

Efficient Sorting

4 November 2024

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 4: *Efficient Sorting*

- **1.** Know principles and implementation of *mergesort* and *quicksort*.
- 2. Know properties and *performance characteristics* of mergesort and quicksort.
- **3.** Know the comparison model and understand the corresponding *lower bound*.
- **4.** Understand *counting sort* and how it circumvents the comparison lower bound.
- **5.** Know ways how to exploit *presorted* inputs.

Outline

4 Efficient Sorting

- 4.1 Mergesort
- 4.2 Quicksort
- 4.3 Comparison-Based Lower Bound
- 4.4 Integer Sorting
- 4.5 Adaptive Sorting
- 4.6 Python's list sort

Why study sorting?

- fundamental problem of computer science that is still not solved
- building brick of many more advanced algorithms
 - ▶ for preprocessing
 - as subroutine
- playground of manageable complexity to practice algorithmic techniques

Here:

- ► "classic" fast sorting method
- ▶ exploit partially sorted inputs
- parallel sorting

Algorithm with optimal #comparisons in worst case?

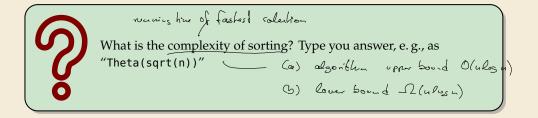
Part I

The Basics

Rules of the game

- ► Given:
 - ► array A[0..n] = A[0..n-1] of n objects
- **Goal:** rearrange (i. e., permute) elements within A, so that A is *sorted*, i. e., $A[0] \le A[1] \le \cdots \le A[n-1]$
- ► for now: A stored in main memory (internal sorting) single processor (sequential sorting)

Clicker Question





4.1 Mergesort

Clicker Question

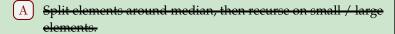
How does mergesort work?

- A Split elements around median, then recurse on small / large elements.
- B Recurse on left / right half, then combine sorted halves.
- C Grow sorted part on left, repeatedly add next element to sorted range.
- D Repeatedly choose 2 elements and swap them if they are out of order.
- E Don't know.

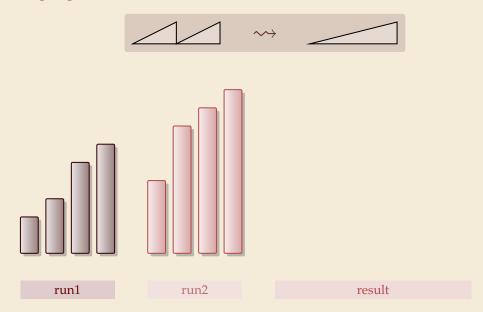
→ sli.do/cs566

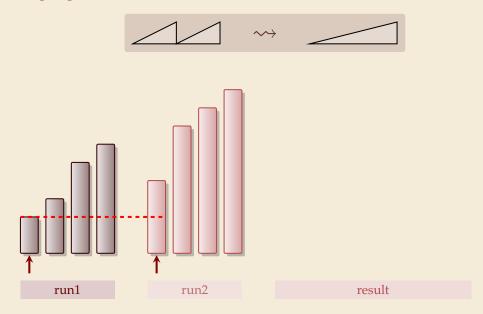
Clicker Question

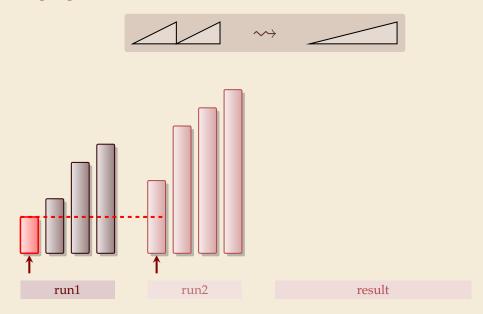
How does mergesort work?

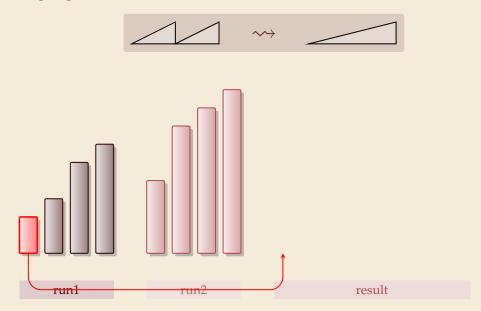


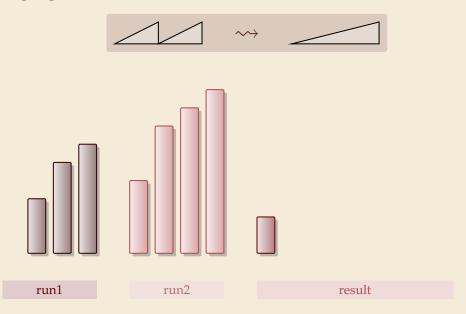
- Recurse on left / right half, then combine sorted halves. \checkmark
- Grow sorted part on left, repeatedly add next element to

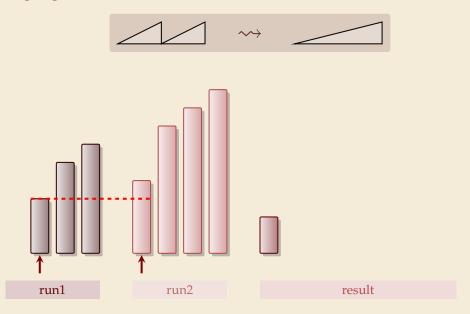


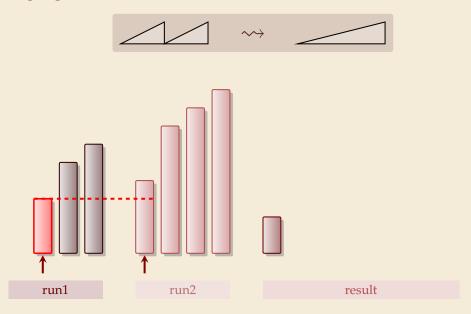


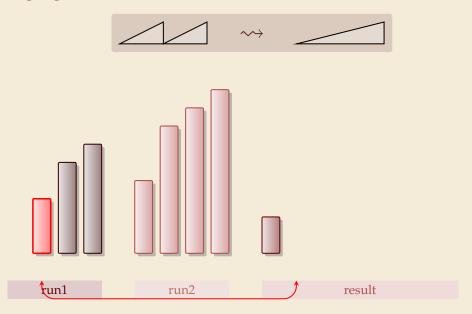


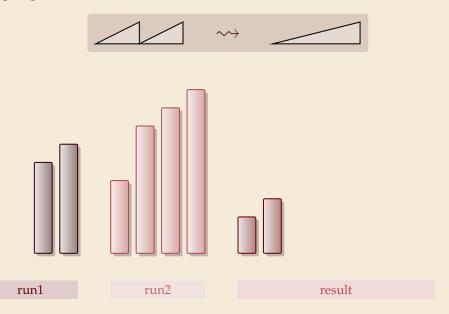


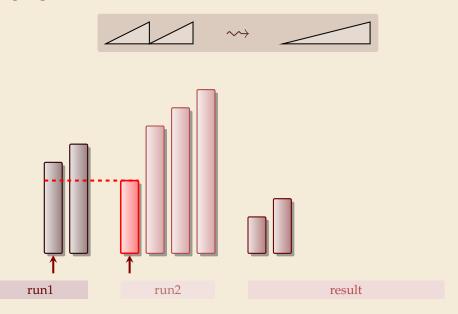


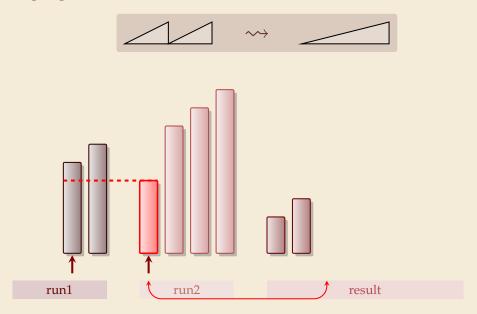


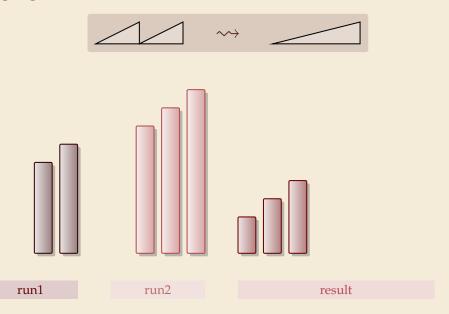


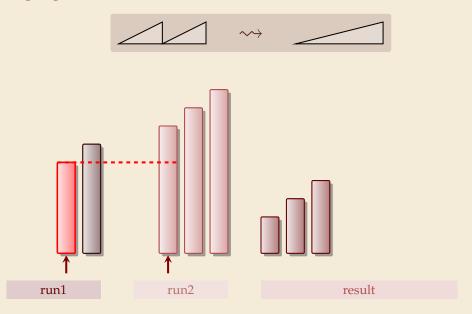


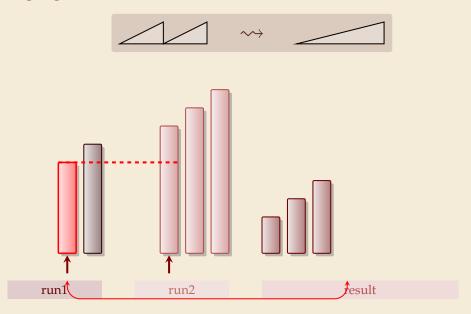


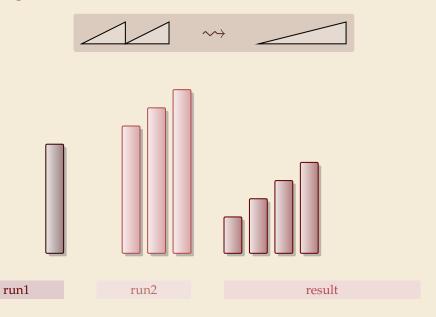


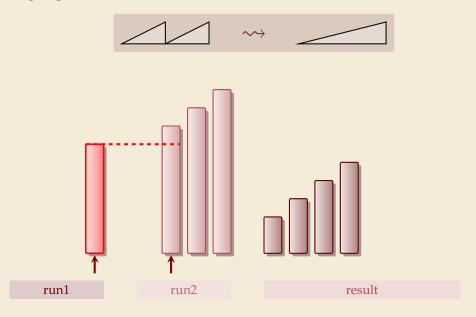


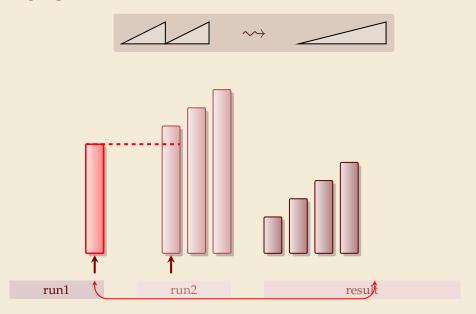




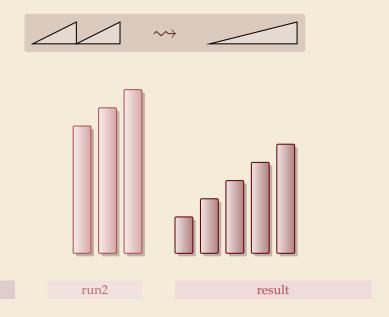




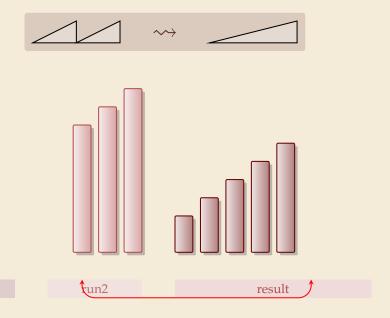




run1

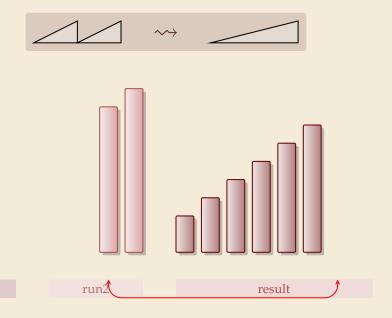


run1



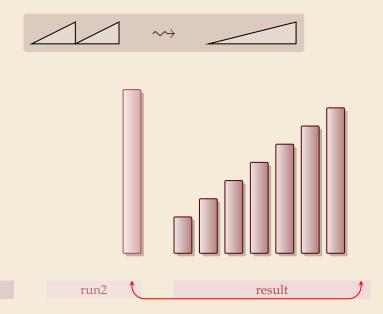
4

run1

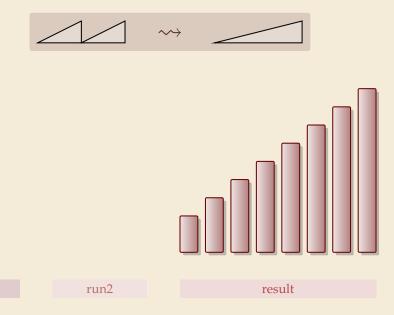


4

run1



run1



Clicker Question

What is the worst-case running time of mergesort?

