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Learning Outcomes

Unit 5: Divide & Conquer

1.

Know the steps of the Divide & Conquer paradigm.

2. Be able to solve simple Divide & Conquer recurrences.
3.
4

. Know the performance characteristics of selection-by-rank algorithms.

Be able to design and analyze new algorithms using the Divide & Conquer paradigm.
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5 Divide & Conquer

5.1 Divide & Conquer Recurrences
5.2 Order Statistics

5.3 Linear-Time Selection

5.4 Fast Multiplication

5.5 Majority

5.6 Closest Pair of Points in the Plane



Divide and conquer

Divide and conquer idiom (Latin: divide et impera)

to make a group of people disagree and fight with one another

so that they will not join together against one (Merriam-Webster Dictionary)

~ in politics & algorithms, many independent, small problems are better than one big one!

Divide-and-conquer algorithms:

1. Break problem into smaller, independent subproblems. (Divide!)

2. Recursively solve all subproblems. (Conquer!)

3. Assemble solution for original problem from solutions for subproblems.



Divide and conquer

Divide and conquer idiom (Latin: divide et impera)
to make a group of people disagree and fight with one another
so that they will not join together against one (Merriam-Webster Dictionary)

~ in politics & algorithms, many independent, small problems are better than one big one!

Divide-and-conquer algorithms:

1. Break problem into smaller, independent subproblems. (Divide!)

2. Recursively solve all subproblems. (Conquer!)

3. Assemble solution for original problem from solutions for subproblems.
Examples:

» Mergesort

» Quicksort

» Binary search

» (arguably) Tower of Hanoi



5.1 Divide & Conquer Recurrences



Back-of-the-envelope analysis

» before working out the details of a D&C idea,
it is often useful to get a quick indication of the resulting performance

»> don’t want to waste time on something that’s not competitive in the end anyways!

» since D&C is naturally recursive, running time often not obvious
instead: given by a recursive equation
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» before working out the details of a D&C idea,
it is often useful to get a quick indication of the resulting performance

»> don’t want to waste time on something that’s not competitive in the end anyways!

» since D&C is naturally recursive, running time often not obvious
instead: given by a recursive equation

» unfortunately, rigorous analysis often tricky

» Remember mergesort?

. : 0 n<l
(n) = C(ln/2))+C(n/2])+2n n>2

~ C(n) = 2nllg(n)] +2n —4- 21801 4
O(nlogn) =



Back-of-the-envelope analysis

» before working out the details of a D&C idea,
it is often useful to get a quick indication of the resulting performance

»> don’t want to waste time on something that’s not competitive in the end anyways!

» since D&C is naturally recursive, running time often not obvious
instead: given by a recursive equation

» unfortunately, rigorous analysis often tricky

» Remember mergesort?

. : 0 n<l
() = C(ln/2))+C(n/2])+2n n>2

~ C(n) = 2nllg(n)] +2n —4- 21801 4
O(nlogn) =

» the following method works for many typical cases to give the right order of growth



The Master Method Meygese

> Assume a stereotypical D&C algorithm =7
» 4 recursive calls on (for some constant a > 1) =1
» subproblems of size 1 /b (for some constant b > 1) flad= 20
» with non-recursive “conquer” effort f (1) (for some function f : R — R)
» base case effort d (some constant d > 0) Loen Emen (m =1 -~ d=p j

n=72 ~ dJd=72



The Master Method

> Assume a stereotypical D&C algorithm
» 4 recursive calls on (for some constant a > 1)
» subproblems of size 1 /b (for some constant b > 1)
» with non-recursive “conquer” effort f (1) (for some function f : R — R)

» base case effort d (some constant d > 0) .2
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~+ running time T(n) satisfies | T'(n) =




The Master Method

> Assume a stereotypical D&C algorithm
» 4 recursive calls on (for some constant a > 1)
» subproblems of size 1 /b (for some constant b > 1)
» with non-recursive “conquer” effort f (1) (for some function f : R — R)

> base case effort d (some constant d > 0)

a-T(%) + f(n) n>1
d n<l

~+ running time T(n) satisfies | T'(n) =

Theorem 5.1 (Master Theorem)
With ¢ := log, (2), we have for the above recurrence:

(@ T(n)=0(n°) if f(n) = O(n°~¢) for constant ¢ > 0.

(b) T(n) = O(nlogn) if f(n) = O(n°).

(0 T(n) =0O(f(n)) if f(n) = Q(n°**) for constant ¢ > 0 and f satisfies the
regularity condition Jng, @ <1Vn>ng : a f(%) < af(n).
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Master Theorem — Intuition & Proof Idea

S > S ()
fn/b) S(n/b) f/b) ————> af(n/b)

|log, n] + 1

F@/b?) f(n/b>)f(n/b?)  f@n/b?) f(n/b>)-f (/D) f(/b) f(n/b>)f(n/b*) —> a®f(n/b?)

