 82 85 88 97
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Analysis
▶ Search:

▶ Insert:

▶ Delete:
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BST summary

Operation Running Time

construct(𝐴[1..𝑛]) 𝑂(𝑛ℎ)
put(𝑘,𝑣) 𝑂(ℎ)
get(𝑘) 𝑂(ℎ)
delete(𝑘) 𝑂(ℎ)
contains(𝑘) 𝑂(ℎ)
isEmpty() 𝑂(1)
size() 𝑂(1)
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What is the height of a BST?
Worst Case:

▶ ℎ = 𝑛 − 1 = Θ(𝑛)

34



What is the height of a BST?
Worst Case:

▶ ℎ = 𝑛 − 1 = Θ(𝑛)
Average Case:

▶ Assumption: insertions come in random order
no deletions

⇝ ℎ = Θ(log 𝑛) in expectation

even “with high probability”:
∀𝑑 ∃𝑐 : Pr[ℎ ≥ 𝑐 lg(𝑛)] ≤ 𝑛−𝑑
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3.7 Ordered Symbol Tables



Ordered symbol tables
▶ min(), max()

Return the smallest resp. largest key in the ST

▶ floor(𝑥), ⌊𝑥⌋ = ℤ.floor(𝑥)

Return largest key 𝑘 in ST with 𝑘 ≤ 𝑥.

▶ ceiling(𝑥)
Return smallest key 𝑘 in ST with 𝑘 ≥ 𝑥.

▶ rank(𝑥)
Return the number of keys 𝑘 in ST 𝑘 < 𝑥.

▶ select(𝑖)
Return the 𝑖th smallest key in ST (zero-based, i. e., 𝑖 ∈ [0..𝑛))

With select, we can simulate access as in a truly dynamic array!.
(Might not need any keys at all then!)
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Clicker Question

 → sli.do/cs566

In the BST below, what would rank(35) return?

11

12

17

28

35

55

57

63

69

77

79

80

82

85

97

88



Augmented BSTs

11

12

17

28

35

55

57

63

69

77

79

80

82

85

97

88
1

9

1

4

2

1

7

1

2

16

1

3

1

6

1

2
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11
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17

28

35

55

57

63

69

77

79

80

82

85

97

88
1

9

1

4

2

1

7

1

2

16

1

3

1

6

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 12 17 28 35 55 57 63 69 77 79 80 82 85 88 97
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Select

11
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28

35

55

57

63

69

77
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85
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9

1

4

2

1

7

1

2

16

1

3

1

6

1

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 12 17 28 35 55 57 63 69 77 79 80 82 85 88 97
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Why store subtree sizes?
▶ Note that in an augmented BST, each node stores the size of its subtree.

▶ . . . why not directly store the rank? Would make rank/select much simpler!
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Why store subtree sizes?
▶ Note that in an augmented BST, each node stores the size of its subtree.

▶ . . . why not directly store the rank? Would make rank/select much simpler!

▶ Problem: Single insertion/deletion can change all node ranks!

⇝ Cannot efficiently maintain node ranks.

Subtree sizes only change along search path ⇝ 𝑂(ℎ) nodes affected
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3.8 Balanced BSTs



Clicker Question

 → sli.do/cs566

What ways of maintaining a balanced binary search tree do you
know?
Write “none” if you have not seen balanced BSTs before.



Balanced BSTs
Balanced binary search trees:

▶ imposes shape invariant that guarantees 𝑂(log 𝑛) height

▶ adds rules to restore invariant after updates
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▶ many examples known
▶ AVL trees (height-balanced trees)
▶ red-black trees
▶ weight-balanced trees (BB[𝛼] trees)
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Balanced BSTs
Balanced binary search trees:

▶ imposes shape invariant that guarantees 𝑂(log 𝑛) height

▶ adds rules to restore invariant after updates

▶ many examples known
▶ AVL trees (height-balanced trees)
▶ red-black trees
▶ weight-balanced trees (BB[𝛼] trees)
▶ . . .

Other options:

▶ amortization: splay trees, scapegoat trees

I’d love to talk more about all of these . . .
(Maybe another time)

COLA (cache oblivious lookahead array)

▶ randomization: randomized BSTs, treaps, skip lists
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BSTs vs. Heaps

Balanced binary search tree

Operation Running Time

construct(𝐴[1..𝑛]) 𝑂(𝑛 log 𝑛)
put(𝑘,𝑣) 𝑂(log 𝑛)
get(𝑘) 𝑂(log 𝑛)
delete(𝑘) 𝑂(log 𝑛)
contains(𝑘) 𝑂(log 𝑛)
isEmpty() 𝑂(1)
size() 𝑂(1)
min() / max() 𝑂(log 𝑛) ⇝ 𝑂(1)
floor(𝑥) 𝑂(log 𝑛)
ceiling(𝑥) 𝑂(log 𝑛)
rank(𝑥) 𝑂(log 𝑛)
select(𝑖) 𝑂(log 𝑛)

