

Text Compression

25 November 2024

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 7: *Text Compression*

- 1. Understand the necessity for encodings and know ASCII and UTF-8 character encodings.
- 2. Understand (qualitatively) the *limits of compressibility*.
- Know and understand the algorithms (encoding and decoding) for Huffman codes, RLE, Elias codes, LZW, MTF, and BWT, including their properties like running time complexity.
- **4.** Select and *adapt* (slightly) a *compression* pipeline for a specific type of data.

Outline

7 Text Compression

- 7.1 Context
- 7.2 Character Encodings
- 7.3 Huffman Codes
- 7.4 Entropy
- 7.5 Run-Length Encoding
- 7.6 Lempel-Ziv-Welch
- 7.7 Lempel-Ziv-Welch Decoding
- 7.8 Move-to-Front Transformation
- 7.9 Burrows-Wheeler Transform
- 7.10 Inverse BWT

7.1 Context

Overview

- ▶ Unit 6 & 13: How to *work* with strings
 - finding substrings
 - ► finding approximate matches → Unit 133
 - ► finding repeated parts → Unit 133
 - ▶ ..
 - assumed character array (random access)!
- ▶ Unit 7 & 8: How to *store/transmit* strings
 - computer memory: must be binary
 - ▶ how to compress strings (save space)
 - ▶ how to robustly transmit over noisy channels → Unit 8

Clicker Question

What compression methods do you know?

| → sli.do/cs566

Terminology

- ▶ **source text:** string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet
- ▶ **coded text:** encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- encoding: algorithm mapping source texts to coded texts $S \sim C$
- **decoding:** algorithm mapping coded texts back to original source text $C \leadsto S$

Terminology

- ▶ **source text:** string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet
- ▶ **coded text:** encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- ▶ **encoding:** algorithm mapping source texts to coded texts
- decoding: algorithm mapping coded texts back to original source text
- ► Lossy vs. Lossless
 - lossy compression can only decode approximately; the exact source text S is lost
 - ▶ **lossless compression** always decodes *S* exactly
- ► For media files, lossy, logical compression is useful (e.g. JPEG, MPEG)
- ► We will concentrate on *lossless* compression algorithms. These techniques can be used for any application.

What is a good encoding scheme?

- ▶ Depending on the application, goals can be
 - efficiency of encoding/decoding
 - resilience to errors/noise in transmission
 - security (encryption)
 - ▶ integrity (detect modifications made by third parties)
 - ▶ size

What is a good encoding scheme?

- ▶ Depending on the application, goals can be
 - efficiency of encoding/decoding
 - ► resilience to errors/noise in transmission
 - security (encryption)
 - ▶ integrity (detect modifications made by third parties)
 - ▶ size
- ► Focus in this unit: size of coded text

 Encoding schemes that (try to) minimize the size of coded texts perform *data*compression.
- We will measure the <u>compression ratio</u>: $\frac{|C| \cdot \lg |\Sigma_C|}{|S| \cdot \lg |\Sigma_S|} \stackrel{\Sigma_C = \{0,1\}}{=} \frac{|C|}{|S| \cdot \lg |\Sigma_S|}$
 - < 1 means successful compression
 - = 1 means no compression
 - > 1 means "compression" made it bigger!? (yes, that happens ...)

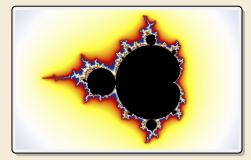
Clicker Question

Do you know what uncomputable/undecidable problems (halting problem, Post's correspondence problem, . . .) are?

- A Sure, I could explain what it is.
- B Heard that in a lecture, but don't quite remember
- C No, never heard of it

→ sli.do/cs566

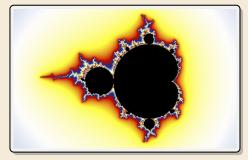
Is this image compressible?



Is this image compressible?

visualization of Mandelbrot set

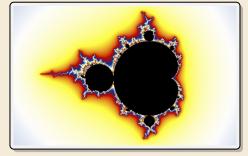
- ► Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!



Is this image compressible?

visualization of Mandelbrot set

- ► Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!



→ Kolmogorov complexity

ightharpoonup C = any program that outputs S

self-extracting archives!

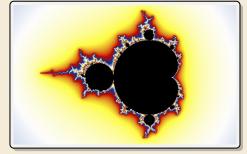
needs fixed machine model, but compilers transfer results

► Kolmogorov complexity = length of smallest such program

Is this image compressible?

visualization of Mandelbrot set

- Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!



→ Kolmogorov complexity

ightharpoonup C = any program that outputs S

self-extracting archives!

needs fixed machine model, but compilers transfer results

- ► Kolmogorov complexity = length of smallest such program
- ▶ **Problem:** finding smallest such program is *uncomputable*.
- → No optimal encoding algorithm is possible!
- → must be inventive to get efficient methods

What makes data compressible?

- ► Lossless compression methods mainly exploit two types of redundancies in source texts:
 - **1. uneven character frequencies** some characters occur more often than others → Part I
 - 2. repetitive texts different parts in the text are (almost) identical \rightarrow Part II

What makes data compressible?

- ► Lossless compression methods mainly exploit two types of redundancies in source texts:
 - 1. uneven character frequencies some characters occur more often than others \rightarrow Part I
 - 2. repetitive texts
 different parts in the text are (almost) identical → Part II

There is no such thing as a free lunch!

Not *everything* is compressible (\rightarrow tutorials)

→ focus on versatile methods that often work

Part I

Exploiting character frequencies

7.2 Character Encodings

Character encodings

- ► Simplest form of encoding: Encode each source character individually
- \rightarrow encoding function $E\left(\Sigma_S\right) \rightarrow \Sigma_C^*$
 - typically, $|\Sigma_S| \gg |\Sigma_C|$, so need several bits per character
 - for $c \in \Sigma_S$, we call E(c) the *codeword* of c
- ▶ **fixed-length code:** |E(c)| is the same for all $c \in \Sigma_{\mathbb{Z}S}$
- ▶ variable-length code: not all codewords of same length

Fixed-length codes

- fixed-length codes are the simplest type of character encodings
- Example: ASCII (American Standard Code for Information Interchange, 1963)

```
0000000 NUL
               0010000 DLE
                              0100000
                                            0110000 0
                                                         1000000 a
                                                                      1010000 P
                                                                                   1100000 '
                                                                                                 1110000 p
0000001 SOH
               0010001 DC1
                              0100001 !
                                            0110001 1
                                                         1000001 A
                                                                      1010001 0
                                                                                   1100001 a
                                                                                                 1110001 q
0000010 STX
               0010010 DC2
                              0100010 "
                                            0110010 2
                                                         1000010 B
                                                                      1010010 R
                                                                                   1100010 b
                                                                                                 1110010 r
0000011 ETX
              0010011 DC3
                              0100011 #
                                           0110011 3
                                                         1000011 C
                                                                      1010011 S
                                                                                   1100011 c
                                                                                                1110011 s
0000100 EOT
               0010100 DC4
                              0100100 $
                                           0110100 4
                                                         1000100 D
                                                                      1010100 T
                                                                                   1100100 d
                                                                                                 1110100 t
0000101 ENO
               0010101 NAK
                              0100101 %
                                            0110101 5
                                                         1000101 E
                                                                      1010101 U
                                                                                   1100101 e
                                                                                                 1110101 u
0000110 ACK
               0010110 SYN
                              0100110 &
                                            0110110 6
                                                         1000110 F
                                                                      1010110 V
                                                                                   1100110 f
                                                                                                1110110 v
0000111 BEL
               0010111 ETB
                              0100111 '
                                            0110111 7
                                                         1000111 G
                                                                      1010111 W
                                                                                   1100111 q
                                                                                                1110111 w
0001000 BS
               0011000 CAN
                              0101000 (
                                            0111000 8
                                                         1001000 H
                                                                      1011000 X
                                                                                   1101000 h
                                                                                                 1111000 x
0001001 HT
               0011001 EM
                              0101001 )
                                            0111001 9
                                                         1001001 I
                                                                      1011001 Y
                                                                                   1101001 i
                                                                                                 1111001 y
0001010 LF
               0011010 SUB
                              0101010 *
                                            0111010 :
                                                         1001010 J
                                                                      1011010 Z
                                                                                   1101010 j
                                                                                                 1111010 z
0001011 VT
               0011011 ESC
                              0101011 +
                                            0111011 ;
                                                         1001011 K
                                                                      1011011 [
                                                                                   1101011 k
                                                                                                 1111011 {
0001100 FF
               0011100 FS
                              0101100 .
                                            0111100 <
                                                         1001100 L
                                                                      1011100 \
                                                                                   1101100 l
                                                                                                 1111100
0001101 CR
               0011101 GS
                              0101101 -
                                            0111101 =
                                                         1001101 M
                                                                      1011101 ]
                                                                                   1101101 m
                                                                                                 1111101 }
0001110 SO
               0011110 RS
                              0101110 .
                                            0111110 >
                                                         1001110 N
                                                                      1011110 ^
                                                                                   1101110 n
                                                                                                 1111110 ~
0001111 SI
               0011111 US
                              0101111 /
                                            0111111 ?
                                                         1001111 0
                                                                      1011111
                                                                                   1101111 o
                                                                                                 1111111 DEL
```

- ▶ 7 bit per character
- ▶ just enough for English letters and a few symbols (plus control characters)

Fixed-length codes – Discussion

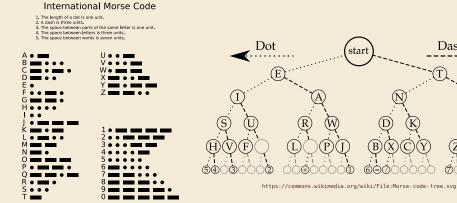
Encoding & Decoding as fast as it gets

Unless all characters equally likely, it wastes a lot of space

inflexible (how to support adding a new character?)

Variable-length codes

- ▶ to gain more flexibility, have to allow different lengths for codewords
- actually an old idea: Morse Code



https://commons.wikimedia.org/wiki/File: International Morse Code.svg

Dash

Clicker Question

How many characters are there in the alphabet of the coded text in Morse Code, i. e., what is (Σ_C) ?

26

256

→ sli.do/cs566

Clicker Question

How many characters are there in the alphabet of the coded text in Morse Code, i. e., what is $|\Sigma_C|$?

A	1		
<u>A</u>) ±		

F 3

G 256

 $\overline{\mathrm{D}}$ 4

→ sli.do/cs566

Variable-length codes – UTF-8

► Modern example: UTF-8 encoding of Unicode:

default encoding for text-files, XML, HTML since 2009

- ► Encodes any Unicode character (154 998 as of Nov 2024, and counting)
- \blacktriangleright uses 1 4 bytes (codeword lengths: 8, 16, 24, or 32 bits)
- Every ASCII character is encoded in 1 byte with leading bit 0, followed by the 7 bits for ASCII
- ▶ Non-ASCII characters start with 1−4 1s indicating the total number of bytes, followed by a 0 and 3–5 bits.