@(1) @{1) @('1) @('1) @(1) @(1) @{1) @{1) @{1) @(1) @(ﬂ) @('1) @('1)» O(ne @)

glogynl+1
Llogp 7]
Total: ©(n'°% %) + Z a’ f(n/b’)

Figure 4.3 of Cormen et al. Introduction to Algorithms 4th ed. j=0



Crample:  Masgiord

T{D\\ = 2\,\ + Z/T( 2}

C = Q@Sb/a\ — j_

<

LY v, o«
9 = O

e Case 9 fawﬁ»ig

TN = O(L) Cog )
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When it’s fine to ignore floors and ceilings

The polynomial-growth condition
> f:R.o— R satisfies the polynomial-growth condition if

IngVC>13ID>1 Vn=nyVee[1,C] : 5f(n) < f(en) < Df(n)



When it’s fine to ignore floors and ceilings
The polynomial-growth condition

> f:R.o— R satisfies the polynomial-growth condition if

IngVC>13ID>1 Vn=nyVee[1,C] : 5f(n) < f(en) < Df(n)

> intuitively: increasing n by up to a factor C (and anywhere in between!)
changes the function value by at most a factor D = D(C)

(for sufficiently large 1) zero allowed

> examples: f(1) = @(n®logf(n)loglog’ (n)) for constants a, f, y
~»  f satisfies the polynomial-growth condition



When it’s fine to ignore floors and ceilings

The polynomial-growth condition
> f:R.o— R satisfies the polynomial-growth condition if

IngVC>13ID>1 Vn=nyVee[1,C] : 5f(n) < f(en) < Df(n)

> intuitively: increasing n by up to a factor C (and anywhere in between!)
changes the function value by at most a factor D = D(C)

(for sufficiently large 1) zero allowed

> examples: f(1) = @(n®logf(n)loglog’ (n)) for constants a, f, y
~»  f satisfies the polynomial-growth condition

Lemma 5.2 (Polynomial-growth master method)

If the toll function f(n) satisfies the polynomial-growth condition,
then the ®-class of the solution of a D&C recurrence remains the same
when ignoring floors and ceilings on subproblem sizes.



A Rigorous and Stronger Meta Theorem

4 QAKX anq
Theorem 5.3 (Roura’s Discrete Master Theorem)
5 5 o n
Let T(n) be recursively defined as Cl = don e CC 2 Y o« C(—./_;
5
by, 0<n<ng,

T(n) = D ;
f(n) +lead . T(E +r,1,d) n > nop,

where D € N,a; >0,by > 1,ford =1,...,D are constants, functions r,, 4 satisfy |7, 4| = O(1) as
n — oo, and function f(n) satisfies f(n) ~ B - n®(Inn)” for constants B > 0, «, y.
SetH =1- ZdD:1 ag (1/by)%; then we have:

@) If H <0, then T(n) = O(n%), for & the unique value of a that would make H = 0.

(b) If H=0and y > -1, then T(n) ~ f(n)ln(n)/H with constant A = (y + 1) ZdD:1 ag b;"‘ In(by).
(o) fH=0and y = -1, then T(n) ~ f(n)ln(n)ln(ln(n))/I:I with constant H = ZdD:1 ag b;“ In(by).
(d) If H =0and y < -1, then T(n) = O(n%).

(e) If H >0, thenT(n) ~ f(n)/H.



5.2 Order Statistics



Selection by Rank

» Standard data summary of numerical data: (Data scientists, listen up!)
» mean, standard deviation
» min/max (range) easy to compute in @ (1) time
» histograms

267 ?
» median, quartiles, other quantiles ? & 2 computable in O(n) time?
(a.k.a. order statistics)



Selection by Rank

» Standard data summary of numerical data: (Data scientists, listen up!)
» mean, standard deviation
» min/max (range) easy to compute in @ (1) time
» histograms

267 ?
» median, quartiles, other quantiles ? & 2 computable in O(n) time?
(a.k.a. order statistics)

General form of problem: Selection by Rank

. but 0-based &
» Given: array A[0..n) of numbers and number k € [0..1). counting dups

» Goal: find element that would be in position k if A was sorted (kth smallest element).

» k=|n/2] ~ median; k=|n/4] ~» lower quartile
k=0 ~» minimum; k=n—-{ ~» (thlargest



Quickselect

» Key observation: Finding the element of rank k seems hard.
But computing the rank of a given element is easy!

count smaller elements

~ Pick any element A[b] and find its rank ;.
» j=k? ~» Lucky Duck! Return chosen element and stop
» j<k? ~» ...notdone yet. But: The j + 1 elements smaller than < A[b] can be excluded!
»> j>k? ~» similarly exclude the n — j elements > A[b]



Quickselect

» Key observation: Finding the element of rank k seems hard.
But computing the rank of a given element is easy!

count smaller elements

~ Pick any element A[b] and find its rank ;.
» j=k? ~» Lucky Duck! Return chosen element and stop
» j<k? ~» ...notdone yet. But: The j + 1 elements smaller than < A[b] can be excluded!

»> j>k? ~» similarly exclude the n — j elements > A[b]

» partition function from Quicksort: 1 procedure quickselect(A[l..r), k)

> returns the rank of pivot 2 if  — ¢ < 1 then return A[l]

> separates elements into smaller/larger 5 5 AT A L)

_ 4 j = partition(A[l..r), b)
~~ can use same building blocks 5 ifj ==
6 return A[j]
7 elseif j < k
8 quickselect(A[j + 1..n), k &42)

9 else //j >k
10 quickselect(A[0..f), k)




Quickselect - Iterative Code

Recursion can be replaced by loop (tail-recursion elimination)

1 procedure quickselect(A[l..7), k) 1 procedure quickselectlterative(A[0..n), k)
2 if r — { < 1 then return A[[] 2 =0 7=

3 b := choosePivot(A[l..r)) 3 whiler -1 > 1

4 j = partition(A[l..r), b) 4 b := choosePivot(A[!..r))

5 ifj == 5 j = partition(A[!..r), b)

6 return A[j] 6 ifj > kthenr :=j—1

7 elseif j < k 7 ifj<kthen/:=j+1

8 quickselect(A[j + 1..n), k -#4t4t) 8 return A[k]

9 else//j >k

10 quickselect(A[0..f), k)

> implementations should usually prefer iterative version

» analysis more intuitive with recursive version
| MECUIEINGE WEESIoI

10



Quickselect — Analysis

1 procedure quickselect(A[l..r), k)

