T T 1 -**н** ALGORITHMS \$ EFFIC F. CIENTALGORITHMS \$ EFF ALGO HMS\$ EFFI CT E N Т R. ENTALGORITHMS\$ E F ਜ ENTALGORT F F TC тн S E Т M F Δ S G R C

> String Matching – What's behind Ctrl+F?

> > 18 November 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25) Philipps-Universität Marburg version 2024-11-19 14:00

Learning Outcomes

Unit 6: String Matching

- 1. Know and use typical notions for *strings* (substring, prefix, suffix, etc.).
- 2. Understand principles and implementation of the KMP, BM, and RK algorithms.
- 3. Know the *performance characteristics* of the KMP, BM, and RK algorithms.
- 4. Be able to solve simple *stringology problems* using the *KMP failure function*.

Outline

6 String Matching

- 6.1 String Notation
- 6.2 Brute Force
- 6.3 String Matching with Finite Automata
- 6.4 Constructing String Matching Automata
- 6.5 The Knuth-Morris-Pratt algorithm
- 6.6 Beyond Optimal? The Boyer-Moore Algorithm
- 6.7 The Rabin-Karp Algorithm

6.1 String Notation

Ubiquitous strings

- *string* = sequence of characters
 - universal data type for ... everything!
 - natural language texts
 - programs (source code)
 - websites
 - XML documents
 - DNA sequences
 - bitstrings
 - ... a computer's memory ~~ ultimately any data is a string
 - $\rightsquigarrow\,$ many different tasks and algorithms

Ubiquitous strings

- *string* = sequence of characters
 - universal data type for ... everything!
 - natural language texts
 - programs (source code)
 - websites
 - XML documents
 - DNA sequences
 - bitstrings
 - ... a computer's memory ~> ultimately any data is a string
 - $\rightsquigarrow\,$ many different tasks and algorithms
 - ► This unit: finding (exact) occurrences of a pattern text.
 - ► Ctrl+F
 - ► grep
 - computer forensics (e.g. find signature of file on disk)
 - virus scanner
 - basis for many advanced applications

Notations

- ▶ alphabet Σ : finite set of allowed characters; $\sigma = |\Sigma|$ "a string over alphabet Σ "
 - letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, ...)
 - "what you can type on a keyboard", Unicode characters
 - $\{0,1\}$; nucleotides $\{A, C, G, T\}$;...

comprehensive standard character set including emoji and all known symbols

Notations

- *alphabet* Σ : finite set of allowed **characters**; $\sigma = |\Sigma|$ "a string over alphabet Σ "
 - ▶ letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, ...)
 - "what you can type on a keyboard", Unicode characters
 - $\{0,1\}$; nucleotides $\{A, C, G, T\}$;...

icode characters

comprehensive standard character set including emoji and all known symbols

- $\Sigma^n = \Sigma \times \cdots \times \Sigma$: strings of length $n \in \mathbb{N}_0$ (*n*-tuples)
- $\Sigma^{\star} = \bigcup_{n \ge 0} \Sigma^n$: set of all (finite) strings over Σ
- $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$: set of **all** (finite) **nonempty** strings over Σ
- $\varepsilon \in \Sigma^0$: the *empty* string (same for all alphabets)

Notations

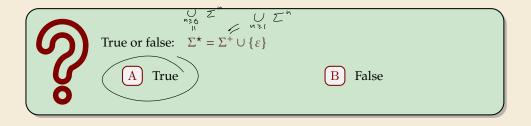
- ▶ alphabet Σ : finite set of allowed **characters**; $\sigma = |\Sigma|$ "a string over alphabet Σ "
 - letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, ...)
 - "what you can type on a keyboard", Unicode characters
 - $\{0,1\}$; nucleotides $\{A, C, G, T\}$;...

comprehensive standard character set including emoji and all known symbols

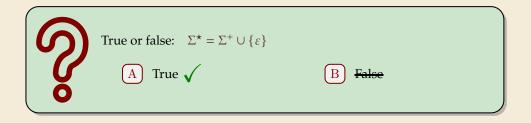
zero-based (like arrays)!

- \blacktriangleright $\Sigma^n = \Sigma \times \cdots \times \Sigma$: strings of length $n \in \mathbb{N}_0$ (*n*-tuples)
- $\Sigma^{\star} = \bigcup_{n \geq 0} \Sigma^n$: set of all (finite) strings over Σ
- $\blacktriangleright \Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$: set of all (finite) nonempty strings over Σ
- $\varepsilon \in \Sigma^0$: the *empty* string (same for all alphabets)
- for $S \in \Sigma^n$, write S[i] (other sources: S_i) for *i*th character $(0 \le i < n)$
- for $S, T \in \Sigma^*$, write $ST = S \cdot T$ for concatenation of S and T
- ▶ for $S \in \Sigma^n$, write S[i..i] or $S_{i,i}$ for the substring $S[i] \cdot S[i+1] \cdots S[i]$ $(0 \le i \le j < n)$ • S[0..i] is a **prefix** of *S*; S[i..n-1] is a **suffix** of *S*
 - ► S[i..j] = S[i..j-1] (endpoint exclusive) \rightsquigarrow S = S[0..n)

Clicker Question



Clicker Question



String matching – Definition

Search for a string (pattern) in a large body of text

- Input:
 - $T \in \Sigma^n$: The <u>text</u> (haystack) being searched within
 - ▶ $P \in \Sigma^m$: The *pattern* (needle) being searched for; typically $n \gg m$

Output:

- the first occurrence (match) of P in T: $\min\{i \in [0..n m) : T[i..i + m] = P\}$
- or N0_MATCH if there is no such i ("P does not occur in T")

► Variant: Find **all** occurrences of *P* in *T*.