The remaining bytes each start with 10 followed by 6 bits.

Char. number range	UTF-8 octet sequence		
(hexadecimal)	(binary)		
0000 0000 - 0000 007F	0xxxxxx		
0000 0080 - 0000 07FF	110xxxxx 10xxxxxx		
0000 0800 - 0000 FFFF	1110xxxx 10xxxxxx 10xxxxxx		
0001 0000 - 0010 FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx		

For English text, most characters use only 8 bit, but we can include any Unicode character, as well.

Pitfall in variable-length codes

- ► Happily encode text S = banana with the coded text $C = \underbrace{110}_{\text{b a n a n a n a}} \underbrace{010}_{\text{b a n a n a}} \underbrace{010}_{\text{b a n a n a}}$

Pitfall in variable-length codes

7
$$C = 1100100100 \text{ decodes both to banana and to bass: $\frac{1100100}{b} \frac{100}{s} \frac{100}{s}$$$

→ not a valid code . . . (cannot tolerate ambiguity)
but how should we have known?

Pitfall in variable-length codes

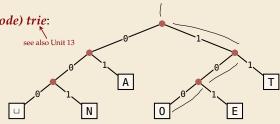
- Suppose we have the following code: $\begin{array}{c|ccccc} c & a & n & b & s \\ \hline E(c) & 0 & 10 & 110 & 100 \\ \end{array}$
- ► Happily encode text $S = \text{banana with the coded text } C = \underbrace{110}_{\text{b a n a n a n a}} \underbrace{0100}_{\text{b a n a n a n}} \underbrace{0100}_{\text{b a n a n a n}}$
- **7** $C = 1100100100 \text{ decodes both to banana and to bass: <math>\frac{1100100}{b} \frac{100}{s} \frac{100}{s}$
- → not a valid code . . . (cannot tolerate ambiguity)
 but how should we have known?
- E(n) = 10 is a (proper) **prefix** of E(s) = 100
 - Leaves decoder wondering whether to stop after reading 10 or continue!
 - ✓ Usually require a *prefix-free* code: No codeword is a prefix of another.
 prefix-free ⇒ instantaneously decodable ⇒ uniquely decodable

Code tries

- ► From now on only consider prefix-free codes E: E(c) is not a proper prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a (code) trie:

- ▶ binary tree
- one **leaf** for each characters of Σ_S
- ▶ path from root to leave = codeword left child = 0; right child = 1



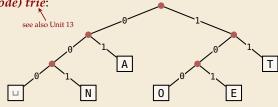
- ► Example for using the code trie:
 - ► Encode AN_ANT
 - ► Decode 11 100 00010101111

Code tries

- ► From now on only consider prefix-free codes E: E(c) is not a proper prefix of E(c') for any $c, c' \in \Sigma_S$.

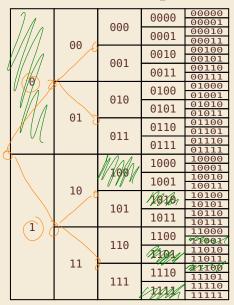
Any prefix-free code corresponds to a *(code) trie*:

- ▶ binary tree
- one **leaf** for each characters of Σ_S
- ▶ path from root to leave = codeword left child = 0; right child = 1



- ► Example for using the code trie:
 - ► Encode $AN_{\square}ANT \rightarrow 010010000100111$
 - ► Decode 111000001010111 → T0_EAT

The Codeword Supermarket



total symbol codeword budget

The Codeword Supermarket

0	00	000	0000	00000
			0001	00010
		001	0010	00100
			0011	00101 00110 00111
	01	010	0100	01000
			0101	01001 01010
		011	0110	01011 01100
			0111	01101 01110
	10	100	1000	01111 10000
			1000	10001 10010
		101		10011
			1010	10101 10110
1			1011	10111
	11	110	1100	11001 11010
			1101	11011
		111	1110	11100
			1111	11110 11111

total symbol codeword budget

- ➤ Can "spend" at most budget of 1 across all codewords
 - ▶ Codeword with ℓ bits costs $2^{-\ell}$
- ► Kraft-McMillan inequality: any uniquely decodable code with codeword lengths $\ell_1, \dots, \ell_{\sigma}$ satisfies

$$\sum_{i=1}^{\sigma} 2^{-\ell_i} \le 1$$
 and for any such lengths there is a prefix-free code

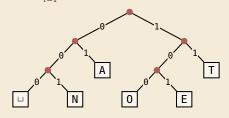
The Codeword Supermarket

	00	000	0000	00000
			0001	00001
				00010
			0010	00100
		001		00101
			0011	00110
				00111
0			0100	01000
	0.5	010		01001
		010	0101	01010
				01011
	01		0110	01100
		011		01101
		011	0111	01110
				01111
	10	100	1000	10000
				10001
			1001	10010
				10011
		101	1010	10100
				10101
			1011	10110
1				10111
1	11	110	1100	11000
				11001
			1101	11010
				11011
		111	1110	11100
				11101
			1111	11110
				11111

total symbol codeword budget

- ► Can "spend" at most budget of 1 across all codewords
 - ► Codeword with ℓ bits costs $2^{-\ell}$
- ► Kraft-McMillan inequality: any uniquely decodable code with codeword lengths $\ell_1, \ldots, \ell_{\sigma}$ satisfies

$$\sum_{i=1}^{\sigma} 2^{-\ell_i} \leq 1 \qquad \text{and for any such lengths} \\ \text{there is a prefix-free code}$$



Who decodes the decoder?

- ▶ Depending on the application, we have to **store/transmit** the **used code!**
- ▶ We distinguish:
 - ▶ fixed coding: code agreed upon in advance, not transmitted (e. g., Morse, UTF-8)
 - ► static coding: code depends on message, but stays same for entire message; it must be transmitted (e. g., Huffman codes → next)
 - adaptive coding: code depends on message and changes during encoding; implicitly stored withing the message (e. g., LZW → below)

7.3 Huffman Codes

Character frequencies

- ▶ Goal: Find character encoding that produces short coded text
- ► Convention here: fix $\Sigma_C = \{0, 1\}$ (binary codes), abbreviate $\Sigma = \Sigma_S$,
- ▶ **Observation:** Some letters occur more often than others.

Typical English prose:

→ Want shorter codes for more frequent characters!

Huffman coding

e.g. frequencies / probabilities

- ▶ **Given:** Σ and weights $w: \Sigma \to \mathbb{R}_{\geq 0}$
- ▶ **Goal:** prefix-free code E (= code trie) for Σ that minimizes coded text length

i. e., a code trie minimizing
$$\sum_{c \in \Sigma} w(c) \cdot |E(c)|$$

Huffman coding

- ▶ **Given:** Σ and weights $w : \Sigma \to \mathbb{R}_{\geq 0}$
- ▶ Goal: prefix-free code E (= code trie) for Σ that minimizes coded text length

i. e., a code trie minimizing
$$\sum_{c \in \Sigma} w(c) \cdot |E(c)|$$

- ▶ Let's abbreviate $|S|_c$ = #occurrences of c in S
- If we use $w(c) = |S|_c$, this is the character encoding with smallest possible |C|
 - → best possible character-wise encoding

▶ Quite ambitious! *Is this efficiently possible?*

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- 1. Find two characters a, b with lowest weights.
 - ▶ We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (u to be determined)
- **2.** (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- **3.** Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines u = E(ab).

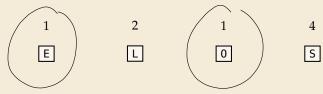
Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

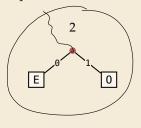
Huffman's algorithm:

- **1.** Find two characters a, b with lowest weights.
 - ▶ We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (u to be determined)
- **2.** (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- **3.** Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines u = E(ab).
- efficient implementation using a (min-oriented) *priority queue*
 - start by inserting all characters with their weight as key
 - step 1 uses two deleteMin calls
 - step 2 inserts a new character with the sum of old weights as key

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ► Character frequencies: E:1, L:2, 0:1, S:4

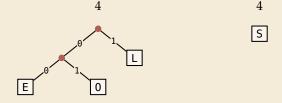


- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

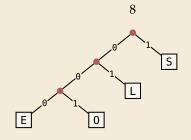


4

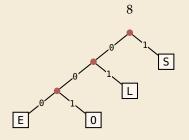
- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4



- ► Example text: S = LOSSLESS \longrightarrow $\Sigma_S = \{E, L, 0, S\}$
- ightharpoonup Character frequencies: E:1, L:2, 0:1, S:4

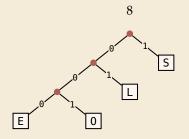


- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ► Character frequencies: E:1, L:2, 0:1, S:4



→ *Huffman tree* (code trie for Huffman code)

- ► Example text: S = LOSSLESS \leadsto $\Sigma_S = \{E, L, 0, S\}$
- ► Character frequencies: E:1, L:2, 0:1, S:4



→ *Huffman tree* (code trie for Huffman code)

LOSSLESS \rightarrow 01001110100011 compression ratio: $\frac{14}{8 \cdot \log 4} = \frac{14}{16} \approx 88\%$

Huffman tree – tie breaking

- ► The above procedure is ambiguous:
 - which characters to choose when weights are equal?
 - ▶ which subtree goes left, which goes right?
- ► For CS 566: always use the following rule:
 - To break ties when selecting the two characters, first use the smallest letter according to the <u>alphabetical order</u>, or the tree containing the smallest alphabetical letter.
 - 2. When combining two trees of different values, place the lower-valued tree on the left (corresponding to a θ-bit).
 - When combining trees of equal value, place the one containing the smallest letter to the left.
 - → practice in tutorials

Encoding with Huffman code

- ► The overall encoding procedure is as follows:
 - ▶ **Pass 1:** Count character frequencies in *S*
 - Construct Huffman code E (as above)
 - ► Store the Huffman code in *C* (details omitted)
 - ▶ **Pass 2:** Encode each character in *S* using *E* and append result to *C*
- ► Decoding works as follows:
 - ▶ Decode the Huffman code *E* from *C*. (details omitted)
 - ▶ Decode *S* character by character from *C* using the code trie.
- ► Note: Decoding is much simpler/faster!

