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Learning Outcomes

Unit 6: String Matching

1. Know and use typical notions for strings (substring, prefix, suffix, etc.).

2. Understand principles and implementation of the KMP, BM, and RK algorithms.

3. Know the performance characteristics of the KMP, BM, and RK algorithms.

4. Be able to solve simple stringology problems using the KMP failure function.
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6.1 String Notation



Ubiquitous strings
string = sequence of characters
▶ universal data type for . . . everything!

▶ natural language texts
▶ programs (source code)
▶ websites
▶ XML documents
▶ DNA sequences
▶ bitstrings
▶ . . . a computer’s memory ⇝ ultimately any data is a string

⇝ many different tasks and algorithms
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Ubiquitous strings
string = sequence of characters
▶ universal data type for . . . everything!

▶ natural language texts
▶ programs (source code)
▶ websites
▶ XML documents
▶ DNA sequences
▶ bitstrings
▶ . . . a computer’s memory ⇝ ultimately any data is a string

⇝ many different tasks and algorithms

▶ This unit: finding (exact) occurrences of a pattern text.
▶ Ctrl+F
▶ grep
▶ computer forensics (e. g. find signature of file on disk)
▶ virus scanner

▶ basis for many advanced applications
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Notations
▶ alphabet Σ: finite set of allowed characters; 𝜎 = |Σ| “a string over alphabet Σ”

▶ letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, . . . )
▶ “what you can type on a keyboard”, Unicode

comprehensive standard character set
including emoji and all known symbols

characters
▶ {0, 1}; nucleotides {𝐴, 𝐶 ,𝐺,𝑇}; . . .
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Notations
▶ alphabet Σ: finite set of allowed characters; 𝜎 = |Σ| “a string over alphabet Σ”

▶ letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, . . . )
▶ “what you can type on a keyboard”, Unicode

comprehensive standard character set
including emoji and all known symbols

characters
▶ {0, 1}; nucleotides {𝐴, 𝐶 ,𝐺,𝑇}; . . .

▶ Σ𝑛 = Σ × · · · × Σ: strings of length 𝑛 ∈ ℕ0 (𝑛-tuples)

▶ Σ★ =
Ð

𝑛≥0 Σ
𝑛 : set of all (finite) strings over Σ

▶ Σ+ =
Ð

𝑛≥1 Σ
𝑛 : set of all (finite) nonempty strings over Σ

▶ 𝜀 ∈ Σ0: the empty string (same for all alphabets)
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Notations
▶ alphabet Σ: finite set of allowed characters; 𝜎 = |Σ| “a string over alphabet Σ”

▶ letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, . . . )
▶ “what you can type on a keyboard”, Unicode

comprehensive standard character set
including emoji and all known symbols

characters
▶ {0, 1}; nucleotides {𝐴, 𝐶 ,𝐺,𝑇}; . . .

▶ Σ𝑛 = Σ × · · · × Σ: strings of length 𝑛 ∈ ℕ0 (𝑛-tuples)

▶ Σ★ =
Ð

𝑛≥0 Σ
𝑛 : set of all (finite) strings over Σ

▶ Σ+ =
Ð

𝑛≥1 Σ
𝑛 : set of all (finite) nonempty strings over Σ

▶ 𝜀 ∈ Σ0: the empty string (same for all alphabets)

▶ for 𝑆 ∈ Σ𝑛 , write 𝑆[𝑖] (other sources: 𝑆𝑖) for 𝒊th
zero-based (like arrays)!

character (0 ≤ 𝑖 < 𝑛)

▶ for 𝑆,𝑇 ∈ Σ★, write 𝑆𝑇 = 𝑆 · 𝑇 for concatenation of 𝑆 and 𝑇

▶ for 𝑆 ∈ Σ𝑛 , write 𝑆[𝑖.. 𝑗] or 𝑆𝑖 , 𝑗 for the substring 𝑆[𝑖] · 𝑆[𝑖 + 1] · · · 𝑆[𝑗] (0 ≤ 𝑖 ≤ 𝑗 < 𝑛)
▶ 𝑆[0.. 𝑗] is a prefix of 𝑆; 𝑆[𝑖..𝑛 − 1] is a suffix of 𝑆
▶ 𝑆[𝑖.. 𝑗) = 𝑆[𝑖.. 𝑗 − 1] (endpoint exclusive) ⇝ 𝑆 = 𝑆[0..𝑛)
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Clicker Question

 → sli.do/cs566

True or false: Σ★ = Σ+ ∪ {𝜀}

A True B False



Clicker Question

 → sli.do/cs566

True or false: Σ★ = Σ+ ∪ {𝜀}

A True✓ B False



String matching – Definition
Search for a string (pattern) in a large body of text
▶ Input:

▶ 𝑇 ∈ Σ𝑛 : The text (haystack) being searched within
▶ 𝑃 ∈ Σ𝑚 : The pattern (needle) being searched for; typically 𝑛 ≫ 𝑚

▶ Output:
▶ the first occurrence (match) of 𝑃 in 𝑇: min

�
𝑖 ∈ [0..𝑛 − 𝑚) : 𝑇[𝑖..𝑖 + 𝑚) = 𝑃

	
▶ or NO_MATCH if there is no such 𝑖 (“𝑃 does not occur in 𝑇”)

▶ Variant: Find all occurrences of 𝑃 in 𝑇.
⇝ Can do that iteratively (update 𝑇 to 𝑇[𝑖 + 1..𝑛) after match at 𝑖)

▶ Example:
▶ 𝑇 = “Where is he?”
▶ 𝑃1 = “he” ⇝ 𝑖 = 1
▶ 𝑃2 = “who” ⇝ NO_MATCH

▶ string matching is implemented in Java in String.indexOf, in Python as str.find
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6.2 Brute Force



Abstract idea of algorithms
String matching algorithms typically use guesses and checks:

▶ A guess is a position 𝑖 such that 𝑃 might start at 𝑇[𝑖].
Possible guesses (initially) are 0 ≤ 𝑖 ≤ 𝑛 − 𝑚.