 \rightsquigarrow Can do that iteratively (update *T* to T[i + 1..n) after match at *i*)

Example:

- ▶ T = "Where is he?"
- $\blacktriangleright P_1 = "he" \iff i = 1$
- ▶ $P_2 =$ "who" \rightsquigarrow NO_MATCH

string matching is implemented in Java in String.indexOf, in Python as str.find

6.2 Brute Force

Abstract idea of algorithms

String matching algorithms typically use guesses and checks:

- A guess is a position *i* such that *P* might start at T[i]. Possible guesses (initially) are $0 \le i \le n - m$.
- A **check** of a guess is a comparison of T[i + j] to P[j].

Abstract idea of algorithms

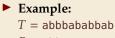
String matching algorithms typically use guesses and checks:

- A guess is a position *i* such that *P* might start at T[i]. Possible guesses (initially) are $0 \le i \le n - m$.
- A **check** of a guess is a comparison of T[i + j] to P[j].
- Note: need all *m* checks to verify a single *correct* guess *i*, but it may take (many) fewer checks to recognize an *incorrect* guess.
- Cost measure: #character comparisons
- \rightsquigarrow #checks $\leq n \cdot m$ (number of possible checks)

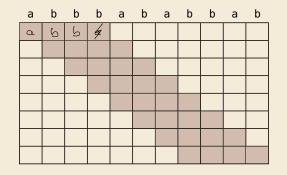
Brute-force method

1 procedure bruteForceSM(T[0..n), P[0..m)) 2 for i := 0, ..., n - m - 1 do 3 for j := 0, ..., m - 1 do 4 if $T[i + j] \neq P[j]$ then break inner loop 5 if j == m then return i6 return NO MATCH

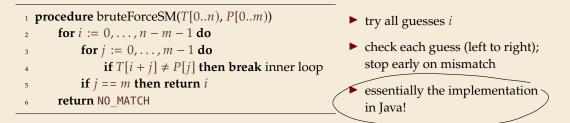
- try all guesses i
- check each guess (left to right); stop early on mismatch
- essentially the implementation in Java!



 $P = \mathsf{abba}$

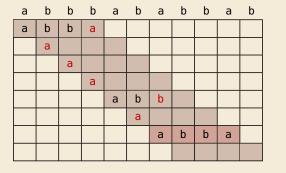


Brute-force method



Example: T = abbbababbab P = abba

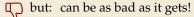
 \rightarrow 15 char cmps (vs $n \cdot m = 44$) not too bad!



Brute-force method – Discussion

Brute-force method can be good enough

- typically works well for natural language text
- also for random strings



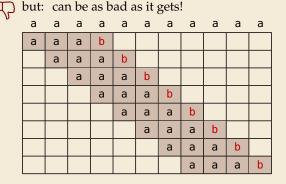
а	а	а	а	а	а	а	а	а	а	а
а	а	а	b							
	а	а	а	b						
		а	а	а	b					
			а	а	а	b				
				а	а	а	b			
					а	а	а	b		
						а	а	а	b	
							а	а	а	b

- Worst possible input: $P = a^{m-1}b$, $T = a^n$
- Worst-case performance: $(n m + 1) \cdot m$
- \rightsquigarrow for $m \le n/2$ that is $\Theta(mn)$

Brute-force method – Discussion

Brute-force method can be good enough

- typically works well for natural language text
- also for random strings



- Worst possible input: $P = a^{m-1}b$, $T = a^n$
- Worst-case performance: $(n m + 1) \cdot m$
- \rightsquigarrow for $m \le n/2$ that is $\Theta(mn)$

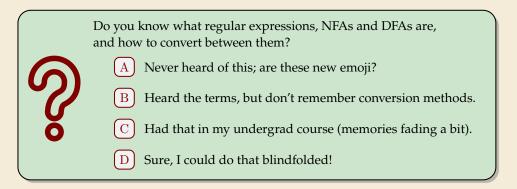
- ▶ Bad input: lots of self-similarity in *T*! →→ can we exploit that?
- ► brute force does 'obviously' stupid repetitive comparisons ~→ can we avoid that?

Roadmap

- Approach 1 (this week): Use preprocessing on the pattern P to eliminate guesses (avoid 'obvious' redundant work)
 - Deterministic finite automata (DFA)
 - Knuth-Morris-Pratt algorithm
 - **Boyer-Moore** algorithm
 - Rabin-Karp algorithm
- Approach 2 (~> Unit 13): Do preprocessing on the text T Can find matches in time independent of text size(!)
 - inverted indices
 - Suffix trees
 - Suffix arrays

6.3 String Matching with Finite Automata

Clicker Question



- string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- $\Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- $\rightsquigarrow \exists$ deterministic finite automaton (DFA) to recognize $\Sigma^{\star} \cdot P \cdot \Sigma^{\star}$
- \rightsquigarrow can check for occurrence of *P* in |T| = n steps!