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Proof sketch: by induction over
$$\sigma = |\Sigma|$$

IH: V6'< 5 It Ruan's alsorithum

- \blacktriangleright Given any optimal prefix-free code E^* (as its code trie).
- ▶ code trie \rightarrow ∃ two sibling leaves x, y at largest depth D

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Proof sketch: by induction over $\sigma = |\Sigma|$

- ▶ Given any optimal prefix-free code E^* (as its code trie).
- ▶ code trie \rightarrow ∃ two sibling leaves x, y at largest depth D
- ▶ swap characters in leaves to have two lowest-weight characters a, b in x, y (that can only make ℓ smaller, so still optimal)

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \to \{0,1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Proof sketch: by induction over $\sigma = |\Sigma|$

- ► Given any optimal prefix-free code *E** (as its code trie).
- ▶ code trie \rightarrow ∃ two sibling leaves x, y at largest depth D

- ▶ swap characters in leaves to have two lowest-weight characters a, b in x, y (that can only make ℓ smaller, so still optimal)
- ▶ any optimal code for $\Sigma' = \Sigma \setminus \{a, b\} \cup \{ab\}$ yields optimal code for Σ by replacing leaf ab by internal node with children a and b.
- \leadsto recursive call yields optimal code for Σ' by inductive hypothesis, so Huffman's algorithm finds optimal code for Σ .

7.4 Entropy

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

$$0 \leq \mathcal{H}(p_1, \dots, p_n) \leq l_3 n = \mathcal{H}(\frac{1}{n}, \dots, \frac{r}{n})$$

Definition 7.2 (Entropy)

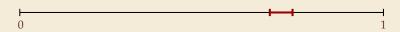
$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0,1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

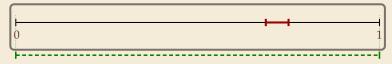
- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0,1)": Land inside my interval by halving.



Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

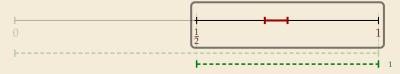
- entropy is a measure of information content of a distribution
 - ▶ "20 *Questions on* [0,1)": Land inside my interval by halving.



Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ightharpoonup "20 *Questions on* [0,1)": Land inside my interval by halving.



Definition 7.2 (Entropy)

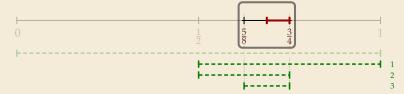
$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ightharpoonup "20 *Questions on* [0,1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a measure of information content of a distribution
 - ightharpoonup "20 *Questions on* [0,1)": Land inside my interval by halving.



Definition 7.2 (Entropy)

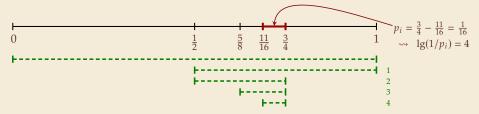
$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0,1)": Land inside my interval by halving.

Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

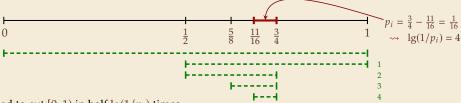
- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0,1)": Land inside my interval by halving.



Definition 7.2 (Entropy)

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

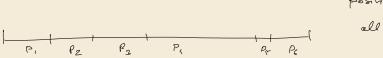
- entropy is a **measure** of **information** content of a distribution
 - ▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.



- \rightarrow Need to cut [0, 1) in half $\lg(1/p_i)$ times
- more precisely: the expected number of bits (Yes/No questions) required to nail down the random value

would ideally encode value i using $\lg(1/p_i)$ bits not always possible; cannot use codeword of 1.5 bits . . .

not as length of single codeword that is; / but can be possible on average!



would ideally encode value i using $\lg(1/p_i)$ bits g not as length of single codeword that is; but can be possible on average! not always possible; cannot use codeword of 1.5 bits . . . but:

Theorem 7.3 (Entropy bounds for Huffman codes)

For any probabilities
$$p_1, \ldots, p_\sigma$$
 for $\Sigma = \{a_1, \ldots, a_\sigma\}$, the Huffman code E for Σ with weights $p(a_i) = p_i$ satisfies $\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1$ where $\mathcal{H} = \mathcal{H}(p_1, \ldots, p_\sigma)$.

would ideally encode value i using $\lg(1/p_i)$ bits g not as length of single codeword that is; but can be possible on average! not always possible; cannot use codeword of 1.5 bits . . . but:

Theorem 7.3 (Entropy bounds for Huffman codes)

For any probabilities
$$p_1, \ldots, p_{\sigma}$$
 for $\Sigma = \{a_1, \ldots, a_{\sigma}\}$, the Huffman code E for Σ with weights $p(a_i) = p_i$ satisfies $\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1$ where $\mathcal{H} = \mathcal{H}(p_1, \ldots, p_{\sigma})$.

Proof sketch:

▶ $\ell(E) \ge \mathcal{H}$ Any prefix-free code E induces weights $q_i = 2^{-|E(a_i)|}$. By Kraft's Inequality, we have $q_1 + \cdots + q_\sigma \le 1$.

in general
$$P_i \neq P_i$$

$$\nabla = 2 \qquad P_i = \varepsilon$$

$$P_2 = 1 - \varepsilon$$

$$q_1 = q_2 = \frac{1}{2}$$

- would ideally encode value i using $\lg(1/p_i)$ bits not always possible; cannot use codeword of 1.5 bits ... but:
- not as length of single codeword that is; /but can be possible on average!

Theorem 7.3 (Entropy bounds for Huffman codes)

For any probabilities p_1, \ldots, p_σ for $\Sigma = \{a_1, \ldots, a_\sigma\}$, the Huffman code E for Σ with weights

$$p(a_i) = p_i \text{ satisfies } \mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1 \text{ where } \mathcal{H} = \mathcal{H}(p_1, \dots, p_\sigma).$$

where
$$\mathcal{H} = \mathcal{H}(p_1, \dots, p_{\sigma})$$

Proof sketch:

 \blacktriangleright $\ell(E) \geq \mathcal{H}$

Any prefix-free code *E* induces weights $q_i = 2^{-|E(a_i)|}$. By *Kraft's Inequality*, we have $q_1 + \cdots + q_{\sigma} \leq 1$. Hence we can apply Gibb's Inequality to get

$$\mathcal{H} = \underbrace{\sum_{i=1}^{\sigma} p_i \lg \left(\frac{1}{p_i}\right)}_{\text{for } = 1, \quad \text{for } q_i \leq 1$$

$$0 \ge \sum_{i} P_{i} P_{i} \left(\frac{1}{p_{i}}\right) - \sum_{i} P_{i} P_{i} \left(\frac{1}{q_{i}}\right)$$

$$= \sum_{i} P_{i} P_{i} \left(\frac{q_{i}}{p_{i}}\right)$$

$$\leq \sum_{i} P_{i} \left(\frac{q_{i}}{p_{i}}\right)$$

$$= \sum_{i} q_{i} - \sum_{i} P_{i} \leq 0$$

Proof sketch (continued):

$$\underbrace{\ell(E)}_{} \leq \mathfrak{H} + 1$$
 Set $q_i = 2^{-\lceil \lg(1/p_i) \rceil}$. We have $\sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) = \sum_{i=1}^{\sigma} p_i \lceil \lg(1/p_i) \rceil \leq \mathfrak{H} + 1$.

Proof sketch (continued):

 $\ell(E) \leq \mathcal{H} + 1$

Set
$$q_i = 2^{-\lceil \lg(1/p_i) \rceil}$$
. We have $\sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) = \sum_{i=1}^{\sigma} p_i \lceil \lg(1/p_i) \rceil \leq \mathcal{H} + 1$.

We construct a code E' for Σ with $|\underline{E'(a_i)}| \le \lg(1/q_i)$ as follows; w.l.o.g. assume $q_1 \le q_2 \le \cdots \le q_\sigma$

► If $\sigma = 2$, E' uses a single bit each. Here, $q_i \le 1/2$, so $\lg(1/q_i) \ge 1 = |E'(a_i)|$ \checkmark

Proof sketch (continued):

 $ightharpoonup \ell(E) \leq \mathcal{H} + 1$

Set
$$q_i = 2^{-\lceil \lg(1/p_i) \rceil}$$
. We have $\sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) = \sum_{i=1}^{\sigma} p_i \lceil \lg(1/p_i) \rceil \le \mathcal{H} + 1$.

We construct a code E' for Σ with $|E'(a_i)| \le \lg(1/q_i)$ as follows; w.l.o.g. assume $q_1 \le q_2 \le \cdots \le q_\sigma$

- ► If $\sigma = 2$, E' uses a single bit each. Here, $q_i \le 1/2$, so $\lg(1/q_i) \ge 1 = |E'(a_i)| \checkmark$
- ▶ If $\sigma \ge 3$, we merge a_1 and a_2 to $\boxed{a_1a_2}$, assign it weight $2\underline{q_2}$ and recurse. If $q_1 = q_2$, this is like Huffman; otherwise, $\underline{q_1}$ is a unique smallest value and $q_2 + q_2 + \cdots + q_{\sigma} \le 1$.

Proof sketch (continued):

 \blacktriangleright $\ell(E) \leq \mathcal{H} + 1$

Set
$$q_i = 2^{-\lceil \lg(1/p_i) \rceil}$$
. We have $\sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) = \sum_{i=1}^{\sigma} p_i \lceil \lg(1/p_i) \rceil \le \mathcal{H} + 1$.

We construct a code E' for Σ with $|E'(a_i)| \le \lg(1/q_i)$ as follows; w.l.o.g. assume $q_1 \le q_2 \le \cdots \le q_\sigma$

- ► If $\sigma = 2$, E' uses a single bit each. Here, $q_i \le 1/2$, so $\lg(1/q_i) \ge 1 = |E'(a_i)| \checkmark$
- ▶ If $\sigma \ge 3$, we merge a_1 and a_2 to $\boxed{a_1a_2}$, assign it weight $2q_2$ and recurse. If $q_1 = q_2$, this is like Huffman; otherwise, q_1 is a unique smallest value and $q_2 + q_2 + \cdots + q_{\sigma} \le 1$.

By the inductive hypothesis, we have $\left|E'(\underline{a_1a_2})\right| \leq \lg\left(\frac{1}{2q_2}\right) = \lg\left(\frac{1}{q_2}\right) - 1$.

Entropy and Huffman codes [2]

Proof sketch (continued):

 $\begin{array}{l} \blacktriangleright \ \ell(E) \leq \mathfrak{H} + 1 \\ \mathrm{Set} \ \overline{q_i} = 2^{-\lceil \lg(1/p_i) \rceil}. \ \mathrm{We \ have} \ \sum_{i=1}^{\sigma} p_i \lg \left(\frac{1}{q_i}\right) \ = \ \sum_{i=1}^{\sigma} p_i \lceil \lg(1/p_i) \rceil \ \leq \ \mathfrak{H} + 1. \end{array}$

We construct a code E' for Σ with $|E'(a_i)| \le \lg(1/q_i)$ as follows; w.l.o.g. assume $q_1 \le q_2 \le \cdots \le q_\sigma$

- ► If $\sigma = 2$, E' uses a single bit each. Here, $q_i \le 1/2$, so $\lg(1/q_i) \ge 1 = |E'(a_i)| \checkmark$
- ▶ If $\sigma \ge 3$, we merge a_1 and a_2 to $\boxed{a_1a_2}$, assign it weight $2q_2$ and recurse. If $q_1 = q_2$, this is like Huffman; otherwise, q_1 is a unique smallest value and $q_2 + q_2 + \cdots + q_{\sigma} \le 1$.