(A) $\Theta(1)$ (G) $\Theta(n \log n)$

 $\Theta(\log n)$

 $\Theta(\log\log n)$

D $\Theta(\sqrt{n})$

 Ξ $\Theta(n)$

 $F \cap \Theta(n \log \log n)$

 $\Theta(n \log n)$

 \mathbb{H} $\Theta(n\log^2 n)$

 \square $\Theta(n^{1+\epsilon})$

J $\Theta(n^2)$

 \mathbf{K} $\Theta(n^3)$

L) $\Theta(2^n)$

→ sli.do/cs566

Clicker Question

Mergesort

```
procedure mergesort(A[l..r))

n := r - l

if n \le 1 return

m := l + \lfloor \frac{n}{2} \rfloor

mergesort(A[l..m))

merge(A[l..m), A[m..r), buf)

copy buf to A[l..r)
```

- recursive procedure
- merging needs
 - temporary storage buf for result (of same size as merged runs)
 - to read and write each element twice (once for merging, once for copying back)

Mergesort

- 1 **procedure** mergesort(A[l..r))
- n := r l
- if n < 1 return
- $m := l + |\frac{n}{2}|$
- mergesort(A[1..m))
- mergesort(A[m..r))
- merge(A[1..m), A[m..r), buf)
- copy buf to A[1..r)

- recursive procedure
- merging needs
 - temporary storage buf for result (of same size as merged runs)
 - to read and write each element twice (once for merging, once for copying back)

Analysis: count "element visits" (read and/or write)

$$C(n) = \begin{cases} 0 & n \le 1 \\ C(\lfloor n/2 \rfloor) + C(\lceil n/2 \rceil) & 2n & n \ge 2 \end{cases}$$

Simplification $n = 2^k$ same for best and worst case! $= k - \ell_{SN}$

$$C(2^{k}) = \begin{cases} 0 & k \leq 0 \\ (2) \cdot C(2^{k-1}) + (2) \cdot 2^{k} & k \geq 1 \end{cases} = \underbrace{2 \cdot 2^{k}}_{C \text{ max basis}} + \underbrace{2^{k}}_{C \text{ max basis}} \cdot 2^{k-2} + \dots + 2^{k} \cdot 2^{1} = 2k \cdot 2^{k}$$

$$C(n) = 2n \lg(n) = \Theta(n \log n) \quad \text{(arbitrary } n: \ C(n) \leq C(\text{next larger power of } 2) \leq 4n \lg(n) + 2n = \Theta(n \log n)$$

$$C(n) = 2n \lg(n) = \Theta(n \log n) \qquad \text{(arbitrary } n: C(n) \le C(\text{next larger power of 2}) \le 4n \lg(n) + 2n = \Theta(n \log n))$$

Mergesort

- 1 **procedure** mergesort(A[l..r))
- n := r l
- if n < 1 return
- $m := l + |\frac{n}{2}|$
- mergesort(A[l..m))
- mergesort(A[m..r))
- merge(A[1..m), A[m..r), buf)
- copy buf to A[1..r)

- recursive procedure
- merging needs
 - temporary storage buf for result (of same size as merged runs)
 - to read and write each element twice (once for merging, once for copying back)

Analysis: count "element visits" (read and/or write)

$$C(n) = \begin{cases} 0 & n \le 1 \\ C(\lfloor n/2 \rfloor) + C(\lceil n/2 \rceil) + 2n & n \ge 2 \end{cases}$$

Simplification $n = 2^k$ same for best and worst case!

$$\begin{cases} \text{precisely(!) solvable } \textit{without } \text{assumption } n = 2^k \colon \\ C(n) = 2n \lg(n) + \left(2 - \{\lg(n)\} - 2^{1 - \{\lg(n)\}}\right) 2n \\ \text{with } \{x\} \coloneqq x - \lfloor x \rfloor \end{cases}$$

$$C(2^{k}) = \begin{cases} 0 & k \le 0 \\ 2 \cdot C(2^{k-1}) + 2 \cdot 2^{k} & k \ge 1 \end{cases} = 2 \cdot 2^{k} + 2^{2} \cdot 2^{k-1} + 2^{3} \cdot 2^{k-2} + \dots + 2^{k} \cdot 2^{1} = 2k \cdot 2^{k}$$

$$C(n) \ = \ 2n \lg(n) \ = \ \Theta(n \log n) \qquad \text{(arbitrary } n : \ C(n) \le C(\text{next larger power of 2}) \le 4n \lg(n) + 2n \ = \ \Theta(n \log n))$$

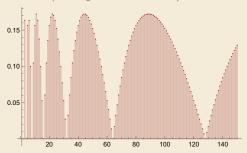
Linear Term of C(n)

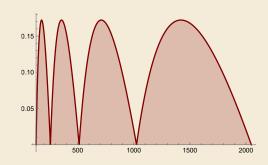
Recall:

$$C(n) = 2n \lg(n) + (2 - \{\lg(n)\} - 2^{1 - \{\lg(n)\}}) 2n$$

with
$$\{x\} := x - \lfloor x \rfloor$$

Plot of $2(2 - \{\lg(n)\} - 2^{1 - \{\lg(n)\}})$





 \rightsquigarrow Can prove: $C(n) \le 2n \lg n + 0.172n$

Mergesort – Discussion

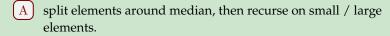
- optimal time complexity of $\Theta(n \log n)$ in the worst case
- stable sorting method i. e., retains relative order of equal-key items
- memory access is sequential (scans over arrays)
- requires $\Theta(n)$ extra space

there are in-place merging methods, but they are substantially more complicated and not (widely) used

4.2 Quicksort

Clicker Question

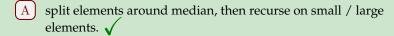
How does quicksort work?



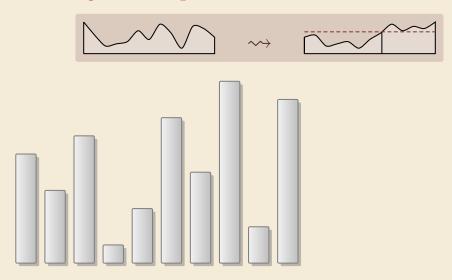
- B recurse on left / right half, then combine sorted halves.
- (C) grow sorted part on left, repeatedly add next element to sorted range.
- D) repeatedly choose 2 elements and swap them if they are out of order.
- E Don't know.

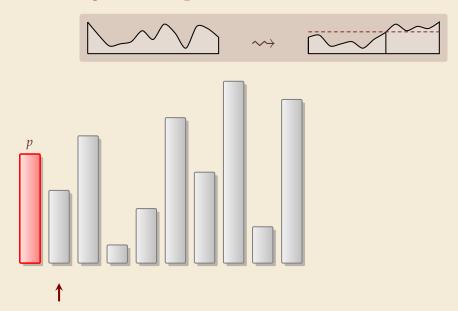
Clicker Question

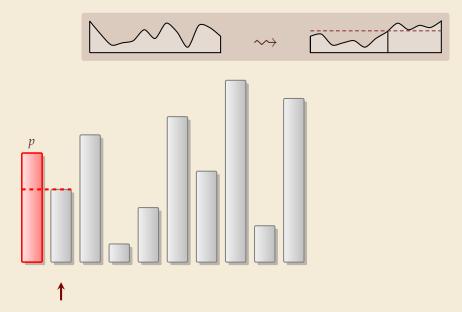
How does quicksort work?

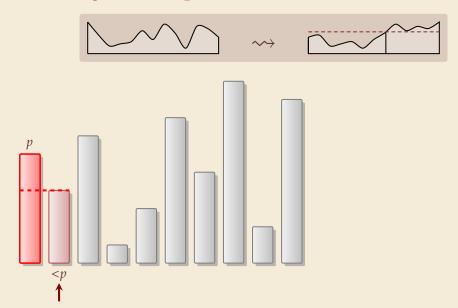


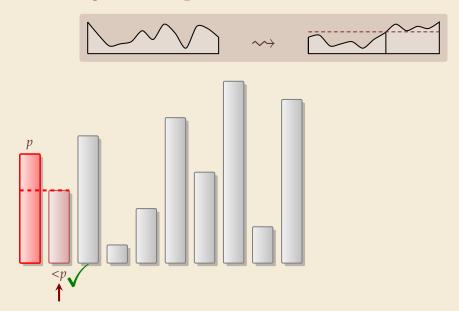
- B recurse on left / right half, then combine sorted halves.
- C grow sorted part on left, repeatedly add next element to sorted range.
- D) repeatedly choose 2 elements and swap them if they are out of order.
- E Don't know.