- string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- $\Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- $\rightsquigarrow \exists$ deterministic finite automaton (DFA) to recognize $\Sigma^{\star} \cdot P \cdot \Sigma^{\star}$
- \rightsquigarrow can check for occurrence of *P* in |T| = n steps!

Job done!

- string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- $\Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- $\rightsquigarrow \exists$ deterministic finite automaton (DFA) to recognize $\Sigma^{\star} \cdot P \cdot \Sigma^{\star}$
- \rightsquigarrow can check for occurrence of *P* in |T| = n steps!

Job done!

- string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- $\Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- $\rightsquigarrow \exists$ deterministic finite automaton (DFA) to recognize $\Sigma^{\star} \cdot P \cdot \Sigma^{\star}$
- \rightsquigarrow can check for occurrence of *P* in |T| = n steps!

We are not quite done yet.

- ▶ (Problem 0: programmer might not know automata and formal languages ...)
- Problem 1: existence alone does not give an algorithm!
- Problem 2: automaton could be very big!

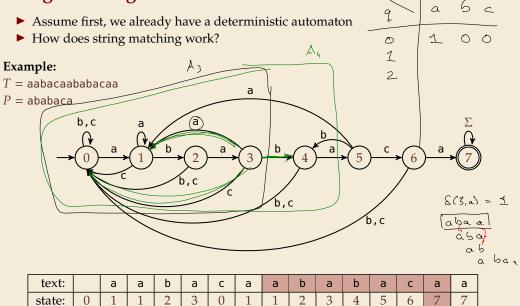
String matching with DFA

- Assume first, we already have a deterministic automaton
- How does string matching work?

Example:

							_	•						\frown	
text:		а	а	b	а	с	а	/ a	b	а	b	а	с	a/	а
state:	0	1	7	2	3	٥	1	1_	2	3	4	5	6	7	7

String matching with DFA



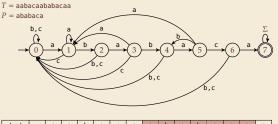
С

String matching DFA – Intuition

Why does this work?

Main insight:

State *q* means: "we have seen *P*[0..*q*) until here (but not any longer prefix of *P*)"



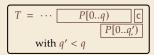
text:		а	а	b	а	с	а	а	b	а	b	а	с	а	а
state:	0	1	1	2	3	0	1	1	2	3	4	5	6	7	7

P

▶ If the next text character *c* does not match, we know:

- (i) text seen so far ends with $\underline{P}[0...q) \cdot c$
- (ii) $P[0...q) \cdot c$ is not a prefix of P
- (iii) without reading *c*, *P*[0..*q*) was the *longest* prefix of *P* that ends here.

P[0.7)

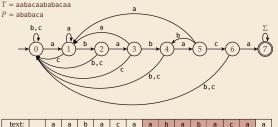


String matching DFA – Intuition

Why does this work?

Main insight:

State *q* means: "we have seen *P*[0..*q*) until here (but not any longer prefix of *P*)"



text:	а	a	b	а	С	а	а	b	а	b	а	С	а	а
state: 0	1	1	2	3	0	1	1	2	3	4	5	6	7	7

▶ If the next text character *c* does not match, we know:

- (i) text seen so far ends with $P[0...q) \cdot c$
- (ii) $P[0...q) \cdot c$ is not a prefix of P
- (iii) without reading c, P[0..q) was the *longest* prefix of P that ends here.

- \rightsquigarrow New longest matched prefix will be (weakly) shorter than q
- → All information about the text needed to determine it is contained in $P[0...q) \cdot c!$

P[0..q]

primitive computation of SMA
for
$$q = 0,..., m$$

for $c \in \Sigma$
for $q' = q - 1,..., 0$
if $P[0..q'] \subseteq P[0..q] \cdot c$
 $S(q, c) := q'$
brak q'

6.4 Constructing String Matching Automata

NFA instead of DFA?

It remains to *construct* the DFA.

$$\blacktriangleright \text{ trivial part:} \rightarrow 0 \xrightarrow{\Sigma} 0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{a} 3 \xrightarrow{b} 4 \xrightarrow{a} 5 \xrightarrow{c} 6 \xrightarrow{a} 7$$

NFA instead of DFA?

It remains to *construct* the DFA.

$$\blacktriangleright \text{ trivial part:} \rightarrow 0 \xrightarrow{\Sigma} (2 \xrightarrow{a} 3 \xrightarrow{b} 4 \xrightarrow{a} 5 \xrightarrow{c} 6 \xrightarrow{a} 7)$$

• that actually is a *nondeterministic finite automaton* (NFA) for $\Sigma^* P \Sigma^*$

→ We *could* use the NFA directly for string matching:

- at any point in time, we are in a *set* of states
- accept when one of them is final state

Example:

text:		а	а	b	а	с	а	а	b	а	b	а	с	а	а
state:	0	0,1	0,1	0,2	6,1,3										

But maintaining a whole set makes this slow

NFA instead of DFA?