By the inductive hypothesis, we have $\left|E'(\overline{a_1a_2})\right| \leq \lg\left(\frac{1}{2q_2}\right) = \lg\left(\frac{1}{q_2}\right) - 1$. By construction, $\left|E'(a_1)\right| = \left|E'(a_2)\right| = \left|E'(\overline{a_1a_2})\right| + 1$, so $\left|E'(a_1)\right| \leq \lg\left(\frac{1}{q_1}\right)$ and $\left|E'(a_2)\right| \leq \lg\left(\frac{1}{q_2}\right)$.

By optimality of E, we have $\ell(E) \leq \ell(E') \leq \sum_{i=1}^{\sigma} p_i \lg \left(\frac{1}{q_i}\right) \leq \mathcal{H} + 1$.

Clicker Question

When does Huffman coding yield more efficient compression than a fixed-length character encoding?

- (A) always
- B) when $\mathcal{H} \approx \lg(\sigma)$
- C when $\mathcal{H} < \lg(\sigma)$
- D when $\mathcal{H} < \lg(\sigma) 1$
- E when $\mathcal{H} \approx 1$

→ sli.do/cs566

Clicker Question

When does Huffman coding yield more efficient compression than a fixed-length character encoding?

- A always
- B) when $\mathcal{H} \approx \lg(\sigma)$
- C when $\mathcal{H} < \lg(\sigma)$
- E when J(~ 1

→ sli.do/cs566

Empirical Entropy

▶ Theorem 7.3 works for any character *probabilities* $p_1, ..., p_\sigma$

... but we only have a string S! (nothing random about it!)

Empirical Entropy

▶ Theorem 7.3 works for any character *probabilities* p_1, \ldots, p_{σ} ... but we only have a string S! (nothing random about it!)

use relative frequencies:
$$p_i = \frac{|S|_{a_i}}{|S|} = \frac{\text{\#occurences of } a_i \text{ in string } S}{\text{length of } S}$$

► Recall: For S[0..n) over $\Sigma = \{a_1, \ldots, a_{\sigma}\}$, length of Huffman-coded text is

$$|C| = \sum_{i=1}^{\sigma} |S|_{a_i} \cdot |E(a_i)| = n \sum_{i=1}^{\sigma} \frac{|S|_{a_i}}{n} \cdot |E(a_i)| = \underline{n\ell(E)}$$

→ Theorem 7.3 tells us rather precisely how well Huffman compresses: $\mathcal{H}_0(S) \cdot n \leq |C| \leq (\mathcal{H}_0(S) + 1)n$

$$\blacktriangleright \mathcal{H}_0(S) = \mathcal{H}\left(\frac{|S|_{a_1}}{n}, \dots, \frac{|S|_{a_\sigma}}{n}\right) = \sum_{i=1}^{\sigma} \frac{n}{|S|_{a_i}} \log_2\left(\frac{|S|_{a_i}}{n}\right) \text{ is called the } \underbrace{empirical \text{ entropy of } S}_{\text{zero-th order empirical entropy}} \text{ of } S$$

26

Huffman coding – Discussion

- ▶ running time complexity: $O(\sigma \log \sigma)$ to construct code
 - ▶ build PQ + σ · (2 deleteMins and 1 insert)
 - can do $\Theta(\sigma)$ time when characters already sorted by weight
 - time for encoding text (after Huffman code done): O(n + |C|)
- ▶ many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)

Huffman coding – Discussion

- ▶ running time complexity: $O(\sigma \log \sigma)$ to construct code
 - ▶ build PQ + σ · (2 deleteMins and 1 insert)
 - can do $\Theta(\sigma)$ time when characters already sorted by weight
 - time for encoding text (after Huffman code done): O(n + |C|)
- ▶ many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)
- optimal prefix-free character encoding
- very fast decoding
- needs 2 passes over source text for encoding
 - one-pass variants possible, but more complicated
- $\hfill \Box$ have to store code alongside with coded text

Part II

Compressing repetitive texts

Beyond Character Encoding

► Many "natural" texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- ► character-by-character encoding will **not** capture such repetitions
 - → Huffman won't compression this very much

Beyond Character Encoding

► Many "natural" texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- ► character-by-character encoding will **not** capture such repetitions
 - → Huffman won't compression this very much
- \rightarrow Have to encode whole *phrases* of *S* by a single codeword

7.5 Run-Length Encoding

▶ simplest form of repetition: *runs* of characters

- same character repeated
- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

▶ simplest form of repetition: *runs* of characters

00010110010000000001111100000000011111000 00110000000001110000000000111000000000 00110000000001110000000000111000000000 00000000011100111000000111001110000001110 00000000011100111000000110001110000001100 0000000000110001100000011100011000001110 0000000001100111000000110001110000001100 0000000011100011000000111000110000001110 0000000011000011100001110000111000011100

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

run-length encoding (RLE):

use runs as phrases: S = 00000 111 0000

▶ simplest form of repetition: *runs* of characters

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

→ run-length encoding (RLE):

use runs as phrases: S = 00000 111 0000

- → We have to store
 - ▶ the first bit of *S* (either 0 or 1)
 - ▶ the length of each subsequent run
 - ▶ Note: don't have to store bit for later runs since they must alternate.
- ► Example becomes: 0,5,3,4

▶ simplest form of repetition: *runs* of characters

00010110010000000001111100000000011111000 00110000000001110000000000111000000000 00110000000001110000000000111000000000 00000000011100111000000111001110000001110 00000000011100111000000110001110000001100 00000000001100011000000111000110000001110 00000000001100111000000110001110000001100 0000000011100011000000111000110000001110 0000000011000011100001110000111000011100

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

run-length encoding (RLE):

use runs as phrases: S = 00000 111 0000

- → We have to store
 - ▶ the first bit of S (either 0 or 1)
 - the length of each subsequent run
 - Note: don't have to store bit for later runs since they must alternate.
- Example becomes: 0,5,3,4
- ▶ **Question**:(How to encode a run length *k* in binary?

(*k* can be arbitrarily large!)

Clicker Question

How would you encode a string that can we arbitrarily long?

→ sli.do/cs566

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - ► must allow arbitrarily large integers
 - must know when to stop reading

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

30

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
 - ▶ (wasn't the whole point of RLE to get rid of long runs??)

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
 - (wasn't the whole point of RLE to get rid of long runs??)
- ► Refinement: *Elias gamma code*
 - Store the **length** ℓ of the binary representation in **unary**
 - Followed by the binary digits themselves

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- ► But that's simple! Just use *unary* encoding!

- Much too long
 - (wasn't the whole point of RLE to get rid of long runs??)
- ► Refinement: *Elias gamma code*
 - \blacktriangleright Store the **length** ℓ of the binary representation in **unary**
 - Followed by the binary digits themselves
 - ▶ little tricks:
 - ▶ always have $\ell \ge 1$, so store $\ell 1$ instead
 - ▶ binary representation always starts with 1 → don't need terminating 1 in unary
 - \rightarrow Elias gamma code = $\ell 1$ zeros, followed by binary representation

Examples:
$$1 \mapsto 1$$
, $3 \mapsto 011$, $5 \mapsto 00101$, $30 \mapsto 000011110$

Clicker Question

Decode the **first** number in Elias gamma code (at the beginning) of the following bitstream:

<u>0001101</u>11011100110.

→ sli.do/cs566

► Encoding:

$$C = 1$$

$$C = 00001101001001010$$

$$S =$$

► Encoding:

► Decoding:

C = 00001101001001010

► Encoding:

► Decoding:

C = 00001101001001010

► Encoding:

► Decoding:

C = 00001101001001010

► Encoding:

► Decoding:

$$C = 00001101001001010$$

► Encoding:

► Decoding:

C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

$$C = 20001101001001010$$

$$b = 0$$

$$S =$$

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

```
C = 00001101001001010
```

$$b = 0$$

$$\ell = 3 + 1$$

$$S =$$

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

$$C = 00001101001001010$$

b = 0

 $\ell = 3 + 1$

k = 13

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Encoding:

```
C = 10011101010000101000001011
```

Compression ratio: $26/41 \approx 63\%$

```
C = 00001101001001010

b = 1

\ell = 2 + 1

k = 4

S = 000000000000001111
```

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

```
C = 00001101001001010

b = 0

\ell = 0 + 1

k = 0000000000000001111
```

Run-length encoding – Examples

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding:

```
C = 0000110100100101

b = 0

\ell = 0 + 1

k = 1

S = 00000000000011110
```

Run-length encoding – Examples

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

```
C = 00001101001001010

b = 1

\ell = 1 + 1

k = 1

k = 1
```

Run-length encoding – Examples

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

▶ Decoding:

```
C = 00001101001001010

b = 1

\ell = 1 + 1

k = 2

S = 0000000000001111011
```

Run-length encoding – Discussion

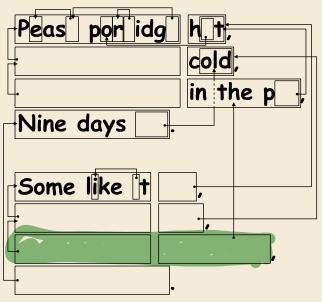
- extensions to larger alphabets possible (must store next character then)
- ▶ used in some image formats (e.g. TIFF)

Run-length encoding – Discussion

- extensions to larger alphabets possible (must store next character then)
- ▶ used in some image formats (e.g. TIFF)
- fairly simple and fast
- can compress n bits to $\Theta(\log n)$! for extreme case of constant number of runs
- negligible compression for many common types of data
 - ▶ No compression until run lengths $k \ge 6$
 - **expansion** for run length k = 2 or 6

7.6 Lempel-Ziv-Welch

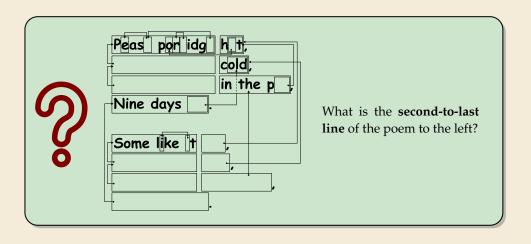
Warmup



https://www.flickr.com/photos/quintanaroo/2742726346

https://classic.csunplugged.org/text-compression/

Clicker Question



Lempel-Ziv Compression

- ► Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - ▶ in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"

Lempel-Ziv Compression

- ► Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - ▶ in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
"
- ▶ **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ▶ **Idea:** store repeated parts by reference!
 - → each codeword refers to
 - \triangleright either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have seen before).