> ifr—{ < 1then return A[l] » cost = #cmps

3 b := choosePivot(A[l..r))

+  j = partition(A[1.r), b) » costs depend on # and k
5 ifj==k

6 return A[j]

7 elseif j < k

8 quickselect(A[j +1..n), k —j - 1)

9 else//j >k

10 quickselect(A[0..f), k)




Quickselect — Analysis

1 procedure quickselect(A[l..r), k)
> ifr—{ < 1then return A[l] » cost = #cmps
3 b := choosePivot(A[l..r))
4 j := partition(A[l..r), b) » costs depend on 7 and k
s ifj==k
6 return A[j] )
; elseifj<k > worst case: k =0, butalwaysj=n -2
ickselect(A[j +1..n), k—j —1 .
: else(};l;ls: ect(Alj m)k=j=1) ~ each recursive call makes 1 one smaller at cost (1)
10 quickselect(A[0..)), k) > T(n, k) = @(I’lz) worst case cost

11



Quickselect — Analysis

procedure quickselect(A[[..r), k)

1
2 ifr—{ < 1then return A[l] » cost= #£glp§
3 b := choosePivot(A[l..r))
+  j = partition(A[l..r), b) » costs depend on # and k
s ifj==k
6 return A[j] .
; elseifj<k > worst case: k =0, butalwaysj=n -2
ickselect(A[j +1..n), k — j—1 .
: else(};l;ls: ect(Alj +1.m), k=j=1) ~ each recursive call makes 1 one smaller at cost (1)
10 quickselect(A[0../), k) ~ T(n, k) = @(n?) worst case cost

average case:

» let T(n, k) expected cost when we choose a pivot uniformly from A[0..n)

~~ formulate recurrence for T(n, k) similar to BST/Quicksort recurrence
n—1

T(n,k) = n + lZ[rzk]-o +[k<r]- T k) + [k>r] - Tn—r-1,k—r—1)
- n e :

r=0
qur(z\‘{/\'ul, /T § 1 =k
Pe IPFVQ( canls rl SELUS

11



Quickselect — Average Case Analysis

n—1

» T(n,k) = n -0+ [k<r]-T(r, k) + [k>r] - Tn—r—-1,k—r—1)

3|>—\

=0

<

> Se’g_f(_n_) = mane[o..n)T(”/k)

12



Quickselect — Average Case Analysis

n—1
> T(n, k) =

3|>—\

_

=0

<

= O

> Set T(Tl) = MaXge[o..n) T(n, k)

w T) < n + %Zmax{f(r),f"(n—r—l)}

[r=k]-0+ [k<7r]- T(r k) + [k>r] - Th—r—-1,k—r—-1)
-

_/

\< aoox {T(‘ﬁ[i) ( T-[V"\" { ‘I,\,-v«-13§

€ wee T () T Came-1Y

12



Quickselect — Average Case Analysis
n-1
-0+ [k<r]-T(r, k) + [k>r] - Tn—r—-1,k—r—1)

- v (C %{)

3|>—\

» T(n,k)

> SetT(n) = maxyep.n) T(n, k) \ P

~ Tm) < n + %Zmax{f(r),f"(n—r—l)}

<

» analyze hypothetical, worse algorithm: O t—
if ¢ [{n, 3n), discard pivot and repeat with new one! % a 7
g
T(n) < n + %T(n) %T(% )

~ T(n) < T(n) defined by <

12



Quickselect — Average Case Analysis

n—1

T(n, k)

S| =

-0+ [k<r]-T(r, k) + [k>r] - Tn—r—-1,k—r—1)
=0

<

> Set "f(n) = maXge[o.n) T (1, k)

~ Tm) < n o+ %Zmax{f(r), T(n—r-1)}

> analyze hypothetical, worse algorithm:
if ¢ [1n, 3n), discard pivot and repeat with new one!

IN

~ T(n) < T(n) definedby  T(n) Tm) + 3TGn) |- —TW

=

~ T(n) < 2n + T(%n)

12



Quickselect — Average Case Analysis

n—1

T(n, k)

S| =

-0+ [k<r]-T(r, k) + [k>r] - Tn—r—-1,k—r—1)
=0

<

> Set "f(n) = maXge[o.n) T (1, k)

~ Tm) < n o+ %Zmax{f(r), T(n—r-1)}

> analyze hypothetical, worse algorithm:
if ¢ [1n, 3n), discard pivot and repeat with new one!

~ T(n) < T(n) definedby  T(n) < T(n) + 1T(3n)

=
N—=

~ T(n) < 2n + T(%n)
» Master Theorem Case 3: T(n) = O(n)

12



Quickselect Discussion
EG) O(n?) worst case (like Quicksort)
[{b expected cost ©(n) (best possible)

[b no extra space needed

[b adaptations possible to find several order statistics at once

13



Quickselect Discussion
E@ O(n?) worst case (like Quicksort)
[b expected cost ©(n) (best possible)

[ﬂ] no extra space needed

[b adaptations possible to find several order statistics at once

[ﬁ) expected cost can be further improved by choosing pivot from a small sorted sample

~+ asymptotically optimal randomized cost: 7 +min{k, n — k} comparisons in expectation
achieved asymptotically by the Floyd-Rivest algorithm

13



5.3 Linear-Time Selection



Interlude — A recurring conversation
Cast of Characters:

Hi! I'm a computer science practitioner.

I'love algorithms for the sometimes miraculous applications they enable.
I care for things I can implement and that actually work in practice.