It remains to *construct* the DFA.

$$\blacktriangleright \text{ trivial part:} \rightarrow 0 \xrightarrow{\Sigma} 0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{a} 3 \xrightarrow{b} 4 \xrightarrow{a} 5 \xrightarrow{c} 6 \xrightarrow{a} 7$$

• that actually is a *nondeterministic finite automaton* (NFA) for $\Sigma^* P \Sigma^*$

→ We *could* use the NFA directly for string matching:

would case

 $P = a^m$

- at any point in time, we are in a *set* of states
- accept when one of them is final state

Example:

						Z									
text:		а	а	b	a	с	а	а	b	а	b	а	С	а	а
state:	0	0,1	0,1	0,2	0,1,3	0	0,1	0,1	0,2	0,1,3	0,2,4	0,1,3,5	0,6	0,1,7	0,1,7

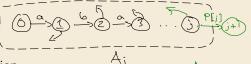
But maintaining a whole set makes this slow

Computing DFA directly

You have an NFA and want a DFA? Simply apply the <u>power-set construction</u> (and maybe DFA minimization)!

The powerset method has exponential state blow up! I guess I might as well use brute force ...

Computing DFA directly



The powerset method has exponential state blow up! I guess I might as well use brute force ...

Air

Ingenious algorithm by Knuth, Morris, and Pratt: construct <u>DFA</u> *inductively*: Suppose we add character P[j] to automaton A_j for P[0..j) to construct A_{j+1}

- add new state and matching transition \rightarrow easy \xrightarrow{PCS}
- ▶ for each $c \neq P[j]$, we need $\delta(j, c)$ (transition from (j) when reading c)

Computing DFA directly

You have an NFA and want a DFA? Simply apply the power-set construction (and maybe DFA minimization)!

The powerset method has exponential state blow up! I guess I might as well use brute force ...

Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA *inductively*: Suppose we add character P[j] to automaton A_j for P[0..j) to construct A_{j+1}

- add new state and matching transition \rightsquigarrow easy
- ▶ for each $c \neq P[j]$, we need $\delta(j, c)$ (transition from (j) when reading c)
- $\delta(j, c) =$ length of the longest prefix of P[0..j)c that is a suffix of P[1..j)c
 - = state of automaton after reading P[1..j)c
 - $\leq j \rightsquigarrow$ can use known automaton A_j for that!



State *q* means: "we have seen *P*[0..*q*) until here (but not any longer prefix of *P*)"

Computing DFA directly

You have an NFA and want a DFA? Simply apply the power-set construction (and maybe DFA minimization)!

The powerset method has exponential state blow up! I guess I might as well use brute force ...

Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA *inductively*: Suppose we add character P[j] to automaton A_j for P[0..j) to construct A_{j+1}

- add new state and matching transition ~>> easy
- ▶ for each $c \neq P[j]$, we need $\delta(j, c)$ (transition from (j) when reading c)
- $\delta(j, c) =$ length of the longest prefix of P[0..j)c that is a suffix of P[1..j)c
 - = state of automaton after reading *P*[1..*j*)*c*
 - $\leq j \rightsquigarrow$ can use known automaton A_j for that!
- \rightsquigarrow can directly compute A_{j+1} from $A_j!$

 \bigcirc seems to require simulating automata $m \cdot \sigma$ times

State *q* means: "we have seen *P*[0..*q*) until here (but not any longer prefix of *P*)"

- **KMP's second insight:** simulations in one step differ only in last symbol
- \rightsquigarrow simply maintain state *x*, the state after reading *P*[1..*j*).
 - copy its transitions
 - update x by following transitions for P[j]

- **KMP's second insight:** simulations in one step differ only in last symbol
- \rightarrow simply maintain state *x*, the state after reading *P*[1..*j*).
 - copy its transitions
 - update x by following transitions for P[j]

(0) (0)

```
procedure constructDFA(P[0..m))
```

```
_2 //\delta[q][c] = target state when reading c in state q
```

```
\mathbf{for} \ c \in \Sigma \ \mathbf{do}
```

```
\delta[0][c] := 0
```

$$\delta[0][P[0]] := 1$$

$$x := 0$$

7 **for**
$$j = 1, ..., m - 1$$
 do
8 **for** $c \in \Sigma$ **do** // copy transitions
9 $\delta[j][c] := \delta[x][c]$
10 $\delta[j][P[j]] := j + 1 // match edg$
11 $x := \delta[x][P[j]] // update x$

Example:
$$P[0..6] = \underbrace{ababac}_{j}$$

 $\delta(c,q) \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$
 $a \quad 1 \quad 1 \quad 3 \quad 1$
 $b \quad O \quad 2 \quad O \quad 4$
 $c \quad O \quad O \quad O \quad O$

- **KMP's second insight:** simulations in one step differ only in last symbol
- \rightarrow simply maintain state *x*, the state after reading *P*[1..*j*).
 - copy its transitions
 - update x by following transitions for P[j]

¹ **procedure** constructDFA(*P*[0..*m*))

 $_2$ // $\delta[q][c] = target state when reading c in state q$

```
\mathbf{for} \ c \in \Sigma \ \mathbf{do}
```

```
\delta[0][c] := 0
```

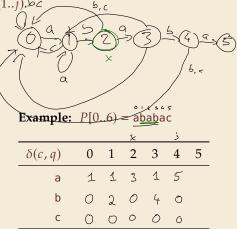
$$\delta[0][P[0]] := 1$$

$$x := 0$$

11

for
$$j = 1, ..., m - 1$$
 do
for $c \in \Sigma$ do // copy transitions
 $\delta[j][c] := \delta[x][c]$
 $\delta[j][P[j]] := j + 1 // match edge$

$$x := \delta[x][P[j]] // update x$$



▶ KMP's second insight: simulations in one step differ only in last symbol

 \rightsquigarrow simply maintain state *x*, the state after reading *P*[1..*j*).