Lempel-Ziv Compression

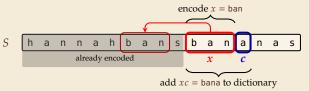
- ► Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- ▶ **Observation**: Certain *substrings* are much more frequent than others.
 - ▶ in English text: the, be, to, of, and, a, in, that, have, I
 - ▶ in HTML: "<a href", "<img src", "
>"
- ▶ **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ▶ **Idea:** store repeated parts by reference!
 - → each codeword refers to
 - \triangleright either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have seen before).
 - ► Variants of Lempel-Ziv compression
 - "LZ77" Original version (sliding window, overlapping phrases) Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, ... DEFLATE used in (pk)zip, gzip, PNG
 - "LZ78" Second version (whole-phrase references)
 Derivatives: LZW, LZMW, LZAP, LZY, . . .
 LZW used in compress, GIF

Lempel-Ziv-Welch

- ► here: Lempel-Ziv-Welch (LZW) (arguably the "cleanest" variant of Lempel-Ziv)
- variable-to-fixed encoding
 - ▶ all codewords have k bits (typical: k = 12) \rightsquigarrow fixed-length
 - but they represent a variable portion of the source text!

Lempel-Ziv-Welch

- ▶ here: Lempel-Ziv-Welch (LZW) (arguably the "cleanest" variant of Lempel-Ziv)
- variable-to-fixed encoding
 - ▶ all codewords have k bits (typical: k = 12) \rightsquigarrow fixed-length
 - but they represent a variable portion of the source text!
- ▶ maintain a **dictionary** D with 2^k entries \longrightarrow codewords = indices in dictionary
 - ▶ initially, first $|\Sigma_S|$ entries encode single characters (rest is empty)
 - ▶ add a new entry to *D* after each step:
 - ► **Encoding:** after encoding a substring *x* of *S*, add *xc* to *D* where *c* is the character that follows *x* in *S*.



- \rightsquigarrow new codeword in D
- \triangleright D actually stores codewords for x and c, not the expanded string

Input: Y0! Y0U! Y0UR Y0Y0!

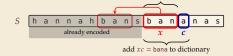
 Σ_S = ASCII character set (0–127)

C =

D =

Code	String		
32	П		
33	!		
79	0		
82	R		
85	U		
89	Υ		

Code	String
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	



Input: Y0! Y0U! Y0UR Y0Y0!

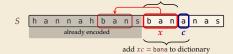
 Σ_S = ASCII character set (0–127)

C = 89

D =

Code	String	
32	П	
33	!	
79	0	
82	R	
85	U	
89	Υ	

Code	String
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	



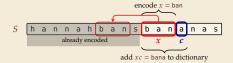
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

C = 89

Code	String		
32	П		
33	!		
79	0		
82	R		
85	U		
89	Υ		

Code	String
128	Y0
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	



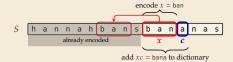
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y = 0C = 89 = 79

Code	String		
32			
33	!		
79	0		
82	R		
85	U		
89	Y		

Code	String
128	Y0
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	



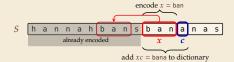
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

	Υ	C
C =	89	7

Code	String		
32	П		
33	ļ.		
79	0		
82	R		
85	U		
89	Y		

Code	String
128	Y0
129	0!
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	



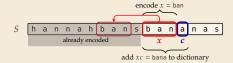
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

 $C = 89 \quad 79 \quad 33$

Code	String	
32	П	
33	!	
79	0	
82	R	
85	U	
89	Y	

Code	String
128	Y0
129	0!
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	



Input: YO! YOU! YOUR YOYO!

hannah ban s ba already encoded

 Σ_S = ASCII character set (0–127)

	Υ	0	!
C =	89	79	33

encode x = ban

add xc = bana to dictionary

	L
	I
=	ĺ
	l
	ļ
	l

Code	String		
32	Ш		
33	!		
79	0		
82	R		
85	U		
89	Υ		

Code	String
128	Y0
129	0!
130	!"
131	
132	
133	
134	
135	
136	
137	
138	
139	

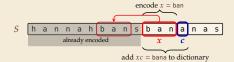
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш
C = 89	79	33	32

Code	String		
32			
33	!		
79	0		
82	R		
85	U		
89	Y		

Code	String
128	Y0
129	0!
130	!
131	
132	
133	
134	
135	
136	
137	
138	
139	



Input: Y0! Y0U! Y0UR Y0Y0!

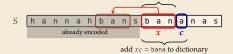
 Σ_S = ASCII character set (0–127)

Υ	0	!	ш
C = 89	79	33	32

D =

Code	String			
32	П			
33	!			
79	0			
82	R			
85	U			
89	Y			

Code	String
128	YO
	-
129	0!
130	!
131	Y
132	
133	
134	
135	
136	
137	
138	
139	



Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	Į.	ш	Y0
C = 89	79	33	32	128

D =

Code	String							
32	П							
33	!							
79	0							
82	R							
85	U							
89	Y							

	1
Code	String
128	Y0
129	0!
130	!
131	LΥ
132	
133	
134	
135	
136	
137	
138	
139	

								6			=	$\hat{\mathbb{L}}$		_			
S	h	а	n	n	а	h	b	а	n	S	b	а	n	a	n	а	S
	already encoded								x		c						
									ade	d xc	_ : = 1	bana	a to	dict	, tion	arv	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	ļ.	ш	Y0
C = 89	79	33	32	128

D =

Code	String								
32	П								
33	ļ.								
79	0								
82	R								
85	U								
89	Y								

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	
134	
135	
136	
137	
138	
139	

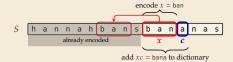
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U
C = 89	79	33	32	128	85

Code String 32 □ 33 ! 79 0 82 R 85 U 89 Y									
33 !	Code	String							
33 !									
79 0 82 R 85 U		П							
82 R 85 U	33	!							
82 R 85 U									
85 U	79	0							
85 U									
	82	R							
89 Y	85	U							
89 Y									
	89	Υ							

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	
134	
135	
136	
137	
138	
139	



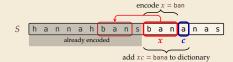
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U
C = 89	79	33	32	128	85

Code	String								
32	П								
33	!								
79	0								
82	R								
85	U								
89	Υ								

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	
135	
136	
137	
138	
139	



Input: Y0! Y0U! Y0UR Y0Y0!

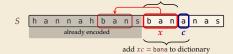
 Σ_S = ASCII character set (0–127)

Υ	0	!	П	Y0	U	!
C = 89	79	33	32	128	85	130

D =

Code	String				
32	П				
33	!				
79	0				
82	R				
85	U				
89	Y				

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	
135	
136	
137	
138	
139	



Input: Y0! Y0U! Y0UR Y0Y0!

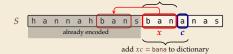
 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	!
C = 89	79	33	32	128	85	130

D =

Code	String				
32	П				
33	!				
79	0				
82	R				
85	U				
89	Υ				

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	! _L Y
135	
136	
137	
138	
139	



Input: Y0! Y0U! Y0UR Y0Y0!

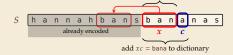
 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	!	YOU
C = 89	79	33	32	128	85	130	132

encode x = ban

String					
П					
!					
0					
R					
U					
Υ					

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	!⊔Y
135	
136	
137	
138	
139	



Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	!	YOU
C = 89	79	33	32	128	85	130	132

encode x = ban

String					
П					
!					
0					
R					
U					
Υ					

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	! _L Y
135	YOUR
136	
137	
138	·
139	

Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	!	YOU	R
C = 89	79	33	32	128	85	130	132	82

D =

Code	String			
32				
33	!			
79	0			
82	R			
85	U			
89	Y			

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	! _L Y
135	Y0UR
136	
137	
138	
139	

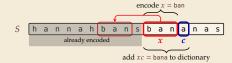
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ	0	!	ш	Y0	U	!	YOU	R
C = 89	79	33	32	128	85	130	132	82

Code	String			
32				
33	!			
79	0			
82	R			
85	U			
89	Y			

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	!⊔Y
135	Y0UR
136	R⊔
137	
138	
139	



Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! L Y0 U ! Y0U R LY C = 89 79 33 32 128 85 130 132 82 131

D =

de St	
	ring
2 (
3	!
9	0
2	R
5	U
9	Υ
3 9 2 5	! 0 R

Code	String
128	Y0
129	0!
130	!
131	Y
132	YOU
133	U!
134	! _L Y
135	Y0UR
136	R⊔
137	
138	
139	

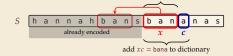
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! \Box Y0 U ! \Box Y0U R \Box Y C = 89 79 33 32 128 85 130 132 82 131

D =

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	!⊔Y
135	Y0UR
136	R⊔
137	۷0 ا
138	
139	



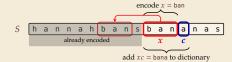
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! \Box Y0 U ! \Box Y0U R \Box Y 0 C = 89 79 33 32 128 85 130 132 82 131 79

Code	String		
32	П		
33	ļ.		
79	0		
82	R		
85	U		
89	Υ		
89	··· Y		

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	! Y
135	Y0UR
136	R⊔
137	۲0 ا
138	
139	



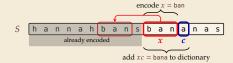
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

Y 0 ! ... Y0 U !... Y0U R ... Y 0 C = 89 79 33 32 128 85 130 132 82 131 79

3	String	Code
	П	32
	!	33
	0	79
	R	82
	U	85
	Υ	89
	! 0 R U	33 . 79 . 82 . 85

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	۷0 ا
138	0Y
139	



Input: Y0! Y0U! Y0UR Y0Y0!

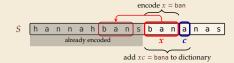
 Σ_S = ASCII character set (0–127)

Y = 0 ! ... Y0 = U !... Y0U = R ... Y = 0 Y0 C = 89 = 79 = 33 = 32 = 128 = 85 = 130 = 132 = 82 = 131 = 79 = 128

D =

String
П
!
• •
0
R
U
Y

Code	String
128	Y0
129	0!
130	!
131	LΥ
132	YOU
133	U!
134	! LY
135	Y0UR
136	R⊔
137	۷0 ا
138	0Y
139	



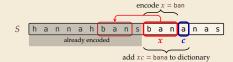
Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

D =

Code	String
32	
33	!
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	υY
132	YOU
133	U!
134	!"A
135	YOUR
136	R⊔
137	۷0 ا
138	0Y
139	Y0!



Input: Y0! Y0U! Y0UR Y0Y0!

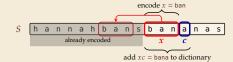
 Σ_S = ASCII character set (0–127)

$$Y = 0$$
 ! ... $Y0 = U$!... $Y0U = R$... $Y = 0$ Y0 ! $C = 89 = 79 = 33 = 32 = 128 = 85 = 130 = 132 = 82 = 131 = 79 = 128 = 33$

D =

Code	String
32	П
33	ļ.
79	0
82	R
85	U
89	Y

Code	String
128	Y0
129	0!
130	!
131	٦Y
132	YOU
133	U!
134	!_Y
135	YOUR
136	R⊔
137	۷0 ا
138	0Y
139	Y0!