▶ A check of a guess is a comparison of 𝑇[𝑖 + 𝑗] to 𝑃[𝑗].
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Abstract idea of algorithms
String matching algorithms typically use guesses and checks:

▶ A guess is a position 𝑖 such that 𝑃 might start at 𝑇[𝑖].
Possible guesses (initially) are 0 ≤ 𝑖 ≤ 𝑛 − 𝑚.

▶ A check of a guess is a comparison of 𝑇[𝑖 + 𝑗] to 𝑃[𝑗].
▶ Note: need all 𝑚 checks to verify a single correct guess 𝑖,

but it may take (many) fewer checks to recognize an incorrect guess.

▶ Cost measure: #character comparisons

⇝ #checks ≤ 𝑛 · 𝑚 (number of possible checks)
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Brute-force method

1 procedure bruteForceSM(𝑇[0..𝑛), 𝑃[0..𝑚))
2 for 𝑖 := 0, . . . , 𝑛 − 𝑚 − 1 do
3 for 𝑗 := 0, . . . ,𝑚 − 1 do
4 if 𝑇[𝑖 + 𝑗] ≠ 𝑃[𝑗] then break inner loop
5 if 𝑗 == 𝑚 then return 𝑖
6 return NO_MATCH

▶ try all guesses 𝑖

▶ check each guess (left to right);
stop early on mismatch

▶ essentially the implementation
in Java!

▶ Example:
𝑇 = abbbababbab
𝑃 = abba

a b b b a b a b b a b
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Brute-force method

1 procedure bruteForceSM(𝑇[0..𝑛), 𝑃[0..𝑚))
2 for 𝑖 := 0, . . . , 𝑛 − 𝑚 − 1 do
3 for 𝑗 := 0, . . . ,𝑚 − 1 do
4 if 𝑇[𝑖 + 𝑗] ≠ 𝑃[𝑗] then break inner loop
5 if 𝑗 == 𝑚 then return 𝑖
6 return NO_MATCH

▶ try all guesses 𝑖

▶ check each guess (left to right);
stop early on mismatch

▶ essentially the implementation
in Java!

▶ Example:
𝑇 = abbbababbab
𝑃 = abba

⇝ 15 char cmps
(vs 𝑛 · 𝑚 = 44)
not too bad!

a b b b a b a b b a b
a b b a

a
a

a
a b b

a
a b b a

6



Brute-force method – Discussion
Brute-force method can be good enough
▶ typically works well for natural language text
▶ also for random strings

but: can be as bad as it gets!
a a a a a a a a a a a
a a a b

a a a b
a a a b

a a a b
a a a b

a a a b
a a a b

a a a b

▶ Worst possible input: 𝑃 = 𝑎𝑚−1𝑏,
𝑇 = 𝑎𝑛

▶ Worst-case performance: (𝑛 −𝑚 + 1) ·𝑚
⇝ for 𝑚 ≤ 𝑛/2 that is Θ(𝑚𝑛)
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Brute-force method – Discussion
Brute-force method can be good enough
▶ typically works well for natural language text
▶ also for random strings

but: can be as bad as it gets!
a a a a a a a a a a a
a a a b

a a a b
a a a b

a a a b
a a a b

a a a b
a a a b

a a a b

▶ Worst possible input: 𝑃 = 𝑎𝑚−1𝑏,
𝑇 = 𝑎𝑛

▶ Worst-case performance: (𝑛 −𝑚 + 1) ·𝑚
⇝ for 𝑚 ≤ 𝑛/2 that is Θ(𝑚𝑛)

▶ Bad input: lots of self-similarity in 𝑇! ⇝ can we exploit that?

▶ brute force does ‘obviously’ stupid repetitive comparisons ⇝ can we avoid that?
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Roadmap
▶ Approach 1 (this week): Use preprocessing on the pattern 𝑃 to eliminate guesses

(avoid ‘obvious’ redundant work)
▶ Deterministic finite automata (DFA)
▶ Knuth-Morris-Pratt algorithm
▶ Boyer-Moore algorithm
▶ Rabin-Karp algorithm

▶ Approach 2 (⇝ Unit 13): Do preprocessing on the text 𝑇
Can find matches in time independent of text size(!)

▶ inverted indices
▶ Suffix trees
▶ Suffix arrays
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6.3 String Matching with Finite Automata



Clicker Question

 → sli.do/cs566

Do you know what regular expressions, NFAs and DFAs are,
and how to convert between them?

A Never heard of this; are these new emoji?