- copy its transitions
- update <u>x</u> by following transitions for P[j]

procedure constructDFA(P[0..m)) $//\delta[q][c] =$ target state when reading c in state q 2 for $c \in \Sigma$ do 3 $\delta[0][c] := 0$ 4 $\delta[0][P[0]] := 1$ 5 x := 06 **for** j = 1, ..., m - 1 **do** 7 **for** $c \in \Sigma$ **do** // copy transitions 8 $\delta[i][c] := \delta[x][c]$ 9 $\delta[i][P[i]] := i + 1 // match edge$ 10 $x := \delta[x][P[j]] // update x$ 11

Example: P[0..6) = ababac

$\delta(c,q)$	0	1	2	3	4	5
а	1	1	3	1	5	1
b	0	2	0	4	0	4
С	0	0	0	0	0	6

String matching with DFA – Discussion

Time:

- Matching: *n* table lookups for DFA transitions \emptyset
- building DFA: $\Theta(m\sigma)$ time (constant time per transition edge).
- $\rightsquigarrow \Theta(m\sigma + n)$ time for string matching.

Space:

• $\Theta(m\sigma)$ space for transition matrix.

fast matching time actually: hard to beat! total time asymptotically optimal for small alphabet (for $\sigma = O(n/m)$)

Substantial **space overhead**, in particular for large alphabets

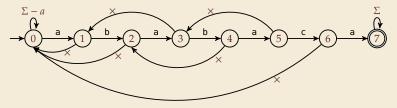
6.5 The Knuth-Morris-Pratt algorithm

Failure Links

- Recall: String matching with is DFA fast, but needs table of $m \times \sigma$ transitions.
- ▶ in fast DFA construction, we used that all simulations differ only by *last* symbol
- ✓ KMP's third insight: do this last step of simulation from state *x* during *matching*! ... but how?

Failure Links

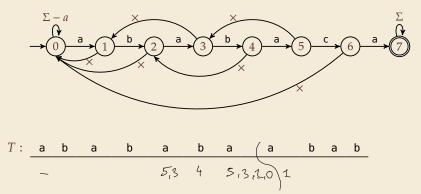
- ► Recall: String matching with is DFA fast, but needs table of $m \times \sigma$ transitions.
- ▶ in fast DFA construction, we used that all simulations differ only by *last* symbol
- ✓ KMP's third insight: do this last step of simulation from state *x* during *matching*! ... but how?
- ► **Answer:** Use a new type of transition: ×, the *failure links*
 - Use this transition (only) if no other one fits.
 - ▶ × *does not consume a character.* → might follow several failure links



~> Computations are deterministic (but automaton is not a real DFA.)

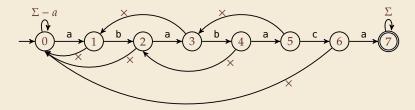
Failure link automaton – Example

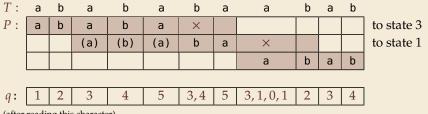
Example: T = abababaaaca, P = ababaca



Failure link automaton – Example

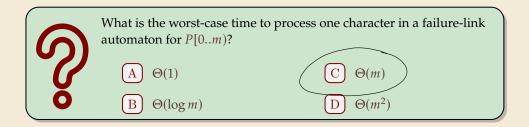
Example: T = abababaaaca, P = ababaca

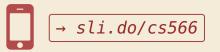




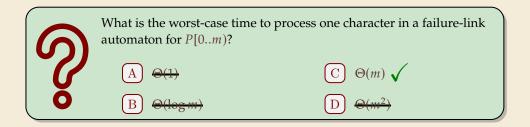
(after reading this character)

Clicker Question





Clicker Question



The Knuth-Morris-Pratt Algorithm

¹ procedure KMP(T[0..n), P[0..m)) fail[0..m] := failureLinks(P) 2 i := 0 // current position in T3 q := 0 // current state of KMP automaton4 while i < n do 5 if T[i] == P[q] then 6 i := i + 1; q := q + 17 if q == m then 8 **return** i - q // occurrence found 9 else // *i.e.* $T[i] \neq P[q]$ 10 if $q \ge 1$ then 11 $q := fail[q] // follow one \times$ 12 else 13 i := i + 114 end while 15 return NO MATCH 16

- only need single array *fail* for failure links
- (procedure failureLinks later)

The Knuth-Morris-Pratt Algorithm

¹ procedure KMP(T[0..n), P[0..m)) fail[0..m] := failureLinks(P)2 i := 0 // current position in T3 q := 0 // current state of KMP automaton4 while i < n do 5 if T[i] == P[q] then 6 i := i + 1; q := q + 17 if q == m then 8 **return** i - q // occurrence found 9 else // *i.e.* $T[i] \neq P[q]$ 10 if $q \ge 1$ then 11 $q := fail[q] // follow one \times$ 12 else 13 i := i + 114 end while 15 return NO MATCH 16

- only need single array *fail* for failure links
- (procedure failureLinks later)

Analysis: (matching part)

- always have fail[j] < j for $j \ge 1$
- $\rightsquigarrow~$ in each iteration
 - either advance position in text (i := i + 1)
 - or shift pattern forward (guess *i* - *q*)
- each can happen at most n times
- $\rightsquigarrow \leq 2n$ symbol comparisons!