LZW encoding – Code

```
procedure LZWencode(S[0..n))
       x := \varepsilon // previous phrase, initially empty
                                                                                              13
      C := \varepsilon // output, initially empty
       D := dictionary, initialized with codes for c \in \Sigma_S // stored as trie (\rightsquigarrow Unit 18)
      k := |\Sigma_S| // next free codeword
      for i := 0, ..., n-1 do
            c := S[i]
            if D.containsKey(xc) then
8
                 x := xc
9
            else
10
                 C := C \cdot D.get(x) // append codeword for x
11
                 D.put(xc, k) // add xc to D, assigning next free codeword
12
                 k := k + 1: x := c
13
       end for
14
       C := C \cdot D.get(x)
15
       return C
16
```

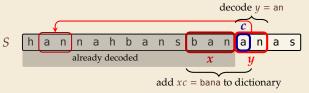
7.7 Lempel-Ziv-Welch Decoding

LZW decoding

▶ Decoder has to replay the process of growing the dictionary!

→ Decoding:

after decoding a substring y of S, add xc to D, where x is previously encoded/decoded substring of S, and c = y[0] (first character of y)



 \rightsquigarrow Note: only start adding to *D* after *second* substring of *S* is decoded

► Same idea: build dictionary while reading string.

	Code #	String
	32	Ш
	65	Α
) =	66	В
	67	С
	78	N
	83	S

input	decodes to	Code #	String (human)	String (computer)

► Same idea: build dictionary while reading string.

	Code #	String
	32	
	65	Α
) =	66	В
	67	С
	78	N
	83	S

input	decodes to	Code #	String (human)	String (computer)
67	С			

► Same idea: build dictionary while reading string.

	Code #	String
	32	Ш
	65	Α
D =	66	В
	67	С
	78	N
	83	S

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	Α	128	CA	67, A

► Same idea: build dictionary while reading string.

	Code #	String		
	32	Ш		
	65	Α		
) =	66	В		
	67	С		
	78	N		
	83	S		

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	Α	128	CA	67, A
78	N	129	AN	65, N

► Same idea: build dictionary while reading string.

	Code #	String		
	32	Ш		
	65	Α		
) =	66	В		
	67	С		
	78	N		
	83	S		

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	Α	128	CA	67, A
78	N	129	AN	65, N
32	ш	130	N	78, ⊔

► Same idea: build dictionary while reading string.

	Code #	String		
	32			
	65	Α		
D =	66	В		
	67	С		
	78	N		
	83	S		

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			
65	Α	128	CA	67, A
78	N	129	AN	65, N
32		130	N	78, ⊔
66	В	131	⊔B	32, B

► Same idea: build dictionary while reading string.

	Code #	String	
	32	٥	
	65	Α	
D =	66	В	
	67	С	
	78	N	
	83	S	

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	Α	128	CA	67, A
78	N	129	AN	65, N
32	п	130	N	78, ⊔
66	В	131	∟B	32, B
129	AN	132	BA	66, A

► Same idea: build dictionary while reading string.

	Code #	String	
	32	Ш	
	65	Α	
D =	66	В	
	67	С	
	78	N	
	83	S	

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			
65	А	128	CA	67, A
78	N	129	AN	65, N
32	п	130	N	78, ⊔
66	В	131	_ь В	32, B
129	AN	132	BA	66, A
133	???	133		

► Same idea: build dictionary while reading string.

► Example: 67 65 78 32 66 129 133

Codo # String

	Code #	String		
	32	Ш		
	65	Α		
D =	66	В		
	67	С		
	78	N		
	83	S		

33					
input	decodes to	Code #	St:		
67	С				
65	Α	128	CA	67, A	
78	N	129	AN	65, N	
32	ш	130	N	78, ⊔	
66	В	131	∟B	32, B	
129	AN	132	BA	66, A	
133	???	133			

LZW decoding – Bootstrapping

▶ example: Want to decode 133, but not yet in dictionary!

decoder is "one step behind" in creating dictionary

LZW decoding – Bootstrapping

▶ example: Want to decode 133, but not yet in dictionary!

decoder is "one step behind" in creating dictionary

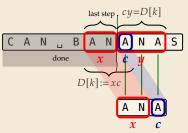
→ problem occurs if *we want to use a code* that we are *just about to build*.

LZW decoding – Bootstrapping

▶ example: Want to decode 133, but not yet in dictionary!

decoder is "one step behind" in creating dictionary

- → problem occurs if we want to use a code that we are just about to build.
- ▶ But then we actually know what is going on!
 - ▶ Situation: decode using *k* in the step that will define *k*.
 - decoder knows last phrase x, needs phrase y = D[k] = xc.



- **1.** en/decode x.
- **2.** store D[k] := xc
- **3.** next phrase y equals D[k]

$$\rightarrow$$
 $D[k] = xc = x \cdot x[0]$ (all known)

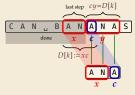
LZW decoding - Code

```
1 procedure LZWdecode(C[0..m))
       D := \text{dictionary } [0..2^d) \to \Sigma_S^+, initialized with codes for c \in \Sigma_S // stored as array
      k := |\Sigma_S| // next unused codeword
      q := C[0] // first codeword
     y := D[q] // lookup meaning of q in D
     S := y // output, initially first phrase
      for j := 1, ..., m-1 do
           x := y // remember last decoded phrase
8
           q := C[i] // next codeword
           if q == k then
10
                y := x \cdot x[0] // bootstrap case
11
           else
12
                y := D[q]
13
           S := S \cdot y // append decoded phrase
14
           D[k] := x \cdot y[0] // store new phrase
15
           k := k + 1
16
       end for
       return S
18
```

LZW decoding – Example continued

	Code # String									
	32	Ш								
D =										
	65	Α								
	66	В								
	67	С								
	78	N								
	83	S								

	decodes	String						
input	to	Code #	(computer)					
67	С							
65	А	128	CA	67, A				
78	N	129	AN	65, N				
32	ш	130	N	78, ⊔				
66	В	131	⊔В	32, B				
129	AN	132	BA	66, A				
133	ANA	133	ANA	129, A				

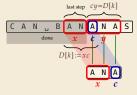


- **1.** en/decode x.
- **2.** store D[k] := xc
- **3.** next phrase y equals D[k]
 - \rightarrow $D[k] = xc = x \cdot x[0]$ (all known)

LZW decoding – Example continued

	Code #	String								
	32	Ш								
	65	Α								
D =	66	В								
	67	С								
	78	N								
	83	S								

input	decodes to	String (human)	String (computer)	
mput	10	Code #	(Italitait)	(computer)
67	С			
65	Α	128	CA	67, A
78	N	129	AN	65, N
32	п	130	N	78, ⊔
66	В	131	⊔В	32, B
129	AN	132	BA	66, A
133	ANA	133	ANA	129, A
83	S	134	ANAS	133, S



- **1.** en/decode x.
- **2.** store D[k] := xc
- **3.** next phrase y equals D[k]

Clicker Question

How many phrases will LZW create on $S = a^n$, a run of n copies of as?

- $(A) \sim n$
- $\stackrel{\frown}{B}$ $\sim n/2$
- $\left(C \right) \sim n/4$
- D $\Theta(n/\log n)$
- \bullet $\Theta(\sqrt{n})$

- \overline{F} $\Theta(\log n)$
- $\Theta(\log\log n)$
- $\left(\mathbf{H}\right) ^{2}$
- $\left(I \right) 1$

→ sli.do/cs566

Clicker Question

<u>a a a a a a a a a a</u>

How many phrases will LZW create on $S = a^n$, a run of n copies of as?

A ---

B = n/2

C - n/4

 $D) \Theta(n/\log n)$

 \bullet $\Theta(\sqrt{n})$

 \overline{F} $\Theta(\log n)$

G O(log log n)

(H) **2**

(I) 1

LZW - Discussion

- ► As presented, LZW uses coded alphabet $\Sigma_C = [0..2^d)$.
 - \rightsquigarrow use another encoding for code numbers \mapsto binary, e.g., Huffman
- ▶ need a rule when dictionary is full; different options:
 - ightharpoonup increment $d \rightsquigarrow$ longer codewords
 - ► "flush" dictionary and start from scratch → limits extra space usage
 - often: reserve a codeword to trigger flush at any time
- encoding and decoding both run in linear time (assuming $|\Sigma_S|$ constant)

LZW - Discussion

- ► As presented, LZW uses coded alphabet $\Sigma_C = [0..2^d)$.
 - \leadsto use another encoding for code numbers \mapsto binary, e.g., Huffman
- ▶ need a rule when dictionary is full; different options:
 - ▶ increment $d \rightsquigarrow$ longer codewords
 - ► "flush" dictionary and start from scratch → limits extra space usage
 - often: reserve a codeword to trigger flush at any time
- encoding and decoding both run in linear time (assuming $|\Sigma_S|$ constant)
- fast encoding & decoding
- works in streaming model (no random access, no backtrack on input needed)
- significant compression for many types of data
- $\hfill \Box$ captures only local repetitions (with bounded dictionary)

Compression summary

Huffman codes	Run-length encoding	Lempel-Ziv-Welch					
fixed-to-variable	variable-to-variable	variable-to-fixed					
2-pass	1-pass	1-pass					
must send dictionary	can be worse than ASCII	can be worse than ASCII					
60% compression on English text	bad on text	45% compression on English text					
optimal binary character encopding	good on long runs (e.g., pictures)	good on English text					
rarely used directly	rarely used directly	frequently used					
part of pkzip, JPEG, MP3	fax machines, old picture-formats	GIF, part of PDF, Unix compress					

Part III

Text Transforms

Text transformations

- ▶ compression is effective if we have one the following:
 - ▶ long runs → RLE
 - ► frequently used characters → Huffman
 - ► many (locally) repeated substrings · LZW

Text transformations

- ► compression is effective if we have one the following:
 - ► long runs → RLE
 - ► frequently used characters → Huffman
 - ► many (locally) repeated substrings ~> LZW
- ▶ but methods can be frustratingly "blind" to other "obvious" redundancies
 - LZW: repetition too distant 7 dictionary already flushed
 - ► Huffman: changing probabilities (local clusters) 🕴 averaged out globally
 - ▶ RLE: run of alternating pairs of characters 🦅 not a run

Text transformations

- compression is effective if we have one the following:
 - ► long runs → RLE
 - ► frequently used characters → Huffman
 - ► many (locally) repeated substrings ~> LZW
- ▶ but methods can be frustratingly "blind" to other "obvious" redundancies
 - LZW: repetition too distant 7 dictionary already flushed
 - ► Huffman: changing probabilities (local clusters) 🧚 averaged out globally
 - ▶ RLE: run of alternating pairs of characters 🦅 not a run
- Enter: text transformations
 - invertible functions of text
 - do not by themselves reduce the space usage
 - but help compressors "see" existing redundancy
 - → use as pre-/postprocessing in a compression pipeline