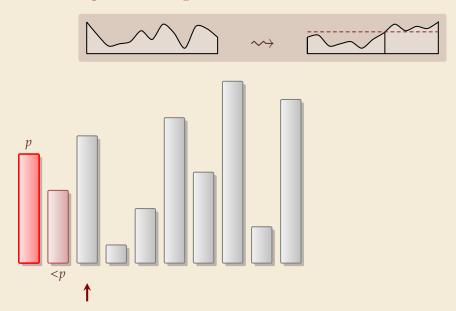


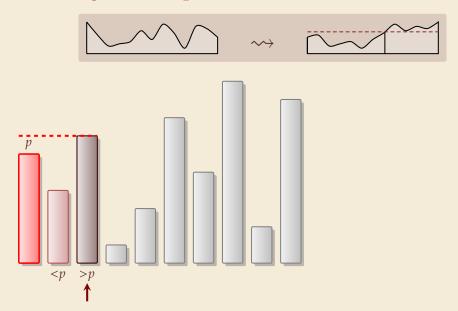


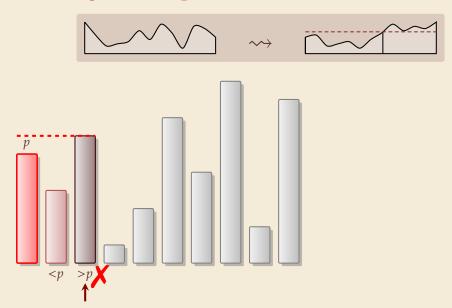


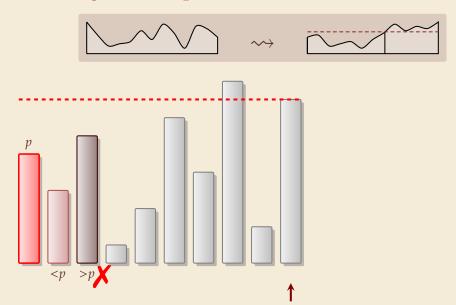


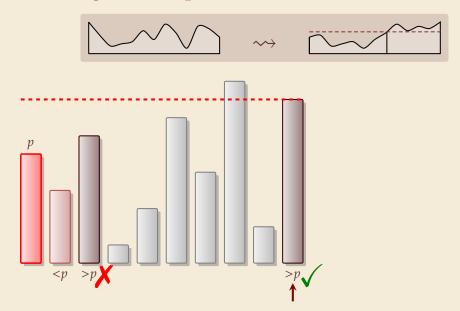


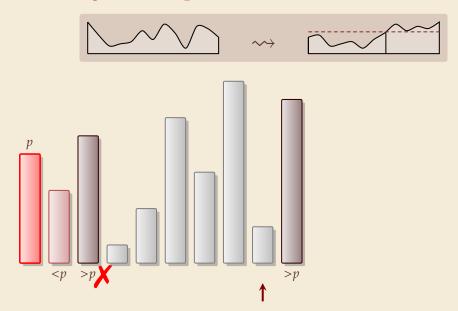


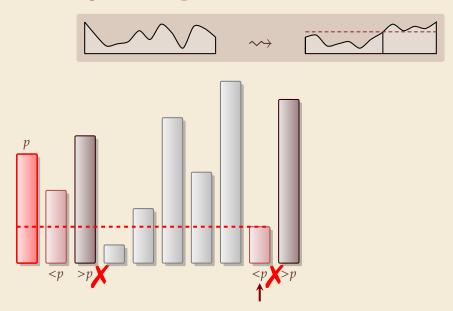


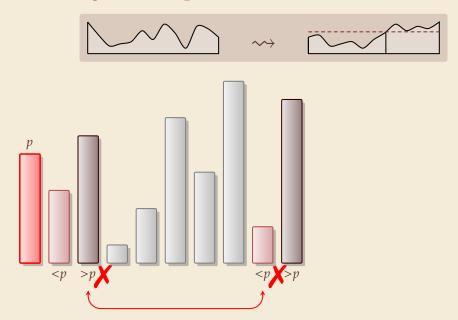


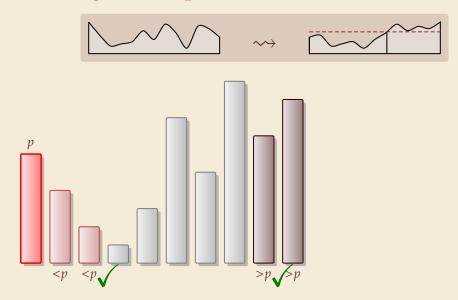


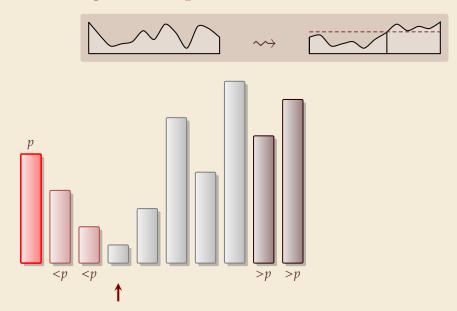


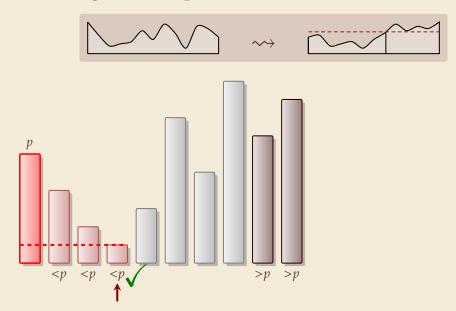


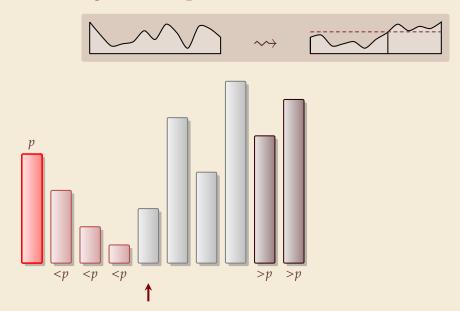


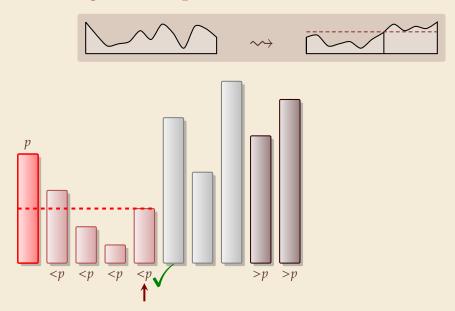


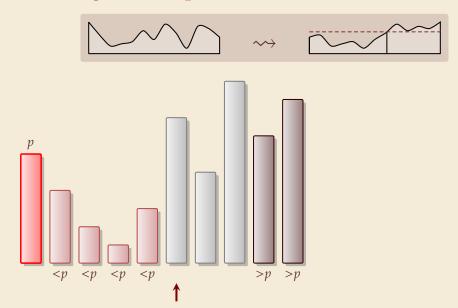


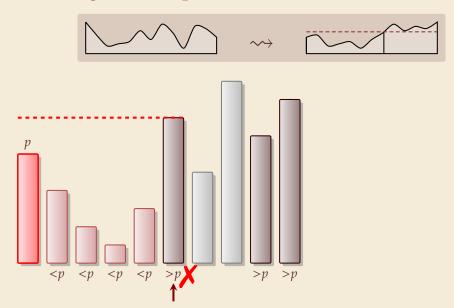


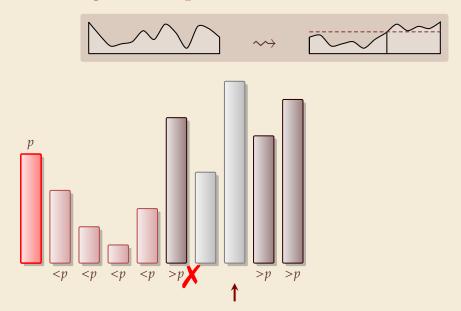


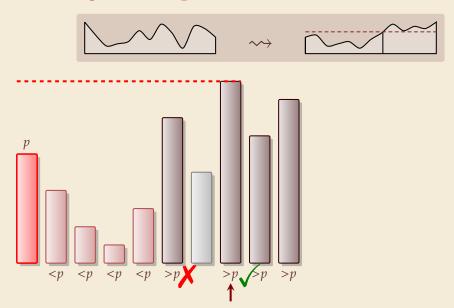


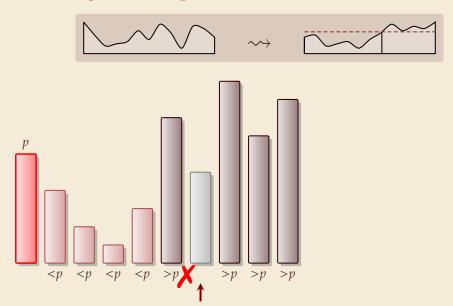


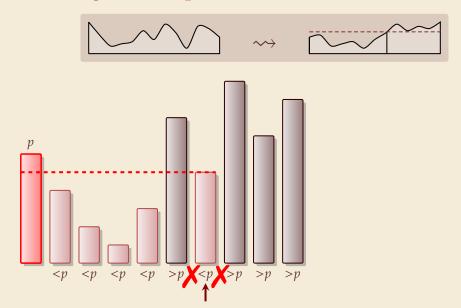


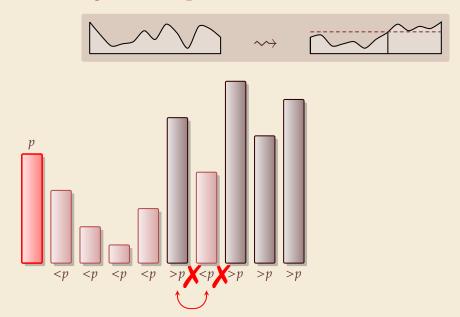


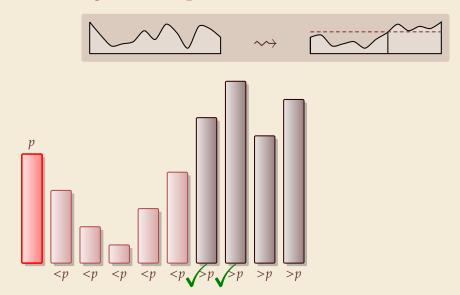


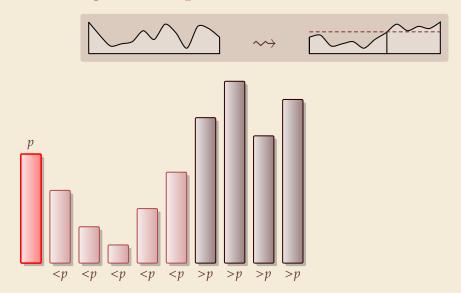






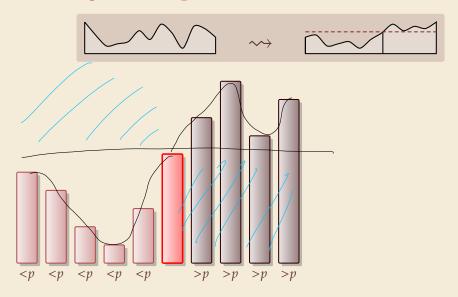




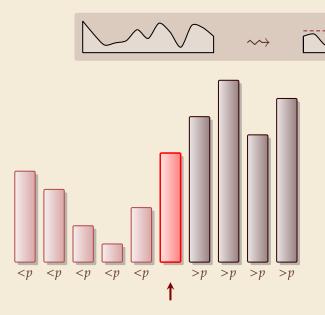




Partitioning around a pivot



Partitioning around a pivot



- no extra space needed
- ▶ visits each element once
- ► returns rank/position of pivot

Partitioning – Detailed code

Beware: details easy to get wrong; use this code!