B Heard the terms, but don’t remember conversion methods.

C Had that in my undergrad course (memories fading a bit).

D Sure, I could do that blindfolded!



Theoretical Computer Science to the rescue!
▶ string matching = deciding whether 𝑇 ∈ Σ★ · 𝑃 · Σ★

▶ Σ★ · 𝑃 · Σ★ is regular formal language

⇝ ∃ deterministic finite automaton (DFA) to recognize Σ★ · 𝑃 · Σ★

⇝ can check for occurrence of 𝑃 in |𝑇 | = 𝑛 steps!
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Theoretical Computer Science to the rescue!
▶ string matching = deciding whether 𝑇 ∈ Σ★ · 𝑃 · Σ★

▶ Σ★ · 𝑃 · Σ★ is regular formal language

⇝ ∃ deterministic finite automaton (DFA) to recognize Σ★ · 𝑃 · Σ★

⇝ can check for occurrence of 𝑃 in |𝑇 | = 𝑛 steps!

Job done! WTF!?

We are not quite done yet.

▶ (Problem 0: programmer might not know automata and formal languages . . . )

▶ Problem 1: existence alone does not give an algorithm!

▶ Problem 2: automaton could be very big!
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String matching with DFA
▶ Assume first, we already have a deterministic automaton
▶ How does string matching work?

Example:
𝑇 = aabacaababacaa
𝑃 = ababaca

0 1 2 3 4 5 6 7
a

b,c a

b

c

a

b,c

a

b

c

a

b,c

a

b
c a

b,c

Σ

text: a a b a c a a b a b a c a a
state: 0
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String matching with DFA
▶ Assume first, we already have a deterministic automaton
▶ How does string matching work?

Example:
𝑇 = aabacaababacaa
𝑃 = ababaca

0 1 2 3 4 5 6 7
a

b,c a

b

c

a

b,c

a

b

c

a

b,c

a

b
c a

b,c

Σ

text: a a b a c a a b a b a c a a
state: 0 1 1 2 3 0 1 1 2 3 4 5 6 7 7
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String matching DFA – Intuition
Why does this work?

▶ Main insight:

State 𝑞 means:
“we have seen 𝑃[0..𝑞) until here
(but not any longer prefix of 𝑃)”

𝑇 = aabacaababacaa
𝑃 = ababaca

0 1 2 3 4 5 6 7
a

b,c a

b

c

a

b,c

a

b

c

a

b,c

a

b
c a

b,c

Σ

text: a a b a c a a b a b a c a a
state: 0 1 1 2 3 0 1 1 2 3 4 5 6 7 7

▶ If the next text character 𝑐 does not match, we know:
(i) text seen so far ends with 𝑃[0...𝑞) · 𝑐

(ii) 𝑃[0...𝑞) · 𝑐 is not a prefix of 𝑃
(iii) without reading 𝑐, 𝑃[0..𝑞) was the longest prefix of 𝑃 that ends here.

𝑇 = · · · 𝑃[0..𝑞) c
𝑃[0..𝑞′)

with 𝑞′ < 𝑞
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String matching DFA – Intuition
Why does this work?

▶ Main insight:

State 𝑞 means:
“we have seen 𝑃[0..𝑞) until here
(but not any longer prefix of 𝑃)”

𝑇 = aabacaababacaa
𝑃 = ababaca

0 1 2 3 4 5 6 7
a

b,c a

b

c

a

b,c

a

b

c

a

b,c

a

b
c a

b,c

Σ

text: a a b a c a a b a b a c a a
state: 0 1 1 2 3 0 1 1 2 3 4 5 6 7 7

▶ If the next text character 𝑐 does not match, we know:
(i) text seen so far ends with 𝑃[0...𝑞) · 𝑐

(ii) 𝑃[0...𝑞) · 𝑐 is not a prefix of 𝑃
(iii) without reading 𝑐, 𝑃[0..𝑞) was the longest prefix of 𝑃 that ends here.

𝑇 = · · · 𝑃[0..𝑞) c
𝑃[0..𝑞′)

with 𝑞′ < 𝑞

⇝ New longest matched prefix will be (weakly) shorter than 𝑞

⇝ All information about the text needed to determine it is contained in 𝑃[0...𝑞) · 𝑐!
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6.4 Constructing String Matching Automata



NFA instead of DFA?
It remains to construct the DFA.

▶ trivial part: 0 1 2 3 4 5 6 7
a

Σ

b a b a c a

Σ
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NFA instead of DFA?
It remains to construct the DFA.

▶ trivial part: 0 1 2 3 4 5 6 7
a

Σ

b a b a c a

Σ

▶ that actually is a nondeterministic finite automaton (NFA) for Σ★𝑃 Σ★

⇝ We could use the NFA directly for string matching:
▶ at any point in time, we are in a set of states
▶ accept when one of them is final state

Example:

text: a a b a c a a b a b a c a a
state: 0

But maintaining a whole set makes this slow . . .
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NFA instead of DFA?
It remains to construct the DFA.