7.8 Move-to-Front Transformation

Move to Front

- ► *Move to Front (MTF)* is a heuristic for *self-adjusting linked lists*
 - unsorted linked list of objects
 - whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
 - list "learns" probabilities of access to objects makes access to frequently requested objects cheaper

Move to Front

- ▶ *Move to Front (MTF)* is a heuristic for *self-adjusting linked lists*
 - unsorted linked list of objects
 - whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
 - list "learns" probabilities of access to objects makes access to frequently requested objects cheaper
- ▶ Here: use such a list for storing source alphabet Σ_S
 - ightharpoonup to encode c, access it in list
 - encode c using its (old) position in list
 - then apply MTF to the list
 - \rightarrow codewords are integers, i. e., $\Sigma_C = [0..\sigma)$

Move to Front

- ▶ *Move to Front (MTF)* is a heuristic for *self-adjusting linked lists*
 - unsorted linked list of objects
 - whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
 - list "learns" probabilities of access to objects makes access to frequently requested objects cheaper
- ▶ Here: use such a list for storing source alphabet Σ_S
 - ightharpoonup to encode c, access it in list
 - encode c using its (old) position in list
 - then apply MTF to the list
 - \rightarrow codewords are integers, i. e., $\Sigma_C = [0..\sigma)$

MTF – Code

► Transform (encode):

```
1 procedure MTF-encode(S[0..n))
2 L := \text{list containing } \Sigma_S \text{ (sorted order)}
3 C := \varepsilon
4 for i := 0, \dots, n-1 do
5 c := S[i]
6 p := \text{position of } c \text{ in } L
7 C := C \cdot p
8 Move c to front of L
9 end for
10 return C
```

► Inverse transform (decode):

```
1 procedure MTF-decode(C[0..m))
2 L := list containing \Sigma_S (sorted order)
3 S := \varepsilon
4 for j := 0, ..., m-1 do
5 p := C[j]
6 c := character at position p in L
7 S := S \cdot c
8 Move c to front of L
9 end for
10 return S
```

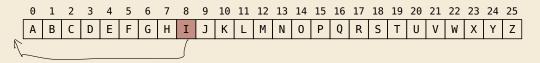
▶ Important: encoding and decoding produce same accesses to list

MTF – Example

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	Α	В	С	D	Е	F	G	Н	Ι	J	Κ	L	М	N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z
1																										

$$S = I N E F F I C I E N C I E S$$

 $C =$



$$S = I$$
 N E F F I C I E N C I E S $C = 8$

$$S = I N E F F I C I E N C I E S$$

 $C = 8 13$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
N	Ι	Α	В	С	D	Е	F	G	Н	J	Κ	L	М	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z

$$S = I N E F F I C I E N C I E S$$

 $C = 8 13 6$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Е	N	Ι	Α	В	С	D	F	G	Н	J	K	L	М	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z

$$S = I N E F F I C I E N C I E S$$

 $C = 8 13 6 7$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
F	Е	N	Ι	Α	В	С	D	G	Н	J	K	L	М	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z

$$S = I$$
 N E F F I C I E N C I E S $C = 8 13 6 7 0$

(9	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	F	Е	N	Ι	Α	В	С	D	G	Н	J	Κ	L	М	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z

$$S = I$$
 N E F F I C I E N C I E S $C = 8 13 6 7 0 3$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Ι	F	Е	Ν	Α	В	C	D	G	Н	J	Κ	L	М	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z

$$S = I N E F F I C I E N C I E S$$

 $C = 8 13 6 7 0 3 6$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
С	Ι	F	Е	N	Α	В	D	G	Н	J	Κ	L	М	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	

$$S = I N E F F I C I E N C I E S$$

 $C = 8 13 6 7 0 3 6 1$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
S	Е	Ι	С	N	F	Α	В	D	G	Н	J	Κ	L	М	0	Р	Q	R	Т	U	٧	W	Х	Υ	Z

$$S = I N E F F I C I E N C I E S$$

 $C = 8 13 6 7 0 3 6 1 3 4 3 3 3 18$

- ▶ What does a run in *S* encode to in *C*?
- ▶ What does a run in *C* mean about the source *S*?

MTF - Discussion

- ► MTF itself does not compress text (if we store codewords with fixed length)
 - → used as part of longer pipeline
- ► Intuitively effect:

 MTF converts locally low empirical entropy to globally low empirical entropy(!)
 - → makes Huffman coding much more effective!
 - ► cheaper option: Elias gamma code
 - → smaller numbers gets shorter codewords

 works well for text with small "local effective" alphabet
- many natural texts do not have locally low empirical entropy
- but we can often make it so . . . stay tuned (\rightarrow BWT)

7.9 Burrows-Wheeler Transform

Burrows-Wheeler Transform

- ▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.
 - coded text has same letters as source, just in a different order
 - ▶ But: coded text is (typically) more compressible (local char frequencies)

Burrows-Wheeler Transform

- ▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.
 - coded text has same letters as source, just in a different order
 - ▶ But: coded text is (typically) more compressible (local char frequencies)
- ► Encoding algorithm needs **all** of *S* (no streaming possible).
 - → BWT is a block compression method.

Burrows-Wheeler Transform

- ▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.
 - coded text has same letters as source, just in a different order
 - ▶ But: coded text is (typically) more compressible (local char frequencies)
- ► Encoding algorithm needs **all** of *S* (no streaming possible).
 - *→* BWT is a block compression method.
- ▶ BWT followed by MTF, RLE, and Huffman is the algorithm used by the <u>bzip2</u> program. achieves best compression on English text of any algorithm we have seen:

```
4047392 bible.txt  # original

1191071 bible.txt.gz  # gzip  (0.2s)

888604 bible.txt.7z  # 7z  (2s)

845635 bible.txt.bz2  # bzip2  (0.3s)

632634 bible.txt.paq8l  # paq8l -8  (6min!)
```

BWT – Definitions

• *cyclic shift* of a string:

$$T = time_{loc}flies_{loc}quickly_{loc}$$

flies_quickly_time_

BWT – Definitions

- *cyclic shift* of a string:
- ► add *end-of-word character* \$ to *S*(always assumed in

this section!)

 $T = time_uflies_uquickly_u$

 $\verb|flies|| quickly|| time||$

BWT – Definitions

- ► *cyclic shift* of a string:
- $T = \mathsf{time}_{\mathsf{u}}\mathsf{flies}_{\mathsf{u}}\mathsf{quickly}_{\mathsf{u}}$

flies..quickly..time..

- ► add *end-of-word character* \$ to *S*(always assumed in this section!)

- ► The Burrows-Wheeler Transform proceeds in three steps:
 - **0.** Append end-of-word character \$ to *S*.
 - **1.** Place *all cyclic shifts* of *S* in a list *L*
 - **2.** Sort the strings in *L* lexicographically
 - **3.** *B* is the *list of trailing characters* (last column, top-down) of each string in *L*

 $S = alf_eats_alfalfa$ \$

1. Take all cyclic shifts of *S*

alf_eats_alfalfa\$ lf, eats, alfalfa\$a f_eats_alfalfa\$al _eats_alfalfa\$alf eats_alfalfa\$alf_ ats_alfalfa\$alf_e ts,alfalfa\$alf_ea s..alfalfa\$alf..eat _alfalfa\$alf_eats alfalfa\$alf_eats_ lfalfa\$alf_eats_a falfa\$alf_eats_al alfa\$alf_eats_alf lfa\$alf_eats_alfa fa\$alf_eats_alfal a\$alf_eats_alfalf \$alf, eats, alfalfa

 $\stackrel{\overset{}{\sim}}{}$ sort

S< CEZ

 $S = alf_eats_alfalfa$ \$

- **1.** Take all cyclic shifts of *S*
- 2. Sort cyclic shifts

alf_eats_alfalfa\$ lf, eats, alfalfa\$a f_eats_alfalfa\$al _eats_alfalfa\$alf eats, alfalfa\$alf, ats..alfalfa\$alf..e ts,,alfalfa\$alf,,ea s..alfalfa\$alf..eat _alfalfa\$alf_eats ālfalfa\$alf, ēats,, lfalfa\$alf,eats,a falfa\$alf,.eats,.al alfa\$alf_eats_alf lfa\$alf,.eats,.alfa fa\$alf_eats_alfal a\$alf_eats_alfalf \$alf..eats..alfalfa

\$alfueatsualfalfa ,alfalfa\$alf,eats _eats_alfalfa\$alf a\$alf_eats_alfalf alf_eats_alfalfa\$ alfa\$alf_eats_alf alfalfa\$alf,,eats,, ats..alfalfa\$alf..e eats, alfalfa\$alf, f_eats_alfalfa\$al fa\$alf_eats_alfal falfa\$ālf_eāts_al lf_eats_alfalfa\$a lfa\$alf_eats_alfa lfalfa\$alf_eats_a s,,alfalfa\$ālf_eāt ts.alfalfa\$alf.ea

 $\stackrel{\longleftrightarrow}{\Longrightarrow}$

BWT

- $S = alf_eats_alfalfa$ \$
 - **1.** Take all cyclic shifts of *S*
 - 2. Sort cyclic shifts
 - 3. Extract last column
- $B = asff f_e lllaaata$

alf.,eats.,alfalfa\$ lf, eats, alfalfa\$a f_eats_alfalfa\$al _eats_alfalfa\$alf eats,,alfalfa\$alf,, ats..alfalfa\$alf..e ts,,alfalfa\$alf,,ea s..alfalfa\$alf..eat ,,alfalfa\$alf,,eats ālfalfa\$alf, ēats,, lfalfa\$alf,eats,a falfa\$alf,.eats,.al alfa\$alf_eats_alf lfa\$alf_eats_alfa fa\$alf_eats_alfal a\$alf..eats..alfalf \$alf..eats..alfalfa

\$alf_eats_alfalfa ,,alfalfa\$alf,,eats "eats alfalfa\$alf a\$alf_eats_alfalf alf_eats_alfalfa\$ alfa\$alf_eats_alf alfalfa\$alf,.eats. ats.alfalfa\$alf.e eats_alfalfa\$alf_ f,,eats,,alfalfa\$at fa\$alf_eats_alfal falfa\$alf,,eats,,al lf_eats_alfalfa\$a lfa\$alf_eats_alfa lfalfa\$alf_eats_a s.,alfalfa\$ālf,,eāt ts.alfalfa\$alf.ea

BWT

- $S = alf_eats_alfalfa$ \$
 - **1.** Take all cyclic shifts of *S*
 - 2. Sort cyclic shifts
 - **3.** Extract last column
- $B = asff f_e lllaaata$

alf, eats, alfalfa\$ lf, eats, alfalfa\$a f_eats_alfalfa\$al _eats_alfalfa\$alf eats, alfalfa\$alf, ats..alfalfa\$alf..e ts,,alfalfa\$alf,,ea s.alfalfa\$alf.eat _alfalfa\$alf_eats alfalfa\$alf_eats_ lfalfa\$alf,.eats..a falfa\$alf,,eats,,al alfa\$alf_eats_alf lfa\$alf,.eats,.alfa fa\$alf_eats_alfal a\$alf..eats..alfalf \$alf..eats..alfalfa

\$alf_eats_alfalfa _alfalfa\$alf_eats _eats_alfalfa\$alf a\$alf_eats_alfalf alf_eats_alfalfa\$ alfa\$alf_eats_alf alfalfa\$alf_eats_ ats.alfalfa\$alf.e eats_alfalfa\$alf_ f,,eats,,alfalfa\$at fa\$alf_eats_alfal falfa\$alf_eats_a<mark>l</mark> lf_eats_alfalfa\$<mark>a</mark> lfa\$alf_eats_alfa lfalfa\$alf_eats_a s,,alfalfa\$alf_eat ts.alfalfa\$alf,ea

 $\sim \rightarrow$

sort

- ▶ BWT can be computed in O(n) time!
 - **b** totally non-obvious from definition (naive sorting could take $\Omega(n^2)$ time in worst case!)
 - ▶ will use one of the most sophisticated algorithms we cover → Unit 13!