(if you ever have to)

```
1 procedure partition(A, b)
      // input: array A[0..n), position of pivot b \in [0..n)
      swap(A[0], A[b])
     i := 0, \quad i := n
     while true do
           do i := i + 1 while i < n and A[i] < A[0]
          do j := j - 1 while j \ge 1 and A[j] > A[0]
          if i \ge j then break (goto 11)
          else swap(A[i], A[j])
      end while
10
      swap(A[0], A[j])
      return j
12
```

```
Loop invariant (5–10): A 	 p 	 \leq p 	 ? 	 \geq p
```

```
1 procedure quicksort(A[l..r))

2 if r - \ell \le 1 then return

3 b := \text{choosePivot}(A[l..r))

4 j := \text{partition}(A[l..r), b)

5 quicksort(A[l..j))

6 quicksort(A[j + 1..r))
```

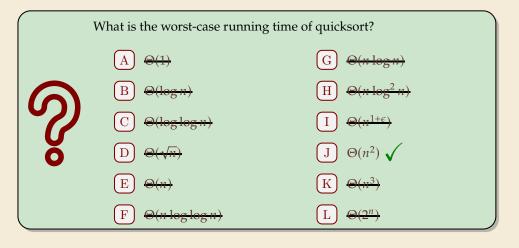
- recursive procedure
- choice of pivot can be
 - ▶ fixed position → dangerous!
 - ▶ random
 - more sophisticated, e.g., median of 3

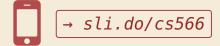
Clicker Question

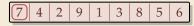
What is the worst-case running time of quicksort? $\Theta(1)$ $G \Theta(n \log n)$ $\Theta(\log n)$ $\Theta(n \log^2 n)$ $\Theta(\log \log n)$ $\Theta(n^{1+\epsilon})$ $\Theta(\sqrt{n})$ $\Theta(n^2)$ $\Theta(n)$ $\Theta(n^3)$ $\Theta(n \log \log n)$ $\Theta(2^n)$

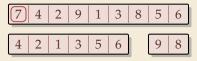
→ sli.do/cs566

Clicker Question

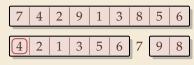


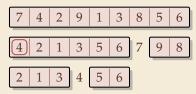


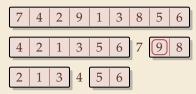


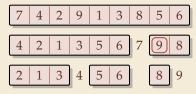


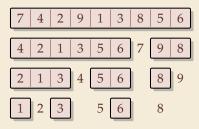
7	4	2	9	1	3	8	5	6
4	2	1	3	5	6	7	9	8

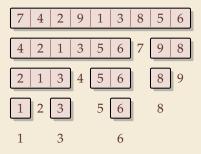


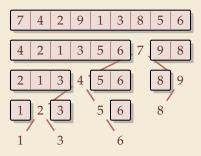




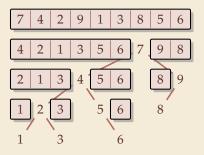








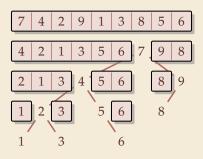
Quicksort



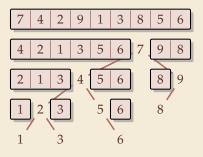
Binary Search Tree (BST)

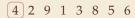
7 4 2 9 1 3 8 5 6

Quicksort

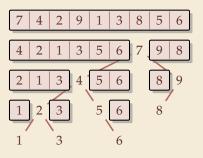


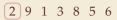
Quicksort



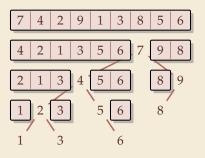


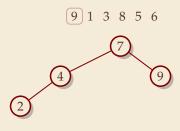
Quicksort



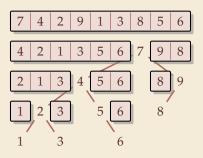


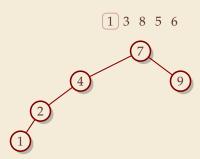
Quicksort



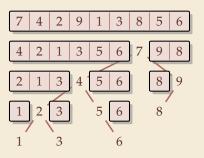


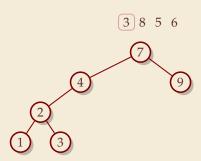
Quicksort



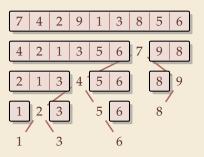


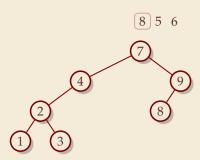
Quicksort



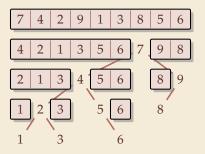


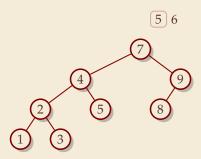
Quicksort



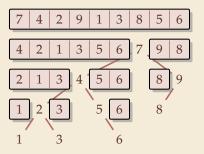


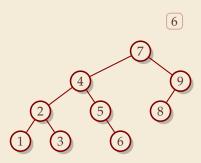
Quicksort

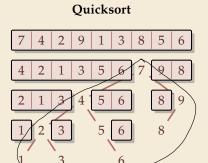


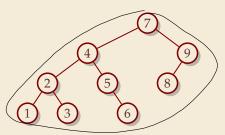


Quicksort









- ► recursion tree of quicksort = binary search tree from successive insertion
- ► comparisons in quicksort = comparisons to built BST
- ▼ comparisons in quicksort ≈ comparisons to search each element in BST

Quicksort - Worst Case

- ► Problem: BSTs can degenerate
- ▶ Cost to search for k is k-1

$$\rightsquigarrow$$
 Total cost $\sum_{k=1}^{n} (k-1) = \frac{n(n-1)}{2} \sim \frac{1}{2}n^2$

 \leadsto quicksort worst-case running time is in $\Theta(n^2)$

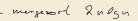
terribly slow!

But, we can fix this:

Randomized quicksort:

- ► choose a *random pivot* in each step
- \leadsto same as randomly *shuffling* input before sorting

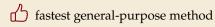
Randomized Quicksort - Analysis

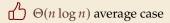


cost measure: element visits (as for mergesort)

- ightharpoonup C(n) = #element visits when sorting n randomly permuted elements = cost of searching every element in BST build from input
- Arr quicksort needs $\sim 2 \ln(2) \cdot n \lg n \approx 1.39 n \lg n$ in expectation (see analysis of C_n in Unit 3!)
- ▶ also: very unlikely to be much worse: e. g., one can prove: $Pr[\cos t > 10n \lg n] = O(n^{-2.5})$ distribution of costs is "concentrated around mean"
- ▶ intuition: have to be *constantly* unlucky with pivot choice

Quicksort – Discussion





works *in-place* (no extra space required)

memory access is sequential (scans over arrays)

 \square $\Theta(n^2)$ worst case (although extremely unlikely)

not a *stable* sorting method

Open problem: Simple algorithm that is fast, stable and in-place.

4.3 Comparison-Based Lower Bound

Lower Bounds

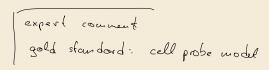
- ▶ **Lower bound:** mathematical proof that *no algorithm* can do better.
 - ► very powerful concept: bulletproof *impossibility* result ≈ *conservation of energy* in physics
 - ► (unique?) feature of computer science: for many problems, solutions are known that (asymptotically) achieve the lower bound
 - → can speak of "optimal algorithms"

Lower Bounds

- ▶ **Lower bound:** mathematical proof that *no algorithm* can do better.
 - ► very powerful concept: bulletproof *impossibility* result ≈ *conservation of energy* in physics
 - ► (unique?) feature of computer science: for many problems, solutions are known that (asymptotically) achieve the lower bound → can speak of "optimal algorithms"
- ▶ To prove a statement about *all algorithms*, we must precisely define what that is!
- ▶ already know one option: the word-RAM model
- ▶ Here: use a simpler, more restricted model.

The Comparison Model

- ► In the *comparison model* data can only be accessed in two ways:
 - comparing two elements
 - moving elements around (e.g. copying, swapping)
 - ► Cost: number of comparisons.



The Comparison Model

- ▶ In the *comparison model* data can only be accessed in two ways:
 - comparing two elements
 - moving elements around (e.g. copying, swapping)
 - Cost: number of comparisons.

That's good! /Keeps algorithms general!

- ▶ This makes very few assumptions on the kind of objects we are sorting.
- Mergesort and Quicksort work in the comparison model.

The Comparison Model

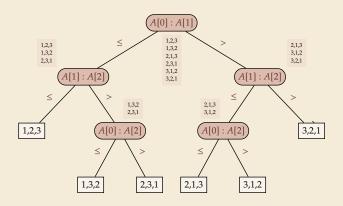
- ▶ In the *comparison model* data can only be accessed in two ways:
 - comparing two elements
 - moving elements around (e.g. copying, swapping)
 - Cost: number of comparisons.

That's good! /Keeps algorithms general!

- This makes very few assumptions on the kind of objects we are sorting.
- ▶ Mergesort and Quicksort work in the comparison model.
- → Every comparison-based sorting algorithm corresponds to a *decision tree*.
 - only model comparisons ~ ignore data movement
 - ▶ nodes = comparisons the algorithm does
 - ► child links = outcomes of comparison
 - ▶ leaf = unique initial input permutation compatible with comparison outcomes
 - ▶ next comparisons can depend on outcomes → child subtrees can look different

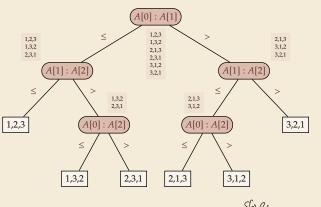
Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:



Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:



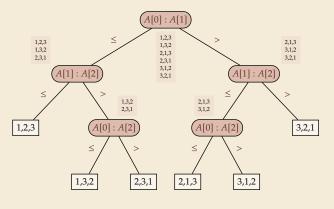
- Execution = follow a path in comparison tree.
- → height of comparison tree = worst-case # comparisons
- comparison trees are binary trees
- $\rightsquigarrow \ell \text{ leaves } \rightsquigarrow \text{ height} \ge \lceil \lg(\ell) \rceil$
- comparison trees for sorting method must have $\geq n!$ leaves
- \rightsquigarrow height $\geq \lg(n!) \sim n \lg n$

more precisely:
$$\lg(n!) = n \lg n - \lg(e)n + O(\log n)$$

$$l_{g(n!)} \sim l_{g(n)} = l_{g(n)} + l_{g(n)}$$

Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:



- ► Execution = follow a path in comparison tree.
- → height of comparison tree = worst-case # comparisons
- comparison trees are binary trees
- $\rightsquigarrow \ell \text{ leaves } \rightsquigarrow \text{ height} \ge \lceil \lg(\ell) \rceil$
- ► comparison trees for sorting method must have $\geq n!$ leaves
- $\label{eq:local_problem} \begin{array}{l} \leadsto \ \ \text{height} \geq \lg(n!) \sim n \lg n \\ \nwarrow \\ \text{more precisely: } \lg(n!) = n \lg n \lg(e)n + O(\log n) \end{array}$
- ▶ Mergesort achieves $\sim n \lg n$ comparisons \rightsquigarrow asymptotically comparison-optimal!
- ▶ Open (theory) problem: Sorting algorithm with $n \lg n \lg(e)n + o(n)$ comparisons?

Clicker Question

Does the comparison-tree from the previous slide correspond to a worst-case optimal sorting method?

Clicker Question

Does the comparison-tree from the previous slide correspond to a worst-case optimal sorting method?

A) Yes \checkmark

B) No

4.4 Integer Sorting

Clicker Question

Select all correct formulations of our lower bound from §4.3.

- Any sorting algorithm requires $O(n \log n)$ running time in the worst case.
- B Every comparison-based sorting algorithm requires $\Omega(n \log n)$ running time in worst case for sorting n elements.
- C Every comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in worst case for sorting n elements.
- D Every sorting algorithm requires $\Omega(n \log n)$ comparisons in worst case for sorting n elements.
- The complexity of sorting n elements in the comparison-model is $\Theta(n \log n)$.
- F The complexity of sorting n elements in the comparison-model is $\Omega(n \log n)$.

→ sli.do/cs566

Clicker Question

Select all correct formulations of our lower bound from §4.3.

- A Any sorting algorithm requires $O(n \log n)$ running time in the worst case.
- B Every comparison-based sorting algorithm requires $\Omega(n \log n)$ running time in worst case for sorting n elements.
- Every comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons in worst case for sorting n elements.
- D Every sorting algorithm requires $\Omega(n \log n)$ comparisons in worst case for sorting n elements.
- The complexity of sorting n elements in the comparison model is $\Theta(n \log n)$.
- F The complexity of sorting n elements in the comparison-model is $\Omega(n \log n)$.

→ sli.do/cs566

▶ Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?

- ▶ Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?
- ▶ **Not necessarily**; only in the *comparison model!*
 - \leadsto Lower bounds show where to *change* the model!