▶ trivial part: 0 1 2 3 4 5 6 7
a

Σ

b a b a c a

Σ

▶ that actually is a nondeterministic finite automaton (NFA) for Σ★𝑃 Σ★

⇝ We could use the NFA directly for string matching:
▶ at any point in time, we are in a set of states
▶ accept when one of them is final state

Example:

text: a a b a c a a b a b a c a a
state: 0 0, 1 0, 1 0, 2 0, 1, 3 0 0, 1 0, 1 0, 2 0, 1, 3 0, 2, 4 0, 1, 3, 5 0, 6 0, 1, 7 0, 1, 7

But maintaining a whole set makes this slow . . .
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Computing DFA directly
You have an NFA and want a DFA?
Simply apply the power-set construction
(and maybe DFA minimization)!

The powerset method has exponential state blow up!
I guess I might as well use brute force ...

13



Computing DFA directly
You have an NFA and want a DFA?
Simply apply the power-set construction
(and maybe DFA minimization)!

The powerset method has exponential state blow up!
I guess I might as well use brute force ...

Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA inductively:
Suppose we add character 𝑃[𝑗] to automaton 𝐴𝑗 for 𝑃[0.. 𝑗) to construct 𝐴𝑗+1
▶ add new state and matching transition ⇝ easy
▶ for each 𝑐 ≠ 𝑃[𝑗], we need 𝛿(𝑗 , 𝑐) (transition from 𝑗 when reading 𝑐)
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= state of automaton after reading 𝑃[1.. 𝑗)𝑐
≤ 𝑗 ⇝ can use known automaton 𝐴𝑗 for that! State 𝑞 means:

“we have seen 𝑃[0..𝑞) until here
(but not any longer prefix of 𝑃)”
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Computing DFA directly
You have an NFA and want a DFA?
Simply apply the power-set construction
(and maybe DFA minimization)!

The powerset method has exponential state blow up!
I guess I might as well use brute force ...

Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA inductively:
Suppose we add character 𝑃[𝑗] to automaton 𝐴𝑗 for 𝑃[0.. 𝑗) to construct 𝐴𝑗+1
▶ add new state and matching transition ⇝ easy
▶ for each 𝑐 ≠ 𝑃[𝑗], we need 𝛿(𝑗 , 𝑐) (transition from 𝑗 when reading 𝑐)

▶ 𝛿(𝑗 , 𝑐) = length of the longest prefix of 𝑃[0.. 𝑗)𝑐 that is a suffix of 𝑃[1.. 𝑗)𝑐
= state of automaton after reading 𝑃[1.. 𝑗)𝑐
≤ 𝑗 ⇝ can use known automaton 𝐴𝑗 for that! State 𝑞 means:

“we have seen 𝑃[0..𝑞) until here
(but not any longer prefix of 𝑃)”⇝ can directly compute 𝐴𝑗+1 from 𝐴𝑗 !

seems to require simulating automata 𝑚 · 𝜎 times
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Computing DFA efficiently
▶ KMP’s second insight: simulations in one step differ only in last symbol

⇝ simply maintain state 𝑥, the state after reading 𝑃[1.. 𝑗).
▶ copy its transitions
▶ update 𝑥 by following transitions for 𝑃[𝑗]
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Computing DFA efficiently
▶ KMP’s second insight: simulations in one step differ only in last symbol

⇝ simply maintain state 𝑥, the state after reading 𝑃[1.. 𝑗).
▶ copy its transitions
▶ update 𝑥 by following transitions for 𝑃[𝑗]

1 procedure constructDFA(𝑃[0..𝑚))
2 // 𝛿[𝑞][𝑐] = target state when reading 𝑐 in state 𝑞
3 for 𝑐 ∈ Σ do
4 𝛿[0][𝑐] := 0
5 𝛿[0][𝑃[0]] := 1
6 𝑥 := 0
7 for 𝑗 = 1, . . . ,𝑚 − 1 do
8 for 𝑐 ∈ Σ do // copy transitions
9 𝛿[𝑗][𝑐] := 𝛿[𝑥][𝑐]

10 𝛿[𝑗][𝑃[𝑗]] := 𝑗 + 1 // match edge
11 𝑥 := 𝛿[𝑥][𝑃[𝑗]] // update 𝑥

Example: 𝑃[0..6) = ababac

𝛿(𝑐 , 𝑞) 0 1 2 3 4 5

a

b

c
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Computing DFA efficiently
▶ KMP’s second insight: simulations in one step differ only in last symbol

⇝ simply maintain state 𝑥, the state after reading 𝑃[1.. 𝑗).
▶ copy its transitions
▶ update 𝑥 by following transitions for 𝑃[𝑗]

1 procedure constructDFA(𝑃[0..𝑚))
2 // 𝛿[𝑞][𝑐] = target state when reading 𝑐 in state 𝑞
3 for 𝑐 ∈ Σ do
4 𝛿[0][𝑐] := 0
5 𝛿[0][𝑃[0]] := 1
6 𝑥 := 0
7 for 𝑗 = 1, . . . ,𝑚 − 1 do
8 for 𝑐 ∈ Σ do // copy transitions
9 𝛿[𝑗][𝑐] := 𝛿[𝑥][𝑐]

10 𝛿[𝑗][𝑃[𝑗]] := 𝑗 + 1 // match edge
11 𝑥 := 𝛿[𝑥][𝑃[𝑗]] // update 𝑥

Example: 𝑃[0..6) = ababac

𝛿(𝑐 , 𝑞) 0 1 2 3 4 5

a 1 1 3 1 5 1
b 0 2 0 4 0 4
c 0 0 0 0 0 6
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String matching with DFA – Discussion
▶ Time:

▶ Matching: 𝑛 table lookups for DFA transitions
▶ building DFA: Θ(𝑚𝜎) time (constant time per transition edge).
⇝ Θ(𝑚𝜎 + 𝑛) time for string matching.