Hi! I'm a theoretical computer science researcher.
Ifind beauty in elegant and definitive answers to questions about complexity.
m I care for eternal truths and mathematically proven facts;

asymptotically optimal is what counts! (Constant factors are secondary.)

14



Quickselect Disagreements

e.g. used in C++ STL std: :nth_element

15



Quickselect Disagreements

e.g. used in C++ STL std: :nth_element

Yeah ... maybe. But can we select by rank in O(#) deterministic worst case time?

58

15



Better Pivots

It turns out, we can!
> All we need is better pivots!

» If pivot was the exact median,
we would at least halve #elements in each step

» Then the total cost of all partitioning steps is < 2n'= ©(n).

" ¢ o0 R (
= < Z =1
(= O ¢ T o

[sel< 2

16



Better Pivots

It turns out, we can!
> All we need is better pivots!

» If pivot was the exact median,
we would at least halve #elements in each step

» Then the total cost of all partitioning steps is < 2n = ©(n).

But: finding medians is (basically) our original problem!
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Better Pivots

It turns out, we can!
> All we need is better pivots!

» If pivot was the exact median,
we would at least halve #elements in each step

» Then the total cost of all partitioning steps is < 21 = O(n).

But: finding medians is (basically) our original problem!

_‘é’_ It totally suffices to find an element of rank an for a € (¢, 1 — ¢)
\

Y to get overall costs ©(n)!

16



The Median-of-Medians Algorithm

1 procedure choosePivotMoM(A[I..r))
2 m = |n/5]

3 fori :=0,..., m—1
4 sort(A[5i..5i + 4])
5 // collect median of 5

Swap Ali] and A[5i + 2]
7 return quickselectMoM(A[0..m), L%J)

o

s procedure quickselectMoM(A[l..r), k)

10 if r — { < 1 then return A[/]

1 b := choosePivotMoM(A[!..r))

= j = partition(A[l..r), b)

13 ifj ==

14 return A[]]

15 elseif j <k

16 quickselectMoM(A[] + 1..n), k =g=p)

17 else//j >k
18 quickselectMoM(A[O..f), k)




The Median-of-Medians Algorithm

Analysis:
1 procedure choosePivotMoM(A[I..r))
) m = |n/5] » Note: 2 mutually recursive procedures
3 fori :=0,..., m—1 ~ effectively 2 recursive calls!
€ 50rt(A[5i-~5i_+ 4]) 1. recursive call inside choosePivotMoM
5 // collect median of 5 on m < % elements

Swap Ali] and A[5i + 2]
7 return quickselectMoM(A[0..m), L%J)

o

s procedure quickselectMoM(A[l..r), k)
10 if r — { < 1 then return A[/]

1 b := choosePivotMoM(A[!..r))

12 j := partition(A[l..r), b)

13 ifj ==

14 return A[]]

15 elseif j <k

16 quickselectMoM(A[j + 1..n), k —j — 1)
17 else//j >k

18 quickselectMoM(A[O..f), k)

17



The Median-of-Medians Algorithm

Analysis:
1 procedure choosePivotMoM(A[I..r)) )
) m = |n/5] » Note: 2 mutually recursive procedures
3 fori :=0,..., m—1 ~ effectively 2 recursive calls!
€ 50rt(A[5i-~5i_+ 4]) 1. recursive call inside choosePivotMoM
5 // collect median of 5 on m < % elements
6 Swap Ali] and A[5i + 2]

, return quickselectMoM(A[0..1m), | %51 |) 2. recursive call inside quickselectMoM

<p
8
s procedure quickselectMoM(A[l..r), k) O O o O O O O ) O
10 if r — { < 1 then return A[/] O O O O O O O O O
1 b := choosePivotMoM(A[!..r)) O O O @ O O O O o
12 j := partition(A[l..r), b) O O O O O O O O
13 ifj == O O OO0 O O O O
1 return A[j] =
5 elseif j < k ~» partition excludes ~ 3 - % ~ %n elem.
16 quickselectMoM(A[j + 1..n), k — j — 1)
17 else//j >k
18 quickselectMoM(A[O..f), k)

17



The Median-of-Medians Algorithm

1 procedure choosePivotMoM(A[I..r))
2 m = |n/5]
fori :=0,..., m—1
sort(A[5i..5i + 4])
// collect median of 5
Swap Ali] and A[5i + 2]
7 return quickselectMoM(A[0..m), L%J)

- Y N

s procedure quickselectMoM(A[l..r), k)
10 if r — { < 1 then return A[/]

1 b := choosePivotMoM(A[!..r))

12 j := partition(A[l..r), b)

13 ifj ==

14 return A[]]

15 elseif j <k

16 quickselectMoM(A[j + 1..n), k —j — 1)

17 else//j >k
18 quickselectMoM(A[0..f), k)

ansatz: overall 7~

Analysis:
» Note: 2 mutually recursive procedures
~ effectively 2 recursive calls!

1. recursive call inside choosePivotMoM

onm < £ elements

2. recursive call inside quickselectMoM
<p

Q Q00000
QOO0 0 0 0 O
00 Q0 O O

00 Q00

O O O O O

zp
~ partition exc'ﬂ{des =Ae =~ %n elem.

< O(n)+C(in+&n

cost linear = @(7’1)+C(%1’l) WM



5.4 Fast Multiplication



Clicker Question

4 How many bit operations does it take to multiply two _71/-31: integers?
o(1) O(nlogn)
O(loglog n) O(n log n loglog n)
O(log n) o(n?)
o (D) O(tog?n) O(n%logn)
O(Vn) o)
L o(n) 02"

D |~ sli.do/cs566 |




Integer Multiplication

» What's the cost of computing x - y for two integers x and y?