Computing failure links

- ▶ failure links point to error state *x* (from DFA construction)
- \rightsquigarrow run same algorithm, but store *fail*[*j*] := *x* instead of copying all transitions

```
1 procedure failureLinks(P[0..m))
      fail[0] := 0
2
     x := 0
3
      for j := 1, ..., m - 1 do
4
          fail[j] := x
5
          // update failure state using failure links:
6
          while P[x] \neq P[i]
7
               if x == 0 then
8
                    x := -1: break
9
               else
10
                    x := fail[x]
11
           end while
12
           x := x + 1
13
       end for
14
```

Computing failure links

- ▶ failure links point to error state *x* (from DFA construction)
- \rightsquigarrow run same algorithm, but store *fail*[*j*] := *x* instead of copying all transitions

```
1 procedure failureLinks(P[0..m))
      fail[0] := 0
2
      x := 0
3
      for j := 1, ..., m - 1 do
4
          fail[i] := x
5
           // update failure state using failure links:
6
          while P[x] \neq P[i]
7
               if x == 0 then
8
                    x := -1: break
9
               else
                                / < X
10
                    x := fail[x]
11
           end while
12
           x := x + 1
13
      end for
14
```

Analysis:

- ▶ *m* iterations of for loop
- while loop always decrements x
- x is incremented only once per iteration of for loop
- $\rightsquigarrow \leq m$ iterations of while loop *in total*
- $\rightsquigarrow \leq 2m$ symbol comparisons

Knuth-Morris-Pratt – Discussion

► Time:

- $\leq 2n + 2m = O(n + m)$ character comparisons
- clearly must at least read both T and P
- \rightsquigarrow KMP has optimal worst-case complexity!

Space:

• $\Theta(m)$ space for failure links

total time asymptotically optimal (for any alphabet size)
reasonable extra space

Clicker Question

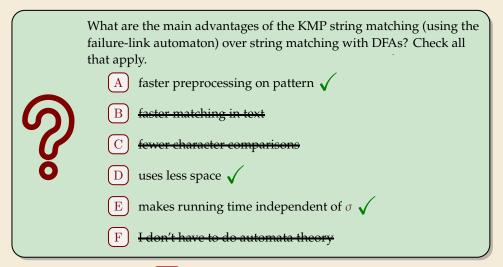
What are the main advantages of the KMP string matching (using the failure-link automaton) over string matching with DFAs? Check all that apply.

-) faster preprocessing on pattern
 - faster matching in text
 - fewer character comparisons
- uses less space
- makes running time independent of σ

→ sli.do/cs566

I don't have to do automata theory

Clicker Question



→ sli.do/cs566

The KMP prefix function

$$P[0..3] = P[0] P[1] P[2]$$

- ▶ It turns out that the failure links are useful beyond KMP
- ▶ a slight variation is (more?) widely used: (for historic reasons) the (KMP) *prefix function* $F : [1..m 1] \rightarrow [0..m 1]$:

F[j] is the length of the longest prefix of P[0..j]that is a suffix of P[1..j].

• Can show: fail[j] = F[j-1] for $j \ge 1$, and hence

fail[q] = length of the longest prefix of P[0..q] that is a suffix of P[1..q).

- memorize this!

► EAA Buch: String indices are 1-based, but definition of failure links matches! $\Pi_P(q) = fail[q]$ $\Pi_P : [1..m] \rightarrow [0..m-1]$ with $\Pi_P(q) = \max\{k \in \mathbb{N}_0 : k < q \land P[0..k) \sqsupset P[0..q)]\} = fail[q]$ 6.6 Beyond Optimal? The Boyer-Moore Algorithm

Motivation

▶ KMP is an optimal algorithm, isn't it? What else could we hope for?

Motivation

- ▶ KMP is an optimal algorithm, isn't it? What else could we hope for?
- ► KMP is "only" optimal in the worst-case (and up to constant factors)
- how many comparisons do we need for the following instance? T = aaaaaaaaaaaaaaaaa, P = xxxxx
 - there are no matches
 - we can *certify* the correctness of that output with only 4 comparisons:

Т	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а
					х											
										х						
															х	
																х

→ We did *not* even read most characters!

Boyer-Moore Algorithm

- Let's check guesses from right to left!
- ▶ If we are lucky, we can eliminate several shifts in one shot!