▶ Space:
▶ Θ(𝑚𝜎) space for transition matrix.

fast matching time actually: hard to beat!

total time asymptotically optimal for small alphabet (for 𝜎 = 𝑂(𝑛/𝑚))

substantial space overhead, in particular for large alphabets

15



6.5 The Knuth-Morris-Pratt algorithm



Failure Links
▶ Recall: String matching with is DFA fast,

but needs table of 𝑚 × 𝜎 transitions.
▶ in fast DFA construction, we used that all simulations differ only by last symbol

⇝ KMP’s third insight: do this last step of simulation from state 𝑥 during matching!
. . . but how?
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Failure Links
▶ Recall: String matching with is DFA fast,

but needs table of 𝑚 × 𝜎 transitions.
▶ in fast DFA construction, we used that all simulations differ only by last symbol

⇝ KMP’s third insight: do this last step of simulation from state 𝑥 during matching!
. . . but how?

▶ Answer: Use a new type of transition: ×, the failure links
▶ Use this transition (only) if no other one fits.
▶ × does not consume a character. ⇝ might follow several failure links

0 1 2 3 4 5 6 7a

Σ − 𝑎

b

×
a

×

b

×
a

×

c

×
a

×

Σ

⇝ Computations are deterministic (but automaton is not a real DFA.)
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Failure link automaton – Example
Example: 𝑇 = abababaaaca, 𝑃 = ababaca

0 1 2 3 4 5 6 7a

Σ − 𝑎

b

×
a

×
b

×
a

×

c

×
a

×

Σ

𝑇 : a b a b a b a a b a b
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Failure link automaton – Example
Example: 𝑇 = abababaaaca, 𝑃 = ababaca

0 1 2 3 4 5 6 7a

Σ − 𝑎

b

×
a

×
b

×
a

×

c

×
a

×

Σ

𝑇 : a b a b a b a a b a b
𝑃 : a b a b a × to state 3

(a) (b) (a) b a × to state 1
a b a b

𝑞: 1 2 3 4 5 3, 4 5 3, 1, 0, 1 2 3 4
(after reading this character)

17



Clicker Question

 → sli.do/cs566

What is the worst-case time to process one character in a failure-link
automaton for 𝑃[0..𝑚)?

A Θ(1)

B Θ(log𝑚)

C Θ(𝑚)

D Θ(𝑚2)



Clicker Question

 → sli.do/cs566

What is the worst-case time to process one character in a failure-link
automaton for 𝑃[0..𝑚)?

A Θ(1)

B Θ(log𝑚)

C Θ(𝑚)✓
D Θ(𝑚2)



The Knuth-Morris-Pratt Algorithm
1 procedure KMP(𝑇[0..𝑛), 𝑃[0..𝑚))
2 fail[0..𝑚] := failureLinks(𝑃)
3 𝑖 := 0 // current position in 𝑇
4 𝑞 := 0 // current state of KMP automaton
5 while 𝑖 < 𝑛 do
6 if 𝑇[𝑖] == 𝑃[𝑞] then
7 𝑖 := 𝑖 + 1; 𝑞 := 𝑞 + 1
8 if 𝑞 == 𝑚 then
9 return 𝑖 − 𝑞 // occurrence found

10 else // i.e. 𝑇[𝑖] ≠ 𝑃[𝑞]
11 if 𝑞 ≥ 1 then
12 𝑞 := fail[𝑞] // follow one ×
13 else
14 𝑖 := 𝑖 + 1
15 end while
16 return NO_MATCH

▶ only need single array fail for
failure links

▶ (procedure failureLinks later)

18



The Knuth-Morris-Pratt Algorithm
1 procedure KMP(𝑇[0..𝑛), 𝑃[0..𝑚))
2 fail[0..𝑚] := failureLinks(𝑃)
3 𝑖 := 0 // current position in 𝑇
4 𝑞 := 0 // current state of KMP automaton
5 while 𝑖 < 𝑛 do
6 if 𝑇[𝑖] == 𝑃[𝑞] then
7 𝑖 := 𝑖 + 1; 𝑞 := 𝑞 + 1
8 if 𝑞 == 𝑚 then
9 return 𝑖 − 𝑞 // occurrence found

10 else // i.e. 𝑇[𝑖] ≠ 𝑃[𝑞]
11 if 𝑞 ≥ 1 then
12 𝑞 := fail[𝑞] // follow one ×
13 else
14 𝑖 := 𝑖 + 1
15 end while
16 return NO_MATCH

▶ only need single array fail for
failure links

▶ (procedure failureLinks later)

Analysis: (matching part)

▶ always have fail[𝑗] < 𝑗 for 𝑗 ≥ 1

⇝ in each iteration
▶ either advance position in text

(𝑖 := 𝑖 + 1)
▶ or shift pattern forward

(guess 𝑖 − 𝑞)

▶ each can happen at most 𝑛 times

⇝ ≤ 2𝑛 symbol comparisons!