~ depends on how big the numbers are!
» If x and y have O(w) bits, multiplication takes O(1) time on word-RAM
» otherwise, need a dedicated algorithm!

18



Integer Multiplication

» What's the cost of computing x - y for two integers x and y?
~ depends on how big the numbers are!

» If x and y have O(w) bits, multiplication takes O(1) time on word-RAM

» otherwise, need a dedicated algorithm!

Long multiplication (»Schulmethode«)

n—1 n—1 2n-1
» Given x = Z xi2' and y = Z yi2', want z = Z zi2!
i=0 i=0 i=0
1 fori:=0,...,n—-1 N .
. =0 » O(n~) bit operations
3 forj :=0,...,n—1 » could work with base 2%
4 Ziyj = Zipj +CHXi Y instead of 2
° ¢ = zi+j/2] ~ O((n/w)?) time
6 Ziyj = Zj+j mod 2
7 end for » here: count bit operations
8 Fprn = @ for simplicity
9 end for can be generalized

Example:
easier in binary!
(“shift and add”)

1001010101 * 101101
1001010101
0000000000
1001010101
1001010101
0000000000
1001010101

110100011116001

18



Divide & Conquer Multiplication

» assume 7 is power of 2 (fill up with 0-bits otherwise)

» We can write
> x=a12"2 + a5 and
> Y= b12”/2 + by

» for ay, ap, by, by integers with n /2 bits

19



Divide & Conquer Multiplication

» assume 7 is power of 2 (fill up with 0-bits otherwise)

» We can write
> x=a12"2 + a5 and
> Y= b12”/2 + by

» for ay, ap, by, by integers with n /2 bits

~ XY = (alz”/2 A 612) 0 (b12”/2 = bz) = a1b12” aF (a1b2 + a2b1)2”/2 + azbz
» recursively compute 4 smaller products

» combine with shifts and additions (O(n) bit operations)
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Divide & Conquer Multiplication

» assume 7 is power of 2 (fill up with 0-bits otherwise)

» We can write
> x=a12"2 + a5 and
> y=02"2+ by
» for ay, ap, by, by integers with n /2 bits

v xey = (@2 + ay) - (012"% + by) = a1b12" + (@1by + azb1)2"? + azb;

» recursively compute 4 smaller products
» combine with shifts and additions (O(n) bit operations)

& =h B
» ...butis this any good? L. g ¢ = Qc%(a\ = 9
> T(n) = 4-T(n/2) +O(n)
~~ Master Theorem Case 1: T(n) = ®(n?) ... just like the primary school method!?

»> but Master Theorem gives us a hint: cost is dominated by the leaves
~+ try to do more work in conquer step!
———————
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Karatsuba Multiplication
» how can we do “less divide and more conquer”?

Recall: x - y = a1b12" + (ﬂlbz + a2b1)2"/2 + ayby

20



Karatsuba Multiplication
» how can we do “less divide and more conquer”?

Recall: x - y = a1b12" + (ﬂlbz + azb1)2"/2 + ayby
= —

-(:)- Let’s do some algebra.

c = (ﬂ1 ol azﬁ(bl ar bz)
= a1b1 + (lllbz + azbl) + azbz
A

~ (a1by + azby) = c—aiby —axby
this can be computed with 3 recursive multiplications
aj + ap and by + by still have roughly #/2 bits
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Karatsuba Multiplication
» how can we do “less divide and more conquer”?

Recall: x - y = a1b12" + (ﬂlbz + a2b1)2"/2 + ayby

Q- Let’s do some algebra.

c = (ﬂ1 + az) 0 (bl + bz)
= a1b1 + (lllbz + a2b1) + azbz

~ (a1by + azby) = c—aiby —axby
this can be computed with 3 recursive multiplications
aj + ap and by + by still have roughly #/2 bits

1 procedure karatsuba(x, y):

2 // Assume x and y are n = 2 bit integers

3 ay = [x/2"2]; ay == x mod 2"/2 // implemented by shifts
4 by := Ly/2"2]; by = y mod 2"/

5 c¢1 := karatsuba(ay, by)

6 ¢y := karatsuba(ay, by)

7 ¢ := karatsuba(ai + ap, by +by) —c1 — 2

8 return ¢12" + c2"/2 + ¢, // shifts and additions




Karatsuba Multiplication
» how can we do “less divide and more conquer”? Analysis:

Recall: x-y = a1b12" + (a1b2 + a2b1)2"? + ayb, > nonrecursive cost: only

Q Let’s d loeb additions and shifts
-Q:- Let’s do some algebra.

c = (a;+ap)- (b1 +by) » all numbers O(n) bits

= by + (a1b2 + azb1) + azb; ~ conquer cost f(n) = ©(n)

~ (a1by + azby) = c—aiby —axby
this can be computed with 3 recursive multiplications
aj + ap and by + by still have roughly #/2 bits

1 procedure karatsuba(x, y):

2 // Assume x and y are n = 2 bit integers

3 ay = [x/2"2]; ay == x mod 2"/2 // implemented by shifts
4 by := Ly/2"2]; by = y mod 2"/

5 c¢1 := karatsuba(ay, by)

6 ¢y := karatsuba(ay, by)

7 ¢ := karatsuba(ai + ap, by +by) —c1 — 2

8 return ¢12" + c2"/2 + ¢, // shifts and additions




Karatsuba Multiplication

» how can we do “less divide and more conquer”? Analysis:
Recall: x-y = a1b12" + (arby + a2b1)2"* + azb, > nonrecursive cost: only
ol , additions and shifts
Q- Let’s do some algebra.
< .
c = (a;+ap)- (b1 +by) all numbers O(n) bits