- ▶ Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?
- ▶ **Not necessarily;** only in the *comparison model!*
 - → Lower bounds show where to *change* the model!
- ► Here: sort *n* integers
 - ▶ can do *a lot* with integers: add them up, compute averages, . . . (full power of word-RAM)
 - → we are not working in the comparison model
 - *→* above lower bound does not apply!

- ▶ Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?
- ▶ **Not necessarily**; only in the *comparison model!*
 - → Lower bounds show where to *change* the model!
- ► Here: sort *n* integers
 - can do *a lot* with integers: add them up, compute averages, . . . (full power of word-RAM)
 - → we are not working in the comparison model
 - *→* above lower bound does not apply!
 - but: a priori unclear how much arithmetic helps for sorting ...

Counting sort

- ► Important parameter: size/range of numbers
 - ▶ numbers in range $[0..U) = \{0, ..., U 1\}$ typically $U = 2^b \rightarrow b$ -bit binary numbers

Counting sort

- ► Important parameter: size/range of numbers
 - ▶ numbers in range $[0..U] = \{0, ..., U 1\}$ typically $U = 2^b \rightsquigarrow b$ -bit binary numbers
- ▶ We can sort *n* integers in $\Theta(n + U)$ time and $\Theta(U)$ space when $b \leq w$:

Counting sort

```
procedure countingSort(A[0..n))

// A contains integers in range [0..U).

C[0..U) := new integer array, initialized to 0

// Count occurrences

for i := 0, ..., n-1

C[A[i]] := C[A[i]] + 1

i := 0 // Produce sorted list

for k := 0, ... U - 1

for j := 1, ... C[k]

A[i] := k; i := i + 1
```

 count how often each possible value occurs

word size

- produce sorted result directly from counts
- circumvents lower bound by using integers as array index / pointer offset

Can sort n integers in range [0..U) with U = O(n) in time and space $\Theta(n)$.

Larger Universes: Radix Sort

► MSD Radix Sort:

- split numbers into base-R "digits"
- Use counting sort on most significant digit (with variant of counting sort that moves full number)
- → integers sorted with respect to first digit
- recurse on sublist for each digit value, using next digit for counting sort
- \rightsquigarrow After $\lfloor \log_R(U) \rfloor + 1$ levels of counting sort, fully sorted!
 - ► For $R \le 2^{\tau v}$, all counting sort calls on same level cost total of O(n) time (requires care to avoid reinitialization cost of array C)
- \rightsquigarrow total time $O(n \log_R(U)) = O\left(n \frac{\log(U)}{\log(R)}\right)$
- \sim O(n) time sorting possible for numbers in range $U = O(n^c)$ for constant c.

Integer Sorting – State of the art

Algorithm theory

▶ integer sorting on the *w*-bit word-RAM

- / usually u = 0(00gu)
- ▶ suppose $U = 2^w$, but w can be an arbitrary function of n
- ▶ how fast can we sort *n* such *w*-bit integers on a *w*-bit word-RAM?
 - for $w = O(\log n)$: linear time (radix/counting sort)
 - for $w = \Omega(\log^{2+\varepsilon} n)$: linear time (*signature sort*)
 - ► for w in between: can do $O(n\sqrt{\lg \lg n})$ (very complicated algorithm) don't know if that is best possible!

Integer Sorting – State of the art

Algorithm theory

- ▶ integer sorting on the *w*-bit word-RAM
- suppose $U = 2^w$, but w can be an arbitrary function of n
- \blacktriangleright how fast can we sort n such w-bit integers on a w-bit word-RAM?
 - for $w = O(\log n)$: linear time (radix/counting sort)
 - for $w = \Omega(\log^{2+\varepsilon} n)$: linear time (signature sort)
 - ► for w in between: can do $O(n\sqrt{\lg \lg n})$ (very complicated algorithm) don't know if that is best possible!

* * *

.. for the rest of this unit: back to the comparisons model!

Clicker Question

Which statements are correct? Select all that apply.

My computer has 64-bit words, so an int has 64 bits. Hence I can sort any int[] of length $n ext{ ...}$

- A in constant time.
- B in $O(\log n)$ time.
- \bigcirc in O(n) time.
- \bigcirc in $O(n \log n)$ time.
- E some time, but not possible to say from given information.

→ sli.do/cs566

Clicker Question

Which statements are correct? Select all that apply.

My computer has 64-bit words, so an int has 64 bits. Hence I can sort any int[] of length $n ext{ ...}$

- A) in constant time.
- B) in $O(\log n)$ time.
- \bigcirc in O(n) time. \checkmark
- D in $O(n \log n)$ time. \checkmark
- (E) some time, but not possible to say from given information.)

→ sli.do/cs566

Part II

Exploiting presortedness

4.5 Adaptive Sorting

Adaptive sorting

- ► Comparison lower bound also holds for the *average case* \rightsquigarrow $\lfloor \lg(n!) \rfloor$ cmps necessary
- ► Mergesort and Quicksort from above use $\sim n \lg n$ cmps even in best case

Adaptive sorting

- ► Comparison lower bound also holds for the *average case* $\rightsquigarrow \lfloor \lg(n!) \rfloor$ cmps necessary
- ▶ Mergesort and Quicksort from above use $\sim n \lg n$ cmps even in best case

Can we do better if the input is already "almost sorted"?

Scenarios where this may arise naturally:

- ▶ Append new data as it arrives, regularly sort entire list (e.g., log files, database tables)
- ► Compute summary statistics of time series of measurements that change slowly over time (e. g., weather data)
- ▶ Merging locally sorted data from different servers (e. g., map-reduce frameworks)
- → Ideally, algorithms should *adapt* to input: *the more sorted the input, the faster the algorithm* ... but how to do that!?

Warmup: check for sorted inputs

▶ Any method could first check if input already completely in order!

Best case becomes $\Theta(n)$ with n-1 comparisons!

Usually n-1 extra comparisons and pass over data "wasted"

Only catches a single, extremely special case . . .

Warmup: check for sorted inputs

- ► Any method could first check if input already completely in order!
 - Best case becomes $\Theta(n)$ with n-1 comparisons!
 - Usually n-1 extra comparisons and pass over data "wasted"
 - Only catches a single, extremely special case . . .
- ► For divide & conquer algorithms, could check in each recursive call!
 - Potentially exploits partial sortedness!
 - \square usually adds $\Omega(n \log n)$ extra comparisons

Warmup: check for sorted inputs

- ► Any method could first check if input already completely in order!
 - Best case becomes $\Theta(n)$ with n-1 comparisons!
 - Usually n-1 extra comparisons and pass over data "wasted"
 - Only catches a single, extremely special case . . .
- ► For divide & conquer algorithms, could check in each recursive call!
 - Potentially exploits partial sortedness!
 - \square usually adds $\Omega(n \log n)$ extra comparisons

For Mergesort, can instead check before merge with a **single** comparison

► If last element of first run ≤ first element of second run, skip merge

How effective is this idea?

```
procedure mergesortCheck(A[l..r))

n := r - l

if n \le 1 return

m := l + \lfloor \frac{n}{2} \rfloor

mergesortCheck(A[l..m))

mergesortCheck(A[m..r))

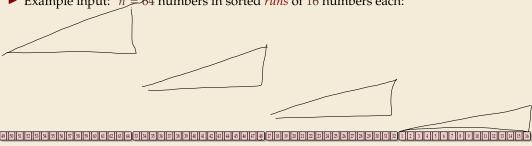
merge(A[l..m), A[m..r), buf)

copy buf to A[l..r)
```

Mergesort with sorted check – Analysis

► Simplified cost measure: <u>merge cost</u> = size of output of merges ≈ number of comparisons ≈ number of memory transfers / cache misses

Example input: n = 64 numbers in sorted *runs* of 16 numbers each:



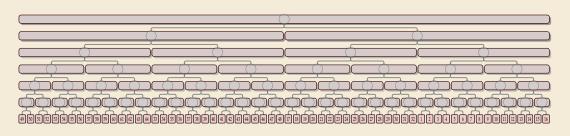
Mergesort with sorted check – Analysis

- ► Simplified cost measure: *merge cost* = size of output of merges
 - ≈ number of comparisons
 - \approx number of memory transfers / cache misses
- **Example** input: n = 64 numbers in sorted *runs* of 16 numbers each:

Mergesort with sorted check - Analysis

► Simplified cost measure: $\frac{merge\ cost}{n} = \text{size of output of merges}$ $\approx \text{number of comparisons}$ $\approx \text{number of memory transfers / cache misses}$

Example input: n = 64 numbers in sorted *runs* of 16 numbers each:

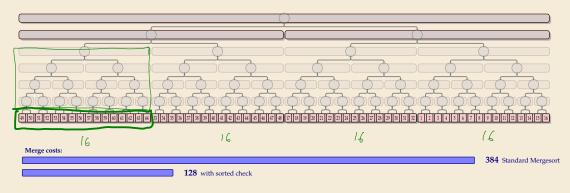


Merge costs:

384 Standard Mergesort

Mergesort with sorted check – Analysis

- ► Simplified cost measure: *merge cost* = size of output of merges
 - ≈ number of comparisons
 - \approx number of memory transfers / cache misses
- **Example** input: n = 64 numbers in sorted *runs* of 16 numbers each:



Sorted check can help a lot!

Alignment issues

- ▶ In previous example, each run of length ℓ saved us $\ell \lg(\ell)$ in merge cost.
 - = exactly the cost of creating this run in mergesort had it not already existed

$$\begin{array}{c} \leadsto \text{ best savings we can hope for!} \\ \leadsto \text{ Are overall merge costs} & \mathcal{H}(\ell_1,\ldots,\ell_r) := \underbrace{n \lg(n)}_{\text{mergesort}} - \underbrace{\sum_{i=1}^r \ell_i \lg(\ell_i) ?}_{\text{savings from runs}} \end{array}$$

alternative inhabition about 21:
$$= \frac{1}{2! \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot}$$

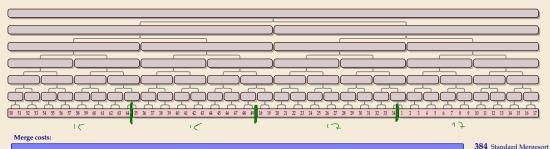
$$H = l_3 \left(l_1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \right) + O(n)$$

(The two formulas for H are not identical, but asymptotically equivalent; same as for lg(n!) and n lg n.)

Alignment issues

- ▶ In previous example, each run of length ℓ saved us $\ell \lg(\ell)$ in merge cost.
 - = exactly the cost of *creating* this run in mergesort had it not already existed
- \rightarrow best savings we can hope for! \rightarrow Are overall merge costs $\mathcal{H}(\ell_1,\ldots,\ell_r) := \underbrace{n \lg(n)}_{\text{mergesort}} - \underbrace{\sum_{i=1}^r \ell_i \lg(\ell_i)}_{\ell_i}$?

Unfortunately, not quite:



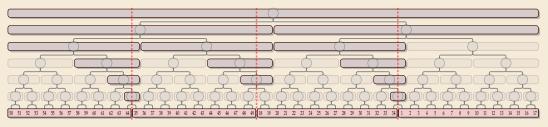
savings from runs

127.8 H(15, 15, 17, 17)

Alignment issues

- ▶ In previous example, each run of length ℓ saved us $\ell \lg(\ell)$ in merge cost.
 - = exactly the cost of *creating* this run in mergesort had it not already existed
- \rightarrow best savings we can hope for! \rightarrow Are overall merge costs $\mathcal{H}(\ell_1,\ldots,\ell_r) := \underbrace{n \lg(n)}_{\text{mergesort}} - \underbrace{\sum_{i=1}^r \ell_i \lg(\ell_i)}_{\ell_i}$?