18



Computing failure links
▶ failure links point to error state 𝑥 (from DFA construction)

⇝ run same algorithm, but store fail[𝑗] := 𝑥 instead of copying all transitions

1 procedure failureLinks(𝑃[0..𝑚))
2 fail[0] := 0
3 𝑥 := 0
4 for 𝑗 := 1, . . . ,𝑚 − 1 do
5 fail[𝑗] := 𝑥
6 // update failure state using failure links:
7 while 𝑃[𝑥] ≠ 𝑃[𝑗]
8 if 𝑥 == 0 then
9 𝑥 := −1; break

10 else
11 𝑥 := fail[𝑥]
12 end while
13 𝑥 := 𝑥 + 1
14 end for

19



Computing failure links
▶ failure links point to error state 𝑥 (from DFA construction)

⇝ run same algorithm, but store fail[𝑗] := 𝑥 instead of copying all transitions

1 procedure failureLinks(𝑃[0..𝑚))
2 fail[0] := 0
3 𝑥 := 0
4 for 𝑗 := 1, . . . ,𝑚 − 1 do
5 fail[𝑗] := 𝑥
6 // update failure state using failure links:
7 while 𝑃[𝑥] ≠ 𝑃[𝑗]
8 if 𝑥 == 0 then
9 𝑥 := −1; break

10 else
11 𝑥 := fail[𝑥]
12 end while
13 𝑥 := 𝑥 + 1
14 end for

Analysis:
▶ 𝑚 iterations of for loop

▶ while loop always decrements 𝑥

▶ 𝑥 is incremented only once per
iteration of for loop

⇝ ≤ 𝑚 iterations of while loop in total

⇝ ≤ 2𝑚 symbol comparisons

19



Knuth-Morris-Pratt – Discussion
▶ Time:

▶ ≤ 2𝑛 + 2𝑚 = 𝑂(𝑛 + 𝑚) character comparisons
▶ clearly must at least read both 𝑇 and 𝑃

⇝ KMP has optimal worst-case complexity!

▶ Space:
▶ Θ(𝑚) space for failure links

total time asymptotically optimal (for any alphabet size)

reasonable extra space

20



Clicker Question

 → sli.do/cs566

What are the main advantages of the KMP string matching (using the
failure-link automaton) over string matching with DFAs? Check all
that apply.

A faster preprocessing on pattern

B faster matching in text

C fewer character comparisons

D uses less space

E makes running time independent of 𝜎

F I don’t have to do automata theory



Clicker Question

 → sli.do/cs566

What are the main advantages of the KMP string matching (using the
failure-link automaton) over string matching with DFAs? Check all
that apply.

A faster preprocessing on pattern✓
B faster matching in text

C fewer character comparisons

D uses less space✓
E makes running time independent of 𝜎✓
F I don’t have to do automata theory



The KMP prefix function
▶ It turns out that the failure links are useful beyond KMP

▶ a slight variation is (more?) widely used: (for historic reasons)
the (KMP) prefix function 𝐹 : [1..𝑚 − 1] → [0..𝑚 − 1]:
𝐹[𝑗] is the length of the longest prefix of 𝑃[0.. 𝑗]

that is a suffix of 𝑃[1.. 𝑗].

▶ Can show: fail[𝑗] = 𝐹[𝑗 − 1] for 𝑗 ≥ 1, and hence

fail[𝑞] = length of the
longest prefix of 𝑃[0..𝑞)
that is a suffix of 𝑃[1..𝑞).

memorize this!

▶ EAA Buch: String indices are 1-based, but definition of failure links matches! Π𝑃(𝑞) = fail[𝑞]
Π𝑃 : [1..𝑚] → [0..𝑚 − 1] with Π𝑃 (𝑞) = max

�
𝑘 ∈ ℕ0 : 𝑘 < 𝑞 ∧ 𝑃[0..𝑘) ⊐ 𝑃[0..𝑞)]	 = fail[𝑞]

21



6.6 Beyond Optimal? The Boyer-Moore Algorithm



Motivation
▶ KMP is an optimal algorithm, isn’t it? What else could we hope for?

22



Motivation
▶ KMP is an optimal algorithm, isn’t it? What else could we hope for?

▶ KMP is “only” optimal in the worst-case (and up to constant factors)

▶ how many comparisons do we need for the following instance?
𝑇 = aaaaaaaaaaaaaaaa, 𝑃 = xxxxx

▶ there are no matches
▶ we can certify the correctness of that output with only 4 comparisons:

𝑇 a a a a a a a a a a a a a a a a
x

x
x

x

⇝ We did not even read most characters!

22



Boyer-Moore Algorithm
▶ Let’s check guesses from right to left!

▶ If we are lucky, we can eliminate several shifts in one shot!

23



Boyer-Moore Algorithm
▶ Let’s check guesses from right to left!

▶ If we are lucky, we can eliminate several shifts in one shot!

must avoid (excessive) redundant checks, e. g., for 𝑇 = 𝑎𝑛 , 𝑃 = 𝑏𝑎𝑚−1

⇝ New rules:
▶ Bad character jumps: Upon mismatch at 𝑇[𝑖] = 𝑐:

▶ If 𝑃 does not contain 𝑐, shift 𝑃 entirely past 𝑖!
▶ Otherwise, shift 𝑃 to align the last occurrence of 𝑐 in 𝑃 with 𝑇[𝑖].