= by + (a1b2 + azb1) + azb; ~» conquer cost f(n) = O(n)

~ (a1bz + azb1) = c—a1br —azxby
this can be computed with 3 recursive multiplications S
a1 + a and by + by still have roughly 7/2 bits » T(n) = 3T(n/2) + O(n)
1 procedure karatsuba(x, y): > Master Theorem Case 1
2 // Assume x and y are n = 2 bit integers lo3 1,585
3 a1 := |x/2"2]; ap := x mod 2"/2 J/ implemented by shifts ~ T(n) = ©(n'8%) = O(n">>)
4 by := Ly/2"2]; by = y mod 2"/
5 ¢1 := karatsuba(ay, by) much cheaper (for large 7)!
6 ¢y := karatsuba(ay, by)
7 ¢ := karatsuba(ai + ap, by +by) —c1 — 2
8 return ¢12" + c2"/2 + ¢, // shifts and additions




Integer Multiplication

> until 1960, integer multiplication was conjectured to take (2(1?) bit operations

~ Karatsuba’s algorithm was a big breakthrough

» which he discovered as a student!

» idea can be generalized to breaking numbers into k > 2 parts (Toom-Cook algorithm)
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Integer Multiplication

> until 1960, integer multiplication was conjectured to take (2(1?) bit operations

~ Karatsuba’s algorithm was a big breakthrough

» which he discovered as a student!

» idea can be generalized to breaking numbers into k > 2 parts (Toom-Cook algorithm)

» asymptotically much better algorithms are now known!

> e.g., the Schonhage-Strassen algorithm with O(n log n loglog 1) bit operations (!)
» these are based on the Fast Fourier Transform (FFT) algorithm

»> numbers = polynomials evaluated at base (e.g., z = 2)

~» multiplication of numbers = convolution of polynomials

»> FFT makes computation of this convolution cheap by computing the polynomial via interpolation
» Schonhage-Strassen adds careful finite-field algebra to make computations efficient
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Clicker Question

4 )
What's the product A - B of the matrices

1 0 2 3
= = ?
A (2 3) and B (_1 0) ?

D |~ sli.do/cs566




Clicker Question

-

What's the product A - B of the matrices

1 0 2 3
= = ?
A (2 3) and B (_1 0) ?

10 2 3
(01) @(16)‘/
2 0 2 _1
@‘20 _66

D |~ sli.do/cs566




Matrix Multiplication

» The same trick can also be used for faster matrix multiplication

entry of A in row i and column k
n

» Recall: For A, B € R"™" we defineC = A-Bviac;; = Z a; by,
k=1

~~ Naive cost: 72 sums with 7 terms each ~ ©(n°) arithmetic operations
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Matrix Multiplication

» The same trick can also be used for faster matrix multiplication

entry of A in row i and column k
n

» Recall: For A, B € R"™" we defineC = A-Bviac;; = Z a; by,
k=1

~~ Naive cost: 72 sums with 7 terms each ~ ©(n°) arithmetic operations

» Can use D&C as follows (assuming 7 is a power of 2 again)
A A B B @ <€
» Decompose A= ( Al 1 A1/2 , = ( BM B1r2 ), C= ( Cl,l Cl,z )
(cut in half hor. & vert.) 2,1 2,2 2,1 2, 2,1 2,2

~ We get C as Cl,l = Al,l -Byq + A1,2 "By
Ci1p2=A11-B1p+A12-Byp (note”” and “+” operate on matrices here)
Cy1=A21-B1,1 +Ax2 By
Cop=A21-Bip+Axn-Bop
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Matrix Multiplication

» The same trick can also be used for faster matrix multiplication

entry of A in row i and column k
n

» Recall: For A, B € R"™" we defineC = A-Bviac;; = Z a; by,
k=1

~~ Naive cost: 72 sums with 7 terms each ~ ©(n°) arithmetic operations

» Can use D&C as follows (assuming 7 is a power of 2 again)
A A B B @ <€
> Decompose A= ( Al’l A1’2 ), B= ( BM B1'2 ), C= ( CM C1'2 )
(cut in half hor. & vert.) 2,1 2,2 2,1 2,2 2,1 2,2

~ We get C as Cl,l = Al,l ° 31,1 + A1,2 . BZ,l
Ci1p2=A11-B1p+A12-Byp (note”” and “+” operate on matrices here)
Cy1=A21-B1,1 +Ax2 By
C2,2 = A2,1 “Bip+ A2/2 “Bop 4 matrix sums with (%) entries each
y %
» 8 recursive matrix multiplications on two % X % matrices + ©(n2) summations

> #operations T(n) = 8T (11/2) + ©(n?) L=9

T e g (@) = 3
T(V\S @ COJ( ‘DQ mpﬂyfub L«_ua n<mn wa(—v'cu o-=8 &



Matrix Multiplication

» The same trick can also be used for faster matrix multiplication

entry of A in row i and column k
n

» Recall: For A, B € R"™" we defineC = A-Bviac;; = Z a; by,
k=1

~~ Naive cost: 72 sums with 7 terms each ~ ©(n°) arithmetic operations

» Can use D&C as follows (assuming 7 is a power of 2 again)
A A B B @ <€
> Decompose A= ( Al’l A1’2 ), B= ( BM B1'2 ), C= ( CM C1'2 )
(cut in half hor. & vert.) 2,1 2,2 2,1 2,2 2,1 2,2

~ We get C as Cl,l = Al,l ° 31,1 + A1,2 . BZ,l
Ci1p2=A11-B1p+A12-Byp (note”” and “+” operate on matrices here)
Cy1=A21-B1,1 +Ax2 By
C2,2 = Az,l “Bip+ A2,2 “Bop 4 matrix sums with (%) entries each

> 8 recursive matrix multiplications on two 5 X 4 matrices + O(n?) summ:tions

» #operations T(n) = 8T(n/2) + O(n?)