Unfortunately, not quite:



savings from runs

Merge costs:

384 Standard Mergesort

216 with sorted check

127.8 H(15, 15, 17, 17)

Bottom-Up Mergesort

► Can we do better by explicitly detecting runs?

```
procedure bottomUpMergesort(A[0..n))
       Q := new Queue // runs to merge
       // Phase 1: Enqueue singleton runs
                                               2.
       for i = 0, ..., n - 1 do
           Q.enqueue((i, i + 1))
       // Phase 2: Merge runs level—wise
                                               9:0
       while Q.size() \ge 2
7
           Q' := \text{new Queue}
8
                                               4:0
           while Q.size() \ge 2
               (i_1, j_1) := Q.dequeue()
10
               (i_2, j_2) := Q.dequeue()
11
               merge(A[i_1..j_1), A[i_2..j_2), buf)
12
               copy buf to A[i_1..i_2)
13
                Q'.enqueue((i_1, j_2))
14
           if \neg Q.isEmpty() // lonely run
15
                Q'.enqueue(Q.dequeue())
           Q := Q'
17
```

Bottom-Up Mergesort

► Can we do better by explicitly detecting runs?

```
1 procedure bottomUpMergesort(A[0..n))
       Q := new Queue // runs to merge
       // Phase 1: Enqueue singleton runs
       for i = 0, ..., n - 1 do
           Q.enqueue((i, i + 1))
       // Phase 2: Merge runs level—wise
       while O.size() \ge 2
7
           Q' := \text{new Queue}
8
           while O.size() \ge 2
                (i_1, j_1) := Q.dequeue()
10
                (i_2, j_2) := Q.dequeue()
11
                merge(A[i_1..j_1), A[i_2..j_2), buf)
12
                copy buf to A[i_1..i_2)
13
                Q'.enqueue((i_1, j_2))
14
           if \neg Q.isEmpty() // lonely run
15
                Q'.enqueue(Q.dequeue())
           Q := Q'
17
```

```
procedure natural Mergesort (A[0..n))
       Q := \text{new Queue}; i := 0
                                       find run A[i..i]
                                       starting at i
       while i < n
            i := i + 1
            while A[j] \ge A[j-1] do j := j+1
            Q.enqueue((i, j)); i := j
       while O.size() \ge 2
7
            Q' := \text{new Queue}
            while Q.size() \ge 2
10
                (i_2, j_2) := Q.dequeue()
                merge(A[i_1..j_1), A[i_2..j_2), buf)
12
                copy buf to A[i_1..i_2)
13
                Q'.enqueue((i_1, j_2))
14
            if \neg Q.isEmpty() // lonely run
15
16
17
```

Clicker Question

Suppose we have an input with the 5 elements a, b, c, d, e and we sort them with **bottomUpMergesort**. What sequence of merges are executed?

A Policy 1

Policy 1

B Policy 2

Policy 2

C Policy 3

Policy 3

→ sli.do/cs566

Clicker Question

Suppose we have an input with the 5 elements a, b, c, d, e and we sort them with **bottomUpMergesort**. What sequence of merges are executed?

A Policy 1

a b c d e

a b c d e

a b c d e

a b c d e

a b c d e

Policy 1

B Policy

a b c d e
a b c d e
a b c d e
a b c d e
a b c d e

Policy 2

C) Policy 3

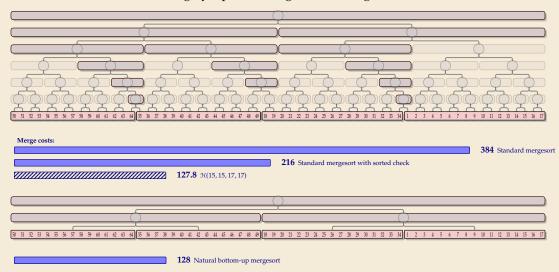
a b c d e
a b c d e
a b c d e
a b c d e
a b c d e

Policy 3

→ sli.do/cs566

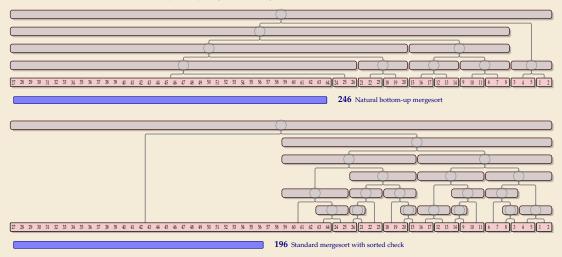
Natural Bottom-Up Mergesort – Analysis

▶ Works well for runs of roughly equal size, regardless of alignment . . .



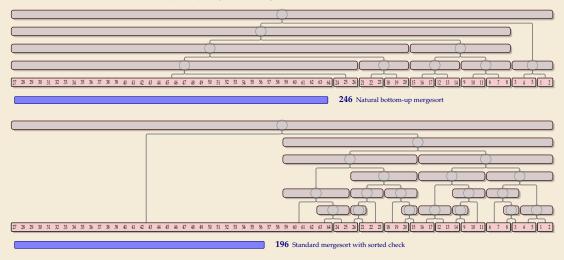
Natural Bottom-Up Mergesort – Analysis [2]

▶ ... but less so for widely varying run lengths



Natural Bottom-Up Mergesort – Analysis [2]

▶ ... but less so for widely varying run lengths



... can't we have both at the same time?!

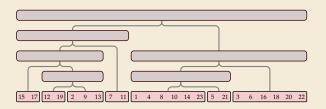
Let's take a step back and breathe.

Let's take a step back and breathe.

- ► Conceptually, there are two tasks:
 - **1.** Detect and use existing runs in the input $\rightsquigarrow \ell_1, \ldots, \ell_r$ (easy)
 - **2.** Determine a favorable *order of merges* of runs ("automatic" in top-down mergesort)

Let's take a step back and breathe.

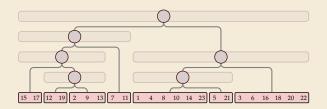
- ► Conceptually, there are two tasks:
 - **1.** Detect and use existing runs in the input $\rightarrow \ell_1, \dots, \ell_r$
 - 2. Determine a favorable order of merges of runs ("automatic" in top-down mergesort)



Merge cost = total area of

Let's take a step back and breathe.

- Conceptually, there are two tasks:
 - **1.** Detect and use existing runs in the input $\rightarrow \ell_1, \dots, \ell_r$
 - 2. Determine a favorable *order of merges* of runs ("automatic" in top-down mergesort)

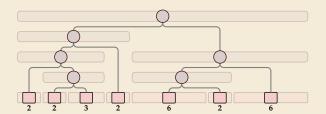


Merge cost = total area of (

= total length of paths to all array entries

Let's take a step back and breathe.

- Conceptually, there are two tasks:
 - **1.** Detect and use existing runs in the input $\rightsquigarrow \ell_1, \ldots, \ell_r$
 - 2. Determine a favorable order of merges of runs ("automatic" in top-down mergesort)



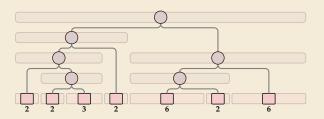
Merge cost = total area of (

= total length of paths to all array entries

$$= \sum_{w \text{ leaf}} weight(w) \cdot depth(w)$$

Let's take a step back and breathe.

- Conceptually, there are two tasks:
 - **1.** Detect and use existing runs in the input $\rightsquigarrow \ell_1, \ldots, \ell_r$
 - 2. Determine a favorable *order of merges* of runs ("automatic" in top-down mergesort)



Merge cost = total area of (

= total length of paths to all array entries

$$= \sum_{w \text{ leaf}} weight(w) \cdot depth(w)$$

well-understood problem with known algorithms

optimal merge tree

= optimal *binary search tree* for leaf weights ℓ_1, \ldots, ℓ_r (optimal expected search cost)

Nearly-Optimal Mergesort

Nearly-Optimal Mergesorts: Fast, Practical Sorting Methods That Optimally Adapt to Existing Runs

J. Ian Munro

University of Waterloo, Canada immro@uwaterloo.ca

() https://orcid.org/0000-0002-7165-7988 Sobnetian Wild

- Abstract

We present two stable mergener twinste, "peckeer" and "powerest", that capitit existing tume and infu marky-quints merging colors when displicits overhead. Previous metabols after require substantial effect for determining the merging order (Takuska 2009. Butbay & Nurara-2013) or do not have an optimal words-new gamants and set Knop 2018). We demonstrate that our methods one competitive in terms of running time with

2012 ACM Subject Classification Theory of computation \rightarrow Sorting and searching

Keywords and phrases adaptive sorting, nearly-optimal binary search trees, Timsort

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.63

Related Version arXiv: 1825.04154 (extended version with appendices)

Supplement Material zenodo: 1241162 (code to reproduce running time study)

Funding This work was supported by the Natural Sciences and Engineering Research Council of
Canada and the Canada Research Chairs Procramme.

1 Introduction

Sorting is a fundamental building block for numerous tasks and ubiquitous in both the theory and practice of computing. While practical and thorestically (close-to) optimal comparison-based sorting methods are known, instance-optimal sorting, i.e., methods that adapt to the actual input and exploit specific structural properties if present, is still an area of active research. We survey some errord developments in Section 1.1.

Many different structural properties have been investigated in theory. Two of them have due found wide adoption in practice, e.g., in Donde's Javas runtime Blazys adapting to the presence of duplicate keys and using existing sorted segments, called runs. The former is adhered by a so-called facility and the structure of the properties of the structure of the adhered by a so-called facility and the structure of the numbed, though, i.e., the relative order of elements with equal keys might be destroyed in the precess. It is brance used in Javas solds for primitive types are

O J. Ion Musses and Schaetian Wilds.

George Grant Creative Common License CC-BY

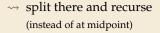
20th Assumi European Symposium on Algorithms (ESA 2016).

Ellizone Vond Ann, Hammah Bart, and Creegors Herman, Article No. 63; pp. 63:1–63:15

Different Versich Aust, Hannach Best, and Grouper Bernanni, Article No. 6h, pp. 6h.1–6h.15 Leftwin International Proceedings in Information Leftwinia International Proceedings in Information for Information (IPICS Schloss Dagstul) — Leftwinia-Enternation for Informatio, Dogstulal Publishing, Germany

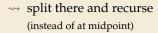
- ► In 2018, with Ian Munro, I combined research on nearly-optimal BSTs with mergesort
- → 2 new algorithms: *Peeksort* and *Powersort*
 - ▶ both adapt provably optimal to existing runs even in worst case: mergecost $\leq \mathcal{H}(\ell_1, ..., \ell_r) + 2n$
 - both are lightweight extensions of existing methods with negligible overhead
 - both fast in practice

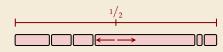
- ▶ based on top-down mergesort
- ▶ "peek" at middle of array & find closest run boundary



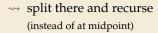
- ▶ based on top-down mergesort
- ▶ "peek" at middle of array & find closest run boundary
- → split there and recurse
 (instead of at midpoint)

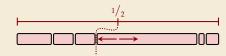
- ▶ based on top-down mergesort
- ▶ "peek" at middle of array & find closest run boundary



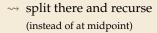


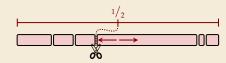
- ▶ based on top-down mergesort
- ▶ "peek" at middle of array & find closest run boundary



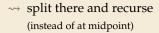


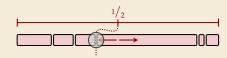
- ▶ based on top-down mergesort
- ▶ "peek" at middle of array & find closest run boundary