▶ Good suffix jumps:
Upon a mismatch, shift so that the already matched suffix of 𝑃 aligns with a
previous occurrence of that suffix (or part of it) in 𝑃.
(Details follow; ideas similar to KMP failure links)

⇝ two possible shifts (next guesses); use larger jump.

23



Boyer-Moore Algorithm – Code

1 procedure boyerMoore(𝑇[0..𝑛), 𝑃[0..𝑚))
2 𝜆 := computeLastOccurrences(𝑃)
3 𝛾 := computeGoodSuffixes(𝑃)
4 𝑖 := 0 // current guess
5 while 𝑖 ≤ 𝑛 − 𝑚
6 𝑗 := 𝑚 − 1 // next position in 𝑃 to check
7 while 𝑗 ≥ 0 ∧ 𝑃[𝑗] == 𝑇[𝑖 + 𝑗] do
8 𝑗 := 𝑗 − 1
9 if 𝑗 == −1 then

10 return 𝑖
11 else
12 𝑖 := 𝑖 + max

�
𝑗 − 𝜆[𝑇[𝑖 + 𝑗]], 𝛾[𝑗]	

13 return NO_MATCH

▶ 𝜆 and 𝛾 explained below

▶ shift forward is larger of two
heuristics

▶ shift is always positive (see
below)

24



Bad character examples

𝑃 = a l d o
𝑇 = w h e r e i s w a l d o

o

𝑃 = m o o r e
𝑇 = b o y e r m o o r e
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Bad character examples

𝑃 = a l d o
𝑇 = w h e r e i s w a l d o

o
o

d o

𝑃 = m o o r e
𝑇 = b o y e r m o o r e
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Bad character examples

𝑃 = a l d o
𝑇 = w h e r e i s w a l d o

o
o

l d o

𝑃 = m o o r e
𝑇 = b o y e r m o o r e
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Bad character examples

𝑃 = a l d o
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o
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Bad character examples

𝑃 = a l d o
𝑇 = w h e r e i s w a l d o

o
o

a l d o

⇝ 6 characters not looked at

𝑃 = m o o r e
𝑇 = b o y e r m o o r e
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e
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o
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⇝ 6 characters not looked at

𝑃 = m o o r e
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e
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Bad character examples

𝑃 = a l d o
𝑇 = w h e r e i s w a l d o

o
o

a l d o

⇝ 6 characters not looked at

𝑃 = m o o r e
𝑇 = b o y e r m o o r e

e
(r) e

(m) r e
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Bad character examples

𝑃 = a l d o
𝑇 = w h e r e i s w a l d o

o
o

a l d o

⇝ 6 characters not looked at

𝑃 = m o o r e
𝑇 = b o y e r m o o r e

e
(r) e

(m) o o r e

⇝ 4 characters not looked at
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Last-Occurrence Function
▶ Preprocess pattern 𝑃 and alphabet Σ

▶ last-occurrence function 𝜆[𝑐] defined as
▶ the largest index 𝑖 such that 𝑃[𝑖] = 𝑐 or
▶ −1 if no such index exists
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Last-Occurrence Function
▶ Preprocess pattern 𝑃 and alphabet Σ

▶ last-occurrence function 𝜆[𝑐] defined as
▶ the largest index 𝑖 such that 𝑃[𝑖] = 𝑐 or
▶ −1 if no such index exists

▶ Example: 𝑃 = moore

𝑐 m o r e all others

𝜆[𝑐] 0 2 3 4 −1

𝑃 = m o o r e
𝑇 = b o y e r m o o r e

e
(r) e

𝑖 = 0, 𝑗 = 4, 𝑇[𝑖 + 𝑗] = 𝑟, 𝜆[𝑟] = 3

⇝ shift by 𝑗 − 𝜆[𝑇[𝑖 + 𝑗]] = 1

▶ 𝜆 computed in 𝑂(𝑚 + 𝜎) time.

▶ store as array 𝜆[0..𝜎).

1 procedure computeLastOccurrences(𝑃[0..𝑚)):
2 𝜆[0..𝜎) := array initialized to 0
3 for 𝑗 = 0, . . . ,𝑚 − 1
4 𝜆[𝑃[𝑗]] := 𝑗
5 return 𝜆

26



Good suffix examples
1. 𝑃 = sells␣shells

s h e i l a ␣ s e l l s ␣ s h e l l s
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Good suffix examples
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Good suffix examples
1. 𝑃 = sells␣shells
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h e l l s

(e) (l) (l) (s)
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Good suffix examples
1. 𝑃 = sells␣shells

s h e i l a ␣ s e l l s ␣ s h e l l s
h e l l s

(e) (l) (l) (s)

2. 𝑃 = odetofood

i l i k e f o o d f r o m m e x i c o
o f o o d
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Good suffix examples
1. 𝑃 = sells␣shells
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2. 𝑃 = odetofood
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Good suffix examples
1. 𝑃 = sells␣shells

s h e i l a ␣ s e l l s ␣ s h e l l s
h e l l s

(e) (l) (l) (s)

2. 𝑃 = odetofood

i l i k e f o o d f r o m m e x i c o
o f o o d

(o) (d)

▶ Crucial ingredient: longest suffix of 𝑃[𝑗+1..𝑚)
matched suffix

that occurs earlier in 𝑃.