Boyer-Moore Algorithm

- Let's check guesses from right to left!
- ▶ If we are lucky, we can eliminate several shifts in one shot!

must avoid (excessive) redundant checks, e.g., for $T = a^n$, $P = ba^{m-1}$

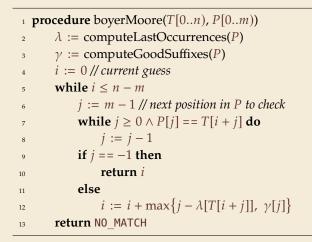
 \rightsquigarrow New rules:

- **• Bad character jumps**: Upon mismatch at T[i] = c:
 - ▶ If *P* does not contain *c*, shift *P* entirely past *i*!
 - ▶ Otherwise, shift *P* to align the *last occurrence* of *c* in *P* with *T*[*i*].
- Good suffix jumps:

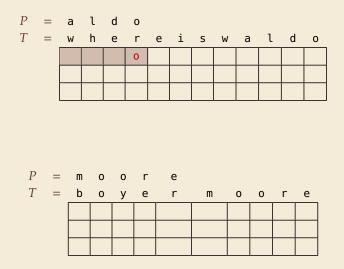
Upon a mismatch, shift so that the already matched *suffix* of *P* aligns with a previous occurrence of that suffix (or part of it) in *P*. (Details follow; ideas similar to KMP failure links)

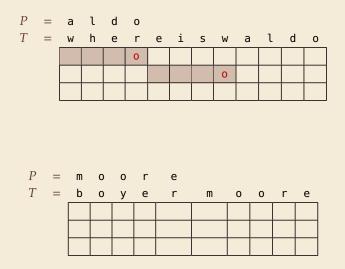
 $\rightsquigarrow\,$ two possible shifts (next guesses); use larger jump.

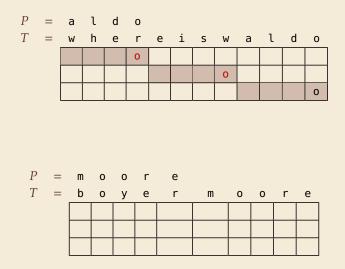
Boyer-Moore Algorithm – Code

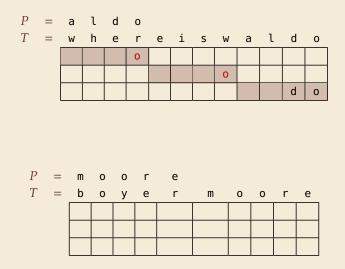


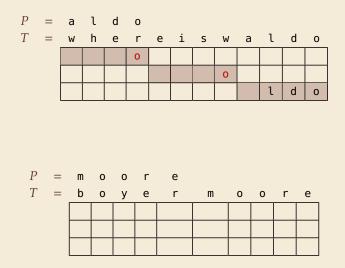
- λ and γ explained below
- shift forward is larger of two heuristics
- shift is always positive (see below)

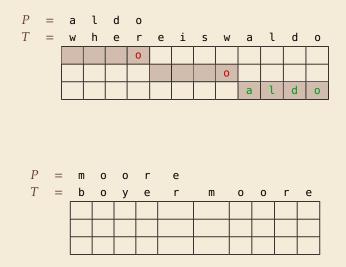


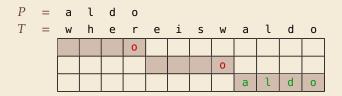




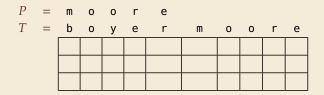


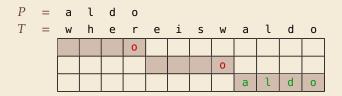


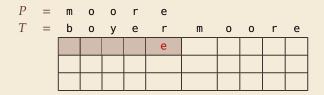


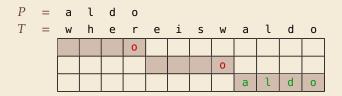


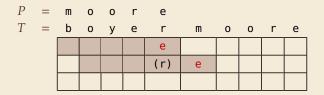
 \rightsquigarrow 6 characters not looked at

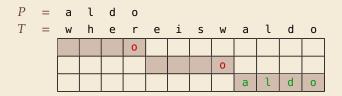


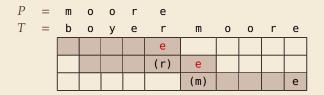


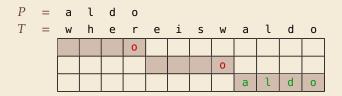


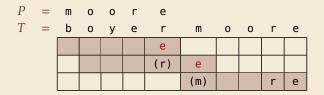


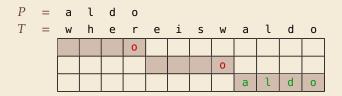




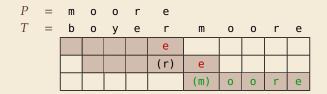








 \rightsquigarrow 6 characters not looked at



→ 4 characters not looked at

Last-Occurrence Function

- Preprocess pattern P and alphabet Σ
- last-occurrence function $\lambda[c]$ defined as
 - the largest index *i* such that P[i] = c or
 - ▶ −1 if no such index exists

Last-Occurrence Function

- Preprocess pattern P and alphabet Σ
- *last-occurrence function* λ[c] defined as
 - the largest index *i* such that P[i] = c or
 - ▶ −1 if no such index exists

	Exam	nple:	<i>P</i> =	= mo	ore	
-	С	m	0	r	е	all others
-	$\lambda[c]$	0	2	3	4	-1

P	=	m	0	0	r	е					
Т	=	b	0	у	е	r	m	0	0	r	е
						е					
						(r)	е				

$$i = 0, j = 4, T[i + j] = r, \lambda[r] = 3$$

 \rightsquigarrow shift by $j - \lambda[T[i+j]] = 1$

- λ computed in $O(m + \sigma)$ time.
- store as array $\lambda[0..\sigma)$.