~~ Master Theorem Case 1: T(n) = ©@(n®) = (but: still useful for better memory locality!)
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Strassen Algorithm for Matrix Multiplication

» Observation (again): Can do more conquer for less divide!

» We recursively compute the following 7 products:
M; = (A12—A22) - (B21 + Bap)
My = (A1,1+A22) - (B11 + Bap)
Mjs = (A1,1 —A21) - (B11 + B1p)

= (A11+A12) - Bap

M5 = A1,1- (B2 — Bap)

Mg = Azp-(B21 — B11)

(A21 + A2p) - Bi

S
Il

g
Il

~» We then obtain the 4 parts of C as
C1,1 = M1 +M2—M4+M6
C1/2 = M4 ar M5
C2,1 = M6 St M7
Cz/z = Mz—M3+M5—M7

(Proof: left as exercise %)



Strassen Algorithm for Matrix Multiplication

» Observation (again): Can do more conquer for less divide!

»> We recursively compute the following 7 products:
My = (A1p = A22) - (B21 + B2p)

M, = (A1 + Az22) - (B11 + B2p) fpel it
Mz = (A1 = Az1) - (Bra + Bi) > conquer step: larger but still
My = (A1 + A1) Bap O(1) #matrix add/subtract

Ms = Ay (B12— B22)
Ms = Az (Ba1 —Bi,1)
(A2q +Azp) - Big

~~ ©(n?) operations for conquer

g
Il

~» We then obtain the 4 parts of C as
C1,1 = M1 +M2—M4+M6
C1/2 = M4 ar M5
C2,1 = M6 St M7
Cz/z = Mz—M3+M5—M7

(Proof: left as exercise %)



Strassen Algorithm for Matrix Multiplication

» Observation (again): Can do more conquer for less divide!

»> We recursively compute the following 7 products:
My = (A1p = A22) - (B21 + B2p)

M, = (A1 + Az22) - (B11 + B2p) fpel it
Mz = (A1 = Az1) - (Bra + Bi) > conquer step: larger but still
My = (A1 + A1) Bap O(1) #matrix add/subtract

Ms = A11-(B12—B2p)

Mg = Az2-(B21—B11)

(Az1+ A2p)-Big ~~ total # arithmetic operations
T(n) = 7T(n/2) + ©(n?)

~~ ©(n?) operations for conquer

g
Il

~» We then obtain the 4 parts of C as
C1,1 = M1 +M2—M4+M6
C1/2 = M4 ar M5
C2,1 = M6 St M7
Cz/z = Mz—M3+M5—M7

(Proof: left as exercise %)



Strassen Algorithm for Matrix Multiplication

» Observation (again): Can do more conquer for less divide!

»> We recursively compute the following 7 products:
= (A12—Az2) - (B2 + B22)
= (A1,1+A22) - (B11 + B22)
= (A1,1 —A21) - (B11 + B12)

My
Mo

~» We then obtain the 4 parts of C as

C11
Ci2
Cop
Co2

(A11+A12) - Bap
A1+ (B2 —B2p)
A+ (B21 — B11)
(A21 +A22)Bia

My + My — My + Mg
My + M5
Mg + My
My — M3 + Ms — My

(Proof: left as exercise %)

Analysis:

>

conquer step: larger but still
O(1) #matrix add /subtract

©(n?) operations for conquer

total # arithmetic operations
T(n) = 7T(n/2) + O(n?)

Master Theorem Case 1:
T(n) — @(nlg7) — O(n2.808)
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Open Problems

Multiplication is extremely fundamental, but its computational complexity is an open problem
and subject of active research!

Integer multiplication:

> conjectured to require Q(n log ) bit operations (no proof known!)
» Harvey & van der Hoeven 2021: O(n log 1) algorithm possible!
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Open Problems

Multiplication is extremely fundamental, but its computational complexity is an open problem

and subject of active research!

Integer multiplication:

> conjectured to require ()(n log 1) bit operations (no proof known!)

» Harvey & van der Hoeven 2021: O(n log 1) algorithm possible!

Matrix multiplication (MM):

» more relevant than it might seem since complexity identical to
» computing inverse matrices, determinants

» Gaussian elimination (~ solving systems of linear equations)
» recognition of context free languages

~~ best exponent even has standard notation:

smallest w € [2,3) so that MM takes Q(Q operations
» Big open question: Is w > 2?
» best known bound: @ < 2.371339 (from 2024!)

Timeline of matrix multiplication exponent

Year Bound on omega Authors

1969 2.8074
1978 2.796
1979 2.780
1981 2522
1981 2517
1981 2.496
1986 2479
1990 2.3755
2010 23737
2012 23729
2014 23728639
2020 2372859
2022 2371866
2024 2371552
2024 2371339

Bini, Capovani 1, Roman

Romani

Stothers

Le Gall
Aman,
Duan, Wy, Zhou!