▶ 2 cases (as illustrated above)
1. complete suffix occurs in 𝑃 ⇝ characters left of suffix are not known to match
2. part of suffix occurs at beginning of 𝑃
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Good suffix jumps
▶ Precompute good suffix jumps 𝛾[0..𝑚):

▶ For 0 ≤ 𝑗 < 𝑚, 𝛾[𝑗] stores shift if search failed at 𝑃[𝑗]
▶ At this point, had 𝑇[𝑖+𝑗+1 .. 𝑖+𝑚) = 𝑃[𝑗+1 ..𝑚), but 𝑇[𝑖] ≠ 𝑃[𝑗]
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Good suffix jumps
▶ Precompute good suffix jumps 𝛾[0..𝑚):

▶ For 0 ≤ 𝑗 < 𝑚, 𝛾[𝑗] stores shift if search failed at 𝑃[𝑗]
▶ At this point, had 𝑇[𝑖+𝑗+1 .. 𝑖+𝑚) = 𝑃[𝑗+1 ..𝑚), but 𝑇[𝑖] ≠ 𝑃[𝑗]
⇝ 𝛾[𝑗] is the shift 𝑚 − ℓ for the largest ℓ such that

▶ 𝑃[𝑗+1..𝑚) is a suffix of 𝑃[0..ℓ ) and 𝑃[𝑗] ≠ 𝑃[𝑗−(𝑚 − ℓ )]
h e l l s
× (e) (l) (l) (s)

–OR–
▶ 𝑃[0..ℓ ) is a suffix of 𝑃[𝑗+1..𝑚)

o f o o d
(o) (d)
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Good suffix jumps
▶ Precompute good suffix jumps 𝛾[0..𝑚):

▶ For 0 ≤ 𝑗 < 𝑚, 𝛾[𝑗] stores shift if search failed at 𝑃[𝑗]
▶ At this point, had 𝑇[𝑖+𝑗+1 .. 𝑖+𝑚) = 𝑃[𝑗+1 ..𝑚), but 𝑇[𝑖] ≠ 𝑃[𝑗]
⇝ 𝛾[𝑗] is the shift 𝑚 − ℓ for the largest ℓ such that

▶ 𝑃[𝑗+1..𝑚) is a suffix of 𝑃[0..ℓ ) and 𝑃[𝑗] ≠ 𝑃[𝑗−(𝑚 − ℓ )]
h e l l s
× (e) (l) (l) (s)

–OR–
▶ 𝑃[0..ℓ ) is a suffix of 𝑃[𝑗+1..𝑚)

o f o o d
(o) (d)

▶ Computable (similar to KMP failure function) in Θ(𝑚) time.
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Good suffix jumps – Efficient Computation

1 procedure computeGoodSuffixes(𝑃[0..𝑚)):
2 fail[0..𝑚] := failureLinks(𝑃)
3 revFail[0..𝑚] := failureLinks(reverseString(𝑃))
4 𝛾[0..𝑚) := new array initilized to 𝑚 − fail[𝑚]
5 for ℓ := 1, . . . ,𝑚
6 𝑗 := 𝑚 − revFail[ℓ ] − 1
7 if 𝛾[𝑗] > ℓ − fail[ℓ ]
8 𝛾[𝑗] := ℓ − revFail[ℓ ]
9 end if

10 end for
11 return 𝛾

▶ Reuses failureLinks function
from KMP
▶ on both 𝑃 and

the reversed pattern!

▶ Correctness not obvious . . .
Requires careful analysis
of all possible cases

▶ Clearly Θ(𝑚) time
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Boyer-Moore algorithm – Discussion
Worst-case running time ∈ 𝑂(𝑛 + 𝑚 + 𝜎) if 𝑃 does not occur in 𝑇.
(follows from not at all obvious analysis!)

As given, worst-case running time Θ(𝑛𝑚) if we want to report all occurrences
▶ To avoid that, have to keep track of implied matches.

(tricky because they can be in the “middle” of 𝑃)
▶ Note: KMP reports all matches in 𝑂(𝑛 + 𝑚) without modifications!

On typical English text, Boyer Moore probes only approx. 25% of the characters in 𝑇!
⇝ Faster than KMP on English text.

requires moderate extra space Θ(𝑚 + 𝜎)
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Clicker Question

 → sli.do/cs566

How does Boyer-Moore (BM) compare to Knuth-Morris-Pratt (KMP)? Check
all correct statements. They refer to the number of symbol comparisons,
ignoring preprocessing.

A BM ≤ KMP for all inputs

B BM ≤ KMP for some inputs

C KMP ≤ BM for all inputs

D KMP ≤ BM for some inputs

E BM ≤ KMP if there are no matches



Clicker Question

 → sli.do/cs566

How does Boyer-Moore (BM) compare to Knuth-Morris-Pratt (KMP)? Check
all correct statements. They refer to the number of symbol comparisons,
ignoring preprocessing.

A BM ≤ KMP for all inputs

B BM ≤ KMP for some inputs✓
C KMP ≤ BM for all inputs

D KMP ≤ BM for some inputs✓
E BM ≤ KMP if there are no matches✓