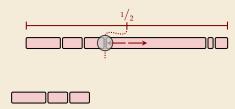


- ▶ based on top-down mergesort
- ▶ "peek" at middle of array & find closest run boundary

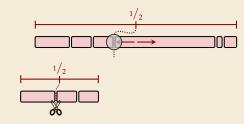




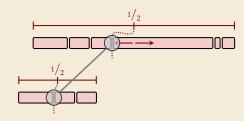
- ▶ based on top-down mergesort
- ▶ "peek" at middle of array & find closest run boundary
- → split there and recurse (instead of at midpoint)



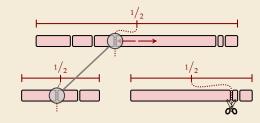
- ▶ based on top-down mergesort
- ▶ "peek" at middle of array & find closest run boundary
- → split there and recurse
 (instead of at midpoint)



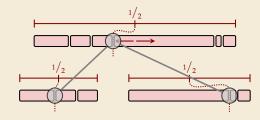
- ▶ based on top-down mergesort
- ▶ "peek" at middle of array & find closest run boundary
- → split there and recurse
 (instead of at midpoint)



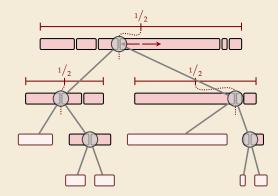
- ▶ based on top-down mergesort
- ▶ "peek" at middle of array & find closest run boundary
- → split there and recurse
 (instead of at midpoint)



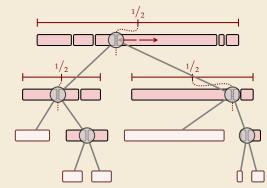
- ▶ based on top-down mergesort
- ▶ "peek" at middle of array & find closest run boundary
- → split there and recurse
 (instead of at midpoint)



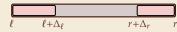
- ▶ based on top-down mergesort
- ▶ "peek" at middle of array & find closest run boundary
- → split there and recurse
 (instead of at midpoint)



- ▶ based on top-down mergesort
- "peek" at middle of array& find closest run boundary
- → split there and recurse (instead of at midpoint)



- can avoid scanning runs repeatedly:
 - ▶ find full run straddling midpoint
 - remember length of known runs at boundaries



with clever recursion, scan each run only once.

Peeksort - Code

```
1 procedure peeksort(A[\ell..r), \Delta_{\ell}, \Delta_{r})
               if r - \ell < 1 then return
               if \ell + \Delta_{\ell} == r \vee \ell == r + \Delta_r then return
              m := \ell + |(r - \ell)/2|
5 i := \begin{cases} \ell + \Delta_{\ell} & \text{if } \ell + \Delta_{\ell} \ge m \\ \text{extendRunLeft}(A, m) & \text{else} \end{cases}
6 j := \begin{cases} r + \Delta_{r} \le m & \text{if } r + \Delta_{r} \le m \le m \\ \text{extendRunRight}(A, m) & \text{else} \end{cases}
g := \begin{cases} i & \text{if } m - i < j - m \\ j & \text{else} \end{cases}
\delta \Delta_g := \begin{cases} j - i & \text{if } m - i < j - m \\ i - j & \text{else} \end{cases}
               peeksort(A[\ell..g), \Delta_{\ell}, \Delta_{g})
                peeksort(A[g,r), \Delta_g, \Delta_r)
10
                merge(A[\ell,g),A[g..r),buf)
11
                copy buf to A[\ell..r)
12
```

Parameters:

- initial call: peeksort(A[0..n), Δ_0 , Δ_n) with $\Delta_0 = \text{extendRunRight}(A, 0)$ $\Delta_n = n - \text{extendRunLeft}(A, n)$
- helper procedure

```
procedure extendRunRight(A[0..n), i)

j := i + 1

while j < n \land A[j - 1] \le A[j]

j := j + 1

return j
```

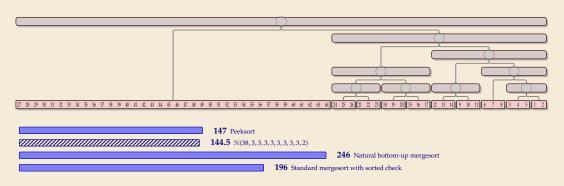
(extendRunLeft similar)

Peeksort – Analysis

► Consider tricky input from before again:

Peeksort – Analysis

► Consider tricky input from before again:



- ▶ One can prove: Mergecost always $\leq \mathcal{H}(\ell_1, \dots, \ell_r) + 2n$
- → We can have the best of both worlds!

4.6 Python's list sort

Sorting in Python

- CPython
 - Python is only a specification of a programming language
 - ► The Python Foundation maintains *CPython* as the official reference implementation of the Python programming language
 - ► If you don't specifically install something else, python will be CPython

6 6 6x

- ▶ part of Python are list.sort resp. sorted built-in functions
 - ▶ implemented in C
 - use *Timsort*, custom Mergesort variant by Tim Peters

Sorting in Python

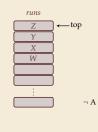
- CPython
 - ▶ *Python* is only a specification of a programming language
 - ► The Python Foundation maintains *CPython* as the official reference implementation of the Python programming language
 - ▶ If you don't specifically install something else, python will be CPython
- ▶ part of Python are list.sort resp. sorted built-in functions
 - ▶ implemented in C
 - use *Timsort*, custom Mergesort variant by Tim Peters

Sept 2021: **Python uses** *Powersort*! since CPython 3.11 and PyPy 7.3.6

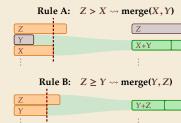
Timsort (original version)

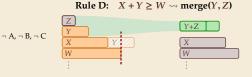
```
1 procedure Timsort(A[0..n))
      i := 0; runs := new Stack()
     while i < n
3
          j := \text{ExtendRunRight}(A, i)
          runs.push(i,j); i := j
          while rule A/B/C/D applicable
              merge corresponding runs
     while runs.size() \ge 2
          merge topmost 2 runs
```

- above shows the core algorithm; many more algorithm engineering tricks
- Advantages:
 - profits from existing runs
 - locality of reference for merges
- **But:** *not* optimally adaptive! (next slide) Reason: Rules A-D (Why exactly these?!)



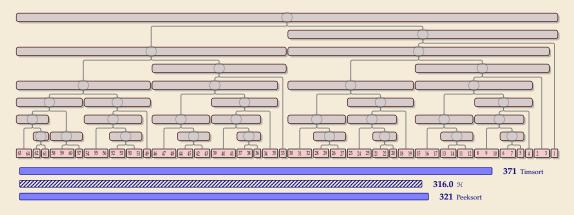
¬ A, ¬ B





Timsort bad case

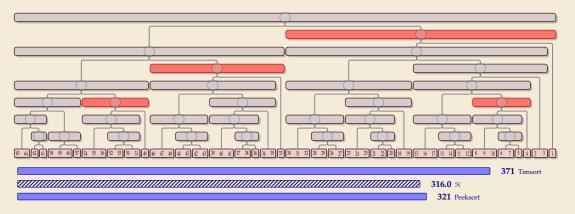
▶ On certain inputs, Timsort's merge rules don't work well:



▶ As n increases, Timsort's cost approach $1.5 \cdot \mathcal{H}$, i. e., 50% more merge costs than necessary

Timsort bad case

▶ On certain inputs, Timsort's merge rules don't work well:

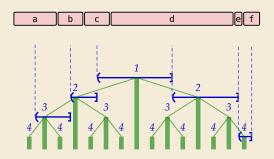


- As *n* increases, Timsort's cost approach $1.5 \cdot \mathcal{H}$, i. e., 50% more merge costs than necessary
 - ► intuitive problem: regularly very unbalanced merges

Powersort

→ Timsort's merge rules aren't great, but overall algorithm has appeal . . . can we keep that?

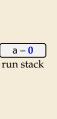
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i, j), 0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

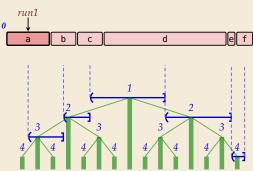


Powersort

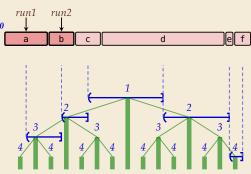
→ Timsort's *merge rules* aren't great, but overall algorithm has appeal . . . can we keep that?

```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
               merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

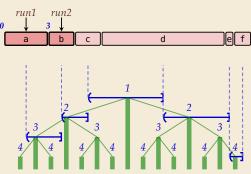




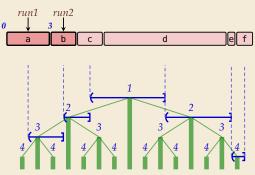
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
               merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

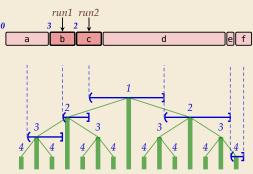
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
               merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

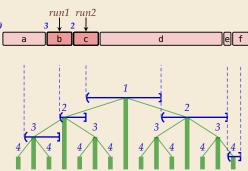
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
               merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

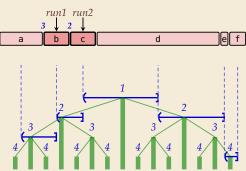
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
               merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

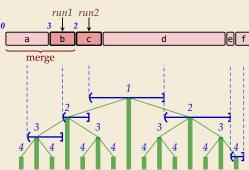
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

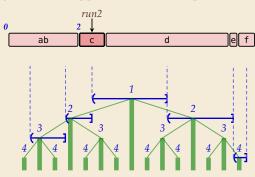
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i, j), 0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

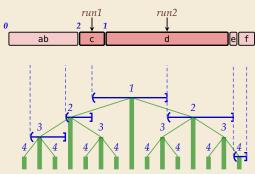



```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
               merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

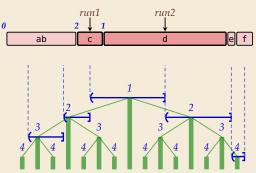



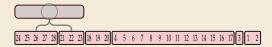


```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
               merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

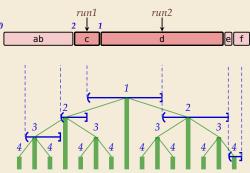




```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

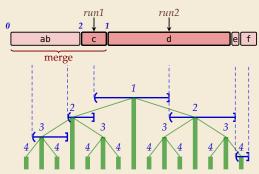





```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

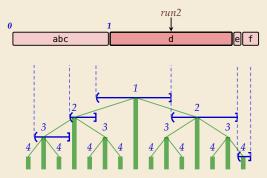



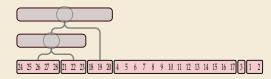

```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

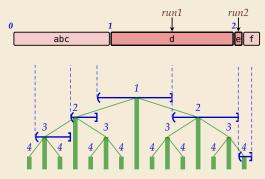


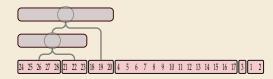
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       j := \text{ExtendRunRight}(A, i)
       runs.push((i, j), 0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

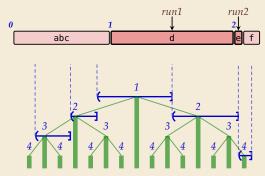


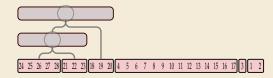
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i, j), 0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```



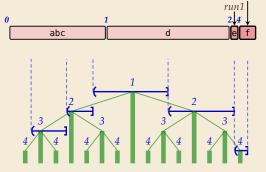
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

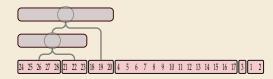





→ Timsort's *merge rules* aren't great, but overall algorithm has appeal . . . can we keep that?