Xu, Xu, and Zhou

Alman, Duan, Xu, Xu, and Zhou!
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Clicker Question

4 How many bit operations does it take to multiply two n-bit integers?
o(1) O(nlogn)
O(loglog n) O(n log n loglog n)
O(log n) o(n?)
o (D) O(tog?n) O(n%logn)
O(Vn) o)
L o(n) 02"

D |~ sli.do/cs566 |




Clicker Question

4 How many bit operations does it take to multiply two n-bit integers?
— O(nlogn) v
Sdeatosi O(nlognloglogn)
e 0n?) y
o (D) Sdests O(n*logn) v
e o)
L Sen 2 o@"

D |~ sli.do/cs566 |




5.5 Majority



Majority

> Given: Array A[0..n) of objects

» Goal: Check of there is an object x that occurs at > 5 positions in A
if so, return x

> Naive solution: check each A[i] whether it is a majority ~ ©(n?) time

// &Ss:‘-w(aha._ \ CQar 0;1_05/ wsR = compa 'x—m,)
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Majority — Divide & Conquer

Can be solved faster using a simple Divide & Conquer approach:

procedure majority(A[0..n))
if n == 1 then return A[0] end if
k =
My := majority(A[0..k))

> [If A has a majority, that element must also be |
2
3
4
5 M, := majority(A[k..n))
6
7
8
9

a majority of at least one half of A.

~ Can find majority (if it exists) of left half and

right half recursivel
& CCUrsively if My == M, then return M, end if

my :=0; m, :=0
fori:=0,...,n—-1
if A[i] == My then my = my + 1 end if

~~ Check these < 2 candidates.

» Costs similar to mergesort ®(n log n) 10 if A[i] == M, then m, = m, + 1 end if
(\ 1 end for

12 ifmp>k+1

T(V\\ g L T { i; B + @(V\\ 13 return My,
14 elseif m, > k+1

MT Case 2 15 return M,

16 else
17 return NO MAJORITY ELEMENT
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Clicker Question

-

Suppose you have an array A[0..21) with 27 elements, and there is a

ma]orlty element x. My and M, denote the result of the majority
Pfinetion on A[0..n) and A[n..2n) respectively. (‘°m~ Lods)

Which of the following situations are possible? (Check all that apply.)

My =M, =
My # M, = x
(o) (C) x=M 2 M,
(D) Mi=M, #x
My #x %M,

D |~ sli.do/cs566




Clicker Question

-

Suppose you have an array A[0..21) with 27 elements, and there is a
majority element x. M; and M, denote the result of the majority
function on A[0..1) and A[n..2n) respectively.

Which of the following situations are possible? (Check all that apply.)

M =M, =x
M =M, =x
x=Mi M,
@%&%ﬂ
(B) st

D |~ sli.do/cs566




Majority — Linear Time

We can actually do much better!

def MJRTY(A[0..1))

1

2 c:=0

3 fori:=1,...,n-1

4 ifC==

5 x = Ali]; ¢ =1 * *
6 else

7 if A[i] ==xthenc :=c+1lelsec :=c—1 % y
8

return x I" "\
» MJRTY(A[0..n)) returns candidate majority element

> either that candidate is the majority element or none exists(!)

[&) Clearly ©(n) time

27



5.6 Closest Pair of Points in the Plane



Closest Pair of Points in the Plane
> Given: Array P[0..n) of points in the plane (R?)
each has x and y coordinates: P[i].x and P[i].y
» Goal: Find pair P[i], P[] that is closest in (Euclidean) distance
i.e., i and j that minimize \/(P[i].x - P[]'].x)2 + (Plil.y - P[]'].y)2 = S5

D¢ #5<wn

» Naive solution: compute distance of each pair ~ ©(n?) time Re °

» cost here = #arithmetic operations BLO for e S

» ignore numerical accurac

~~ formally work on the real RAM

» like word-RAM, but words contain exact real numbers
» support arithmetic operations and comparisons,
but not bitwise operations or | -| and [-]

(CO&AS ou Cué-;-) S

7(7 we b E&.i /

¢
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Closest Pair — Divide & Conquer @D Rachbhor amovad wadian x
@ Recure on GE aud wyt

@ 2 Ca S ac\ CQ‘C)U‘]L Pa’ - 6%
(&) wold
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| N
° ® °
|
:
o {.
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. :'
|
|
|
|
|
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Closest Pair — Refined Conquer
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Closest Pair — Code TlN= 2T(5)+ @y o T = Oletene)

UT Cas< 2
1 procedure closestDist(P[0..n), byX[0..n), byY[0..1)) 2 // ... closestDist continued
2 // P contains n points with distinct x —coordinates 23 o1, := closestDist(Pr, byX;, byY;)
3 // P[byX[0]].x < P[byX[1]].x < --- < P[byX[n]].x 2 OR := closestDist(Pg, byXy, byYy)
4 // PlbyY[0]].y < P[byY[1]].y < --- < P[byY[n]].y 2 6 := min{dr, 6r}
5 if n == 2 return d(P[0], P[1]) 26 // 2. Check pairs straddling x = m line
6 if n == 3 return min{dz(P[O], P[1]), 27 // Find points close to m
; dy(P[1], P[2]), da(P[0], P[2])} w  fori=0,..,n-1 Pldx
8 // 1. Split by median x and recurse 29 if |P[byY[i]].x — = < O
9 k= [n/2]; m = byX[# & 30 C.append(byY[i])
W byX, = byX[0.6); byXg = byX[se.n) 2 end if
11 Pr, Pr,byY;,byYy := new empty array 32 end for
12 fori :==0,...,n—-1 3 // Distance < 6 implies within 8 positions in C
13 if P[byY[i]].x < @ PLwd . 3 fori :=0,...,C.size()
14 Py .append(P[byY[i]]) 35 forj:=i+1,...,i+7
15 byY; .append(byY[i]) 3 6 = min{5, d2(P[C[i]], P[C[;1])}
16 else 37 end for
17 Pr.append(P[byY[i]]) 38 end for
18 byY g .append(byY[i]) 39 return 6
19 end if 40
20 end for 41 procedure dy(P, Q)
21 M oo ® return /(P.x — Q.x)? + (P.y — Q.y)?
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