1 **procedure** computeLastOccurrences(P[0..m)): 2 $\lambda[0..\sigma) :=$ array initialized to 0

s **for**
$$j = 0, ..., m - 1$$

4
$$\lambda[P[j]] := j$$

5 return λ

1. $P = sells_shells$

S	h	е	i	ι	а	ц	S	е	ι	ι	S	ц	S	h	е	ι	ι	S

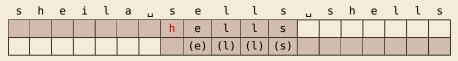
1. $P = sells_shells$

s	h	е	i	ι	а	ц	S	е	ι	ι	S	ц	S	h	е	ι	ι	s
							h	е	l	ι	S							

1. $P = sells_shells$

s	h			-					S	_		ι	ι	S
					h	е	ι	ι	S					
						(e)	(1)	(1)	(s)					

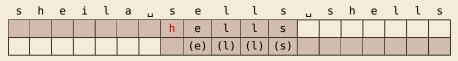
1. $P = sells_{i}shells$



2. P = odetofood

i	ι	i	k	е	f	0	0	d	f	r	0	m	m	е	х	i	С	0
				0	f	0	0	d										

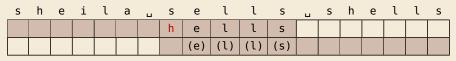
1. $P = sells_{i}shells$



2. P = odetofood

i	ι	i	k	е	f	0	0	d	f	r	0	m	m	е	х	i	С	0
				0	f	0	0	d										
							(0)	(d)										

1. $P = sells_shells$



2. P = odetofood

i	ι	i	k	е	f	0	0	d	f	r	0	m	m	е	х	i	С	0
				0	f	0	0	d										
							(0)	(d)										

matched suffix

- **Crucial ingredient:** longest suffix of P[j+1..m) that occurs earlier in *P*.
- 2 cases (as illustrated above)
 - **1.** complete suffix occurs in $P \rightarrow$ characters left of suffix are *not* known to match
 - 2. part of suffix occurs at beginning of *P*

Good suffix jumps

- Precompute *good suffix jumps* $\gamma[0..m)$:
 - For $0 \le j < m$, $\gamma[j]$ stores shift if search failed at P[j]
 - At this point, had T[i+j+1...i+m) = P[j+1...m), but $T[i] \neq P[j]$

Good suffix jumps

- Precompute *good suffix jumps* $\gamma[0..m)$:
 - For $0 \le j < m$, $\gamma[j]$ stores shift if search failed at P[j]
 - At this point, had T[i+j+1...i+m) = P[j+1...m), but $T[i] \neq P[j]$
 - $\rightsquigarrow \gamma[j]$ is the shift $m \ell$ for the *largest* ℓ such that
 - ▶ P[j+1..m) is a suffix of $P[0..\ell)$ and $P[j] \neq P[j-(m-\ell)]$

			h	е	ι	ι	S				
			×	(e)	(l)	(l)	(s)				

-OR-

• $P[0..\ell)$ is a suffix of P[j+1..m)

		0	f	0	0	d					
					(0)	(d)					

Good suffix jumps

- Precompute *good suffix jumps* $\gamma[0..m)$:
 - For $0 \le j < m$, $\gamma[j]$ stores shift if search failed at P[j]
 - At this point, had T[i+j+1...i+m) = P[j+1...m), but $T[i] \neq P[j]$
 - $\rightsquigarrow \gamma[j]$ is the shift $m \ell$ for the *largest* ℓ such that
 - ▶ P[j+1..m) is a suffix of $P[0..\ell)$ and $P[j] \neq P[j-(m-\ell)]$

			h	е	ι	ι	S				
			×	(e)	(l)	(l)	(s)				

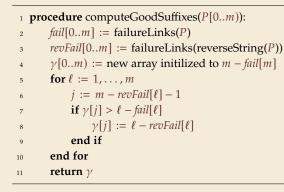
-OR-

• $P[0..\ell)$ is a suffix of P[j+1..m)

		0	f	0	0	d					
					(0)	(d)					

• Computable (similar to KMP failure function) in $\Theta(m)$ time.

Good suffix jumps – Efficient Computation



- Reuses failureLinks function from KMP
 - on both *P* and the reversed pattern!
- Correctness not obvious ... Requires careful analysis of all possible cases
- Clearly $\Theta(m)$ time

Boyer-Moore algorithm – Discussion

Worst-case running time $\in O(n + m + \sigma)$ if *P* does *not* occur in *T*. (follows from not at all obvious analysis!)

) As given, worst-case running time $\Theta(nm)$ if we want to report all occurrences

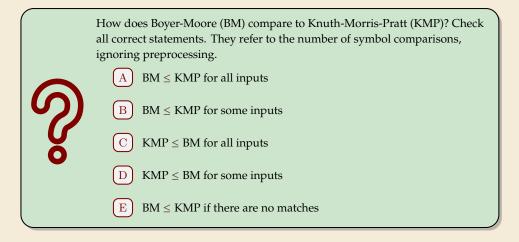
- To avoid that, have to keep track of implied matches. (tricky because they can be in the "middle" of P)
- Note: KMP reports all matches in O(n + m) without modifications!

On typical *English text*, Boyer Moore probes only approx. 25% of the characters in *T*!

 $\rightsquigarrow~$ Faster than KMP on English text.

requires moderate extra space $\Theta(m + \sigma)$

Clicker Question



Clicker Question