Binary heaps

Operation Running Time

construct(𝐴[1..𝑛]) 𝑂(𝑛)
insert(𝑥,𝑝) 𝑂(log 𝑛)
delMax() 𝑂(log 𝑛)
changeKey(𝑥,𝑝′) 𝑂(log 𝑛)
max() 𝑂(1)
isEmpty() 𝑂(1)
size() 𝑂(1)
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▶ apart from faster construct,
BSTs always as good as binary heaps

41



BSTs vs. Heaps

Balanced binary search tree

Operation Running Time

construct(𝐴[1..𝑛]) 𝑂(𝑛 log 𝑛)
put(𝑘,𝑣) 𝑂(log 𝑛)
get(𝑘) 𝑂(log 𝑛)
delete(𝑘) 𝑂(log 𝑛)
contains(𝑘) 𝑂(log 𝑛)
isEmpty() 𝑂(1)
size() 𝑂(1)
min() / max() 𝑂(log 𝑛) ⇝ 𝑂(1)
floor(𝑥) 𝑂(log 𝑛)
ceiling(𝑥) 𝑂(log 𝑛)
rank(𝑥) 𝑂(log 𝑛)
select(𝑖) 𝑂(log 𝑛)

Binary heaps

Operation Running Time

construct(𝐴[1..𝑛]) 𝑂(𝑛)
insert(𝑥,𝑝) 𝑂(log 𝑛)
delMax() 𝑂(log 𝑛)
changeKey(𝑥,𝑝′) 𝑂(log 𝑛)
max() 𝑂(1)
isEmpty() 𝑂(1)
size() 𝑂(1)

▶ apart from faster construct,
BSTs always as good as binary heaps

▶ MaxPQ abstraction still helpful

41



BSTs vs. Heaps

Balanced binary search tree

Operation Running Time

construct(𝐴[1..𝑛]) 𝑂(𝑛 log 𝑛)
put(𝑘,𝑣) 𝑂(log 𝑛)
get(𝑘) 𝑂(log 𝑛)
delete(𝑘) 𝑂(log 𝑛)
contains(𝑘) 𝑂(log 𝑛)
isEmpty() 𝑂(1)
size() 𝑂(1)
min() / max() 𝑂(log 𝑛) ⇝ 𝑂(1)
floor(𝑥) 𝑂(log 𝑛)
ceiling(𝑥) 𝑂(log 𝑛)
rank(𝑥) 𝑂(log 𝑛)
select(𝑖) 𝑂(log 𝑛)

Binary heaps Strict Fibonacci heaps

Operation Running Time

construct(𝐴[1..𝑛]) 𝑂(𝑛)
insert(𝑥,𝑝) 𝑂(log 𝑛) 𝑂(1)
delMax() 𝑂(log 𝑛)
changeKey(𝑥,𝑝′) 𝑂(log 𝑛) 𝑂(1)
max() 𝑂(1)
isEmpty() 𝑂(1)
size() 𝑂(1)

▶ apart from faster construct,
BSTs always as good as binary heaps

▶ MaxPQ abstraction still helpful
▶ and faster heaps exist!
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3.9 Hashing



Lower bound for search
The fastest implementations of the ordered symbol table ADT require Θ(log 𝑛) time to search
among 𝑛 items. Is this the best possible?
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The fastest implementations of the ordered symbol table ADT require Θ(log 𝑛) time to search
among 𝑛 items. Is this the best possible?

Theorem: In the comparison model (on the keys),
Ω(log 𝑛) comparisons are required to search a size-𝑛 dictionary.

Proof: Similar to lower bound for sorting (see Unit 4).
Any algorithm defines a binary decision tree with
comparisons at the nodes and actions at the leaves.
There are at least 𝑛 + 1 different actions (return an item, or “not found”).
So there are Ω(𝑛) leaves, and therefore the height is Ω(log 𝑛). □
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Lower bound for search
The fastest implementations of the ordered symbol table ADT require Θ(log 𝑛) time to search
among 𝑛 items. Is this the best possible?

Theorem: In the comparison model (on the keys),
Ω(log 𝑛) comparisons are required to search a size-𝑛 dictionary.

Proof: Similar to lower bound for sorting (see Unit 4).
Any algorithm defines a binary decision tree with
comparisons at the nodes and actions at the leaves.
There are at least 𝑛 + 1 different actions (return an item, or “not found”).
So there are Ω(𝑛) leaves, and therefore the height is Ω(log 𝑛). □

What if we don’t need the ordered symbol table operations?

⇝ Focus on symbol table operations: get, put, contains, delete
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Symbol Table without Sorting
▶ key idea in hashing: everything is ultimately an integer, or can be turned into one!

⇝ hash function ℎ : 𝑈 → [0..𝑚)
▶ maps elements from universe 𝑈 to integers
▶ ℎ(𝑥) used as index in a hash table 𝑇[0..𝑚)

⇝ if ℎ is quick to compute and all stored elements hash to different indices
get, put, contains, delete become simple array operations!

⇝ symbol table with 𝑂(1) time per operation
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Symbol Table without Sorting
▶ key idea in hashing: everything is ultimately an integer, or can be turned into one!