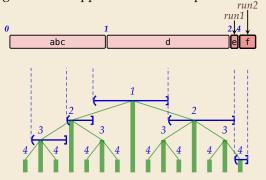
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

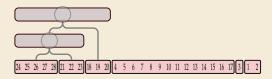





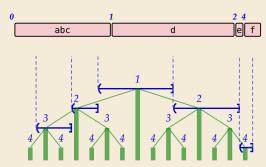
run2

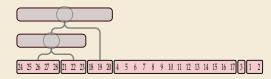
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

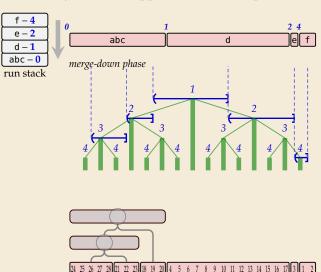


```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

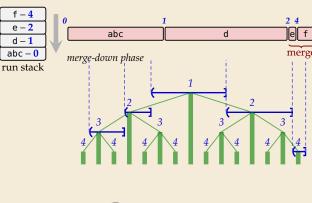



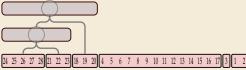


```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i, j), 0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

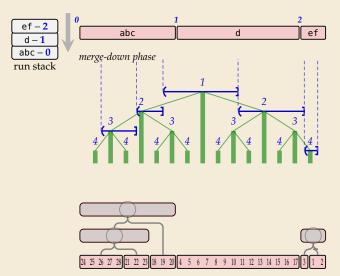


```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i, j), 0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

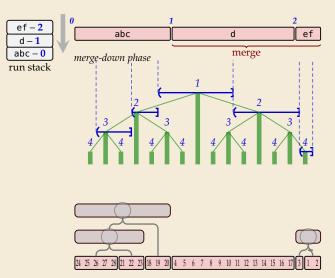




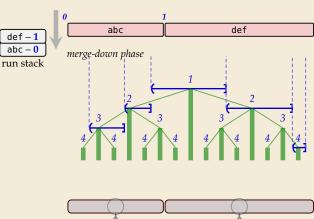
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i, j), 0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
8
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

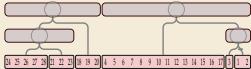


```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i, j), 0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
                merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```

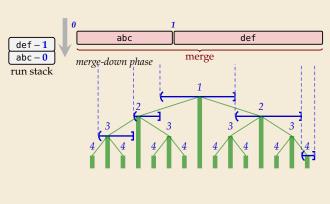


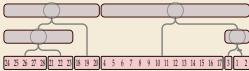
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
               merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```



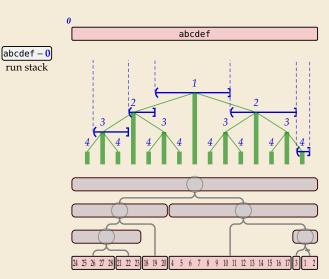


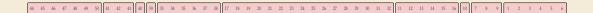
```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.push((i,j),0); i := j
       while i < n
5
           j := \text{ExtendRunRight}(A, i)
           p := power(runs.top(), (i, j), n)
           while p \le runs.top().power
               merge topmost 2 runs
9
           runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
           merge topmost 2 runs
12
```



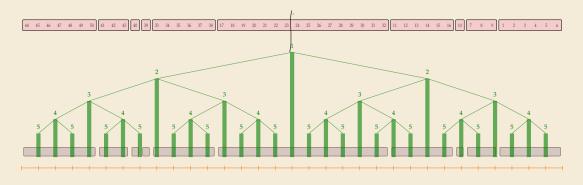


```
1 procedure Powersort(A[0..n))
       i := 0; runs := new Stack()
       i := \text{ExtendRunRight}(A, i)
       runs.\overline{push((i,j),0)}; i := j
       while i < n
5
            j := \text{ExtendRunRight}(A, i)
            p := power(runs.top(), (i, j), n)
            while p \le runs.top().power
                merge topmost 2 runs
9
            runs.push((i, j), p); i := j
10
       while runs.size() \ge 2
11
            merge topmost 2 runs
12
```

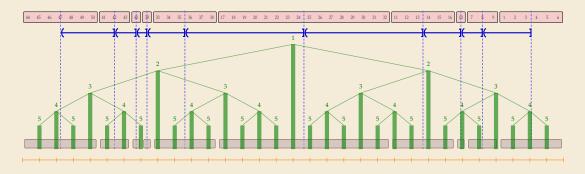




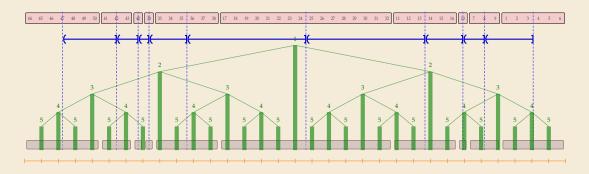
► (virtual) perfect balanced binary tree



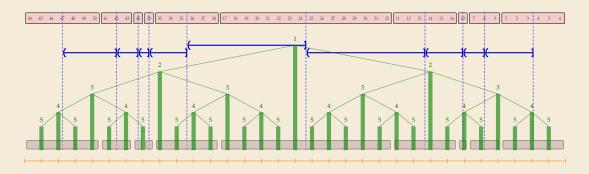
► (virtual) perfect balanced binary tree



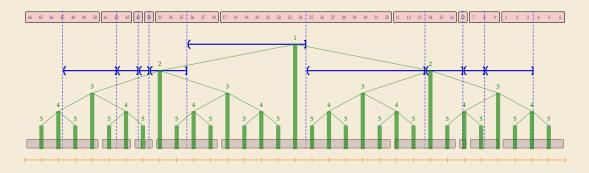
- ▶ (virtual) perfect balanced binary tree
- ▶ midpoint intervals "snap" to closest virtual tree node



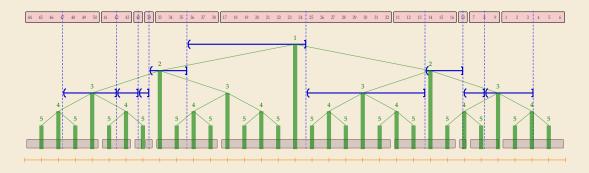
- ► (virtual) perfect balanced binary tree
- ▶ midpoint intervals "snap" to closest virtual tree node



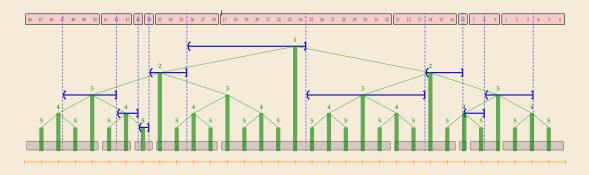
- ▶ (virtual) perfect balanced binary tree
- ▶ midpoint intervals "snap" to closest virtual tree node



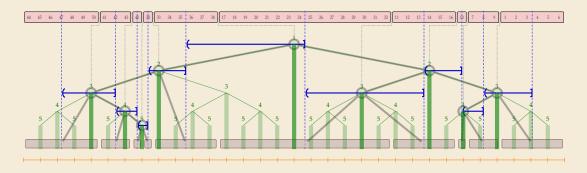
- ▶ (virtual) perfect balanced binary tree
- ▶ midpoint intervals "snap" to closest virtual tree node



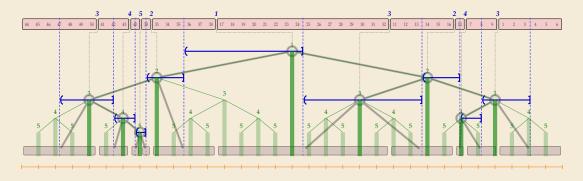
- ▶ (virtual) perfect balanced binary tree
- ▶ midpoint intervals "snap" to closest virtual tree node



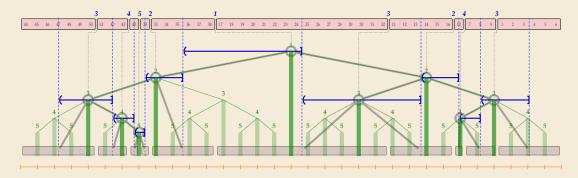
- ► (virtual) perfect balanced binary tree
- ▶ midpoint intervals "snap" to closest virtual tree node



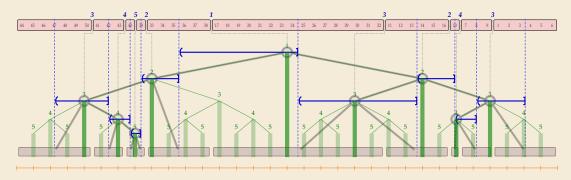
- ▶ (virtual) perfect balanced binary tree
- ▶ midpoint intervals "snap" to closest virtual tree node



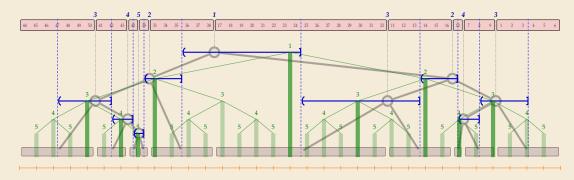
- ► (virtual) perfect balanced binary tree
- ▶ midpoint intervals "snap" to closest virtual tree node
 - → assigns each run boundary a depth



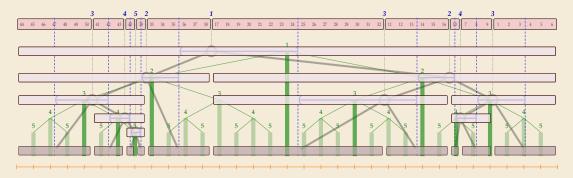
- ► (virtual) perfect balanced binary tree
- ▶ midpoint intervals "snap" to closest virtual tree node
 - → assigns each run boundary a depth = its *power*



- ► (virtual) perfect balanced binary tree
- ▶ midpoint intervals "snap" to closest virtual tree node
 - → assigns each run boundary a depth = its *power*
- \leadsto merge tree follows virtual tree



- ► (virtual) perfect balanced binary tree
- ► midpoint intervals "snap" to closest virtual tree node
 - → assigns each run boundary a depth = its *power*
- \leadsto merge tree follows virtual tree



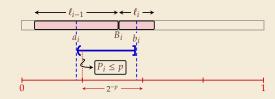
- ► (virtual) perfect balanced binary tree
- ▶ midpoint intervals "snap" to closest virtual tree node
 - → assigns each run boundary a depth = its *power*
- ightsquigarrow merge tree follows virtual tree

Powersort – Run-Boundary Powers are Local

Computation of powers only depends on two adjacent runs.

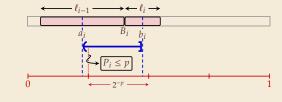
Powersort – Computing powers

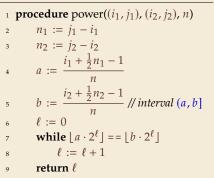
- ➤ Computing the power of (run boundary between) two runs
 - ► ← = normalized midpoint interval
 - ▶ power = min ℓ s.t. ← contains $c \cdot 2^{-\ell}$

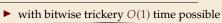


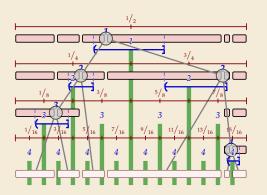
Powersort – Computing powers

- Computing the power of (run boundary between) two runs
 - ► ← = normalized midpoint interval
 - ▶ power = min ℓ s.t. \leftarrow contains $c \cdot 2^{-\ell}$









Powersort – Discussion

- - Retains all advantages of Timsort
 - good locality in memory accesses
 - no recursion
 - ▶ all the tricks in Timsort
- optimally adapts to existing runs
- minimal overhead for finding merge order