⇝ hash function ℎ : 𝑈 → [0..𝑚)
▶ maps elements from universe 𝑈 to integers
▶ ℎ(𝑥) used as index in a hash table 𝑇[0..𝑚)

⇝ if ℎ is quick to compute and all stored elements hash to different indices
get, put, contains, delete become simple array operations!

⇝ symbol table with 𝑂(1) time per operation

� Generally hash function ℎ is not

(can make it so (“perfect hashing”), but usually too expensive)

injective, so many keys can map to the same integer.

▶ We get collisions: we want to insert (𝑘 , 𝑣) into the table, but 𝑇[ℎ(𝑘)] is already occupied.
▶ Birthday Paradox: quite likely! Some collision with prob. ≥ 1

𝑒 when 𝑛 ≥ 2
√
𝑚

⇝ need to deal with them
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Handling Collision
▶ Two basic strategies to deal with collisions:

▶ Buckets/Chaining: Allow multiple items at each table location
each table location points to linked list

▶ Open addressing: Allow each item to go into multiple locations
need strategy to define and search these locations

▶ linear probing
▶ quadratic probing
▶ Robin Hood hashing
▶ Cuckoo hashing

(for full details of these strategies, see Algorithms and Data Structures)
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Handling Collision
▶ Two basic strategies to deal with collisions:

▶ Buckets/Chaining: Allow multiple items at each table location
each table location points to linked list

▶ Open addressing: Allow each item to go into multiple locations
need strategy to define and search these locations

▶ linear probing
▶ quadratic probing
▶ Robin Hood hashing
▶ Cuckoo hashing

(for full details of these strategies, see Algorithms and Data Structures)

▶ We evaluate strategies by the average cost of get, put, delete
in terms of 𝑛, 𝑚, and/or the load factor 𝛼 = 𝑛/𝑚.

⇝ Might have to rebuild the whole hash table and change the value of 𝑚
when the load factor gets too large or too small.
▶ This is called rehashing, and costs Θ(𝑚 + 𝑛).
▶ alternative: dynamic hashing (not here; examples in Algorithms and Data Structures)
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Comparison of Classic Hashing Schemes

Hash table design Search hit Search miss Insert Space good 𝜶

Separate Chaining ∼ 1
2𝛼 ∼ 𝛼 = miss 𝑛 + 𝑚 ≈ 2

Linear Probing ∼ 1
2

1 + 1

1−𝛼
� ∼ 1

2

1 + 1

(1−𝛼)2
�

= miss 𝑚 ≤ 0.5
Quadratic Probing ∼ 1 + ln

 1
1−𝛼

� − 1
2𝛼 ∼ 1

1−𝛼 − 𝛼 + ln
 1

1−𝛼
�

= miss 𝑚 ≤ 0.7
Robin Hood Hashing 𝑂(1) 𝑂(1) = miss 𝑚 ≤ 1 (=any!)

𝑑-way Cuckoo Hashing ≤ 𝑑 worst case ≤ 𝑑 worst case amort. 𝑚 < 𝑐𝑑

▶ Assumption: uniform hashing (all 𝑚𝑛 hash sequences equally likely)
▶ Cost: expected # (equality) comparisons
▶ Space usage in words on top of space for items (without space for optional optimizations)
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Comparison of Classic Hashing Schemes

Hash table design Search hit Search miss Insert Space good 𝜶

Separate Chaining ∼ 1
2𝛼 ∼ 𝛼 = miss 𝑛 + 𝑚 ≈ 2

Linear Probing ∼ 1
2

1 + 1

1−𝛼
� ∼ 1

2

1 + 1

(1−𝛼)2
�

= miss 𝑚 ≤ 0.5
Quadratic Probing ∼ 1 + ln

 1
1−𝛼

� − 1
2𝛼 ∼ 1

1−𝛼 − 𝛼 + ln
 1

1−𝛼
�

= miss 𝑚 ≤ 0.7
Robin Hood Hashing 𝑂(1) 𝑂(1) = miss 𝑚 ≤ 1 (=any!)

𝑑-way Cuckoo Hashing ≤ 𝑑 worst case ≤ 𝑑 worst case amort. 𝑚 < 𝑐𝑑

▶ Assumption: uniform hashing (all 𝑚𝑛 hash sequences equally likely)
▶ Cost: expected # (equality) comparisons
▶ Space usage in words on top of space for items (without space for optional optimizations)

More improvements possible with word-RAM bitwise tricks ⇝ Advanced Data Structures
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Hashing vs. Balanced Search Trees
Advantages of Balanced Search Trees

▶ 𝑂(log 𝑛) worst-case operation cost

▶ Does not require any assumptions, special functions,
or known properties of input distribution

▶ Predictable (and often smaller) space usage (exactly 𝑛 nodes)

▶ Never need to rebuild the entire structure

▶ supports ordered dictionary operations (rank, select etc.)

Advantages of Hash Tables

▶ 𝑂(1) operations (if hashes well-spread and load factor small)

▶ We can choose space-time tradeoff via load factor

▶ Cuckoo hashing achieves 𝑂(1) worst-case for search & delete
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