BWT – Properties

Why does BWT help for compression?

- sorting groups characters by what follows
 - Example: If always preceded by a
 - more generally: BWT can be partitioned into letters following a given context
- \rightsquigarrow repeated substring in $S \rightsquigarrow runs$ in B
 - ► Example: alf → run of as
 - picked up by RLE

(formally: low higher-order empirical entropy)

- → If S allows predicting symbols from context, B has locally low entropy of characters.
 - that makes MTF effective!

alf, eats, alfalfa\$ lf_eats_alfalfa\$a fueatsualfalfa\$al ..eats..alfalfa\$alf eats, alfalfa\$alf, ats, alfalfa\$alf, e ts.,alfalfa\$alf.,ea s_alfalfa\$alf_eat _alfalfa\$alf_eats alfalfa\$alf,.eats,. lfalfa\$alf,.eats,.a falfa\$alf_eats_al alfa\$alf..eats..alf lfa\$alf_eats_alfa fa\$alf,_eats,_alfal a\$alf, eats, alfalf \$alf, eats, alfalfa

```
\downarrow L[r]
   $alf, eats, alfalfa
   _alfalfa$alf_eats
   _eats_alfalfa$alf
   a$alf,.eats,.alfalf
   alf,eats,alfalfa$
   alfa$alf_eats_alf
   alfalfa$alf..eats...
   ats_alfalfa$alf_e
   eats_alfalfa$alf_
   f.,eats,,alfalfa$al
   fa$alf,eats,alfal
   falfa$alf..eats..al
   If eats alfalfa$a
13 | lfa$alf_eats_alfa
                        13
   lfalfa$alf_eats_a
                        10
   s,,alfalfa$alf,,eat
   ts,,alfalfa$alf,,ea
```

A Bigger Example

have_had_hadnt_hasnt_havent_has_what\$ ave_had_hadnt_hasnt_havent_has_what\$h ve_had_hadnt_hasnt_havent_has_what\$ha e_had_hadnt_hasnt_havent_has_what\$hav _had_hadnt_hasnt_havent_has_what\$have had_hadnt_hasnt_havent_has_what\$have_ ad_hadnt_hasnt_havent_has_what\$have_h d_hadnt_hasnt_havent_has_what\$have_ha _hadnt_hasnt_havent_has_what\$have_had hadnt_hasnt_havent_has_what\$have_had_ adnt_hasnt_havent_has_what\$have_had_h dnt_hasnt_havent_has_what\$have_had_ha nt_hasnt_havent_has_what\$have_had_had t_hasnt_havent_has_what\$have_had_hadn _hasnt_havent_has_what\$have_had_hadnt hasnt_havent_has_what\$have_had_hadnt_ asnt,,havent,,has,,what\$have,,had,,hadnt,,h snt_havent_has_what\$have_had_hadnt_ha nt_havent_has_what\$have_had_hadnt_has t_havent_has_what\$have_had_hadnt_hasn _havent_has_what\$have_had_hadnt_hasnt havent_has_what\$have_had_hadnt_hasnt_ avent_has_what\$have_had_hadnt_hasnt_h vent.,has,what\$have_had_hadnt_hasnt_ha ent_has_what\$have_had_hadnt_hasnt_hav nt_has_what\$have_had_hadnt_hasnt_have t_has_what\$have_had_hadnt_hasnt_haven _has_what\$have_had_hadnt_hasnt_havent has,what\$have,had,hadnt,hasnt,havent, as, what \$have, had, hadnt, hasnt, havent, h s.what\$have.had.hadnt.hasnt.havent.ha _what\$have_had_hadnt_hasnt_havent.has what\$have_had_hadnt_hasnt_havent_has_ hat\$have_had_hadnt_hasnt_havent_has_w at\$have_had_hadnt_hasnt_havent_has_wh t\$have_had_hadnt_hasnt_havent_has_wha \$have, had, hadnt, hasnt, havent, has, what \$have_had_hadnt_hasnt_havent_has_what _had_hadnt_hasnt_havent_has_what\$have _hadnt_hasnt_havent_has_what\$have_had _has_what\$have_had_hadnt_hasnt_havent _hasnt_havent_has_what\$have_had_hadnt _havent_has_what\$have_had_hadnt_hasnt _what\$have_had_hadnt_hasnt_havent_has ad_hadnt_hasnt_havent_has_what\$have_h adnt_hasnt_havent_has_what\$have_had_h as, what \$have, had, hadnt, hasnt, havent, h asnt_havent_has_what\$have_had_hadnt_h at\$have_had_hadnt_hasnt_havent_has_wh ave_had_hadnt_hasnt_havent_has_what\$h avent_has_what\$have_had_hadnt_hasnt_h d_hadnt_hasnt_havent_has_what\$have_ha dnt_hasnt_havent_has_what\$have_had_ha e_had_hadnt_hasnt_havent_has_what\$hav ent_has_what\$have_had_hadnt_hasnt_hav had_hadnt_hasnt_havent_has_what\$have_ hadnt hasnt havent has what have had ... has,what\$have,had,hadnt,hasnt,havent, hasnt, havent, has, what \$have, had, hadnt, hat\$have_had_hadnt_hasnt_havent_has_w have_had_hadnt_hasnt_havent_has_what \$ havent_has_what\$have_had_hadnt_hasnt_ nt_has_what\$have_had_hadnt_hasnt_have nt_hasnt_havent_has_what\$have_had_had nt_havent_has_what\$have_had_hadnt_has s,what\$have,had,hadnt,hasnt,havent,ha snt_havent_has_what\$have_had_hadnt_ha t\$have_had_hadnt_hasnt_havent_has_wha t_has_what\$have_had_hadnt_hasnt_have n t_hasnt_havent_has_what\$have_had_had n t.,havent.,has,what\$have,had,hadnt,has n ve_had_hadnt_hasnt_havent_has_what\$ha vent_has_what\$have_had_hadnt_hasnt_ha what\$have_had_hadnt_hasnt_havent_has_

T = have had had nt has nt have nt has what \$
B = tedttshhhhhhhhaavv ... w \$ edsaaannnaa.

MTF(B) = 85520087000007090800010929987001000105

A Bigger Example

For *T* some English text, *MTF*(*B*) has typically around 50% zeroes!

have_had_hadnt_hasnt_havent_has_what\$ ave_had_hadnt_hasnt_havent_has_what\$h ve_had_hadnt_hasnt_havent_has_what\$ha e_had_hadnt_hasnt_havent_has_what\$hav _had_hadnt_hasnt_havent_has_what\$have had_hadnt_hasnt_havent_has_what\$have_ ad_hadnt_hasnt_havent_has_what\$have_h d.,hadnt,,hasnt,,havent,has,what\$have,ha _hadnt_hasnt_havent_has_what\$have_had hadnt_hasnt_havent_has_what\$have_had_ adnt_hasnt_havent_has_what\$have_had_h dnt_hasnt_havent_has_what\$have_had_ha nt_hasnt_havent_has_what\$have_had_had t_hasnt_havent_has_what\$have_had_hadn _hasnt_havent_has_what\$have_had_hadnt hasnt_havent_has_what\$have_had_hadnt_ asnt,,havent,,has,,what\$have,,had,,hadnt,,h snt_havent_has_what\$have_had_hadnt_ha nt_havent_has_what\$have_had_hadnt_has t_havent_has_what\$have_had_hadnt_hasn _havent_has_what\$have_had_hadnt_hasnt havent, has, what \$have, had, hadnt, hasnt, avent_has_what\$have_had_hadnt_hasnt_h vent has what have had hadnt hasnt ha ent_has_what\$have_had_hadnt_hasnt_hav nt_has_what\$have_had_hadnt_hasnt_have t_has_what\$have_had_hadnt_hasnt_haven _has_what\$have_had_hadnt_hasnt_havent has_what\$have_had_hadnt_hasnt_havent_ as, what \$have, had, hadnt, hasnt, havent, h s_what\$have_had_hadnt_hasnt_havent_ha _what\$have_had_hadnt_hasnt_havent.has what\$have_had_hadnt_hasnt,havent,has... hat\$have_had_hadnt_hasnt_havent_has_w at\$have_had_hadnt_hasnt_havent_has_wh t\$have_had_hadnt_hasnt_havent_has_wha \$have, had, hadnt, hasnt, havent, has, what

\$have_had_hadnt_hasnt_havent_has_what _had_hadnt_hasnt_havent_has_what\$have _hadnt_hasnt_havent_has_what\$have_had _has_what\$have_had_hadnt_hasnt_havent _hasnt_havent_has_what\$have_had_hadnt _havent_has_what\$have_had_hadnt_hasnt what\$have,had,hadnt,hasnt,havent,has ad, hadnt, hasnt, havent, has, what \$have, h adnt_hasnt_havent_has_what\$have_had_h as,what\$have,had,hadnt,hasnt,havent,h asnt_havent_has_what\$have_had_hadnt_h at\$have_had_hadnt_hasnt_havent_has_wh ave_had_hadnt_hasnt_havent_has_what\$h avent_has_what\$have_had_hadnt_hasnt_h d, hadnt, hasnt, havent, has, what \$have, ha dnt_hasnt_havent_has_what\$have_had_ha e_had_hadnt_hasnt_havent_has_what\$hav ent_has_what\$have_had_hadnt_hasnt_hav had, hadnt hasnt havent has what have hadnt hasnt havent has what have had ... has,what\$have,had,hadnt,hasnt,havent, hasnt_havent_has_what\$have_had_hadnt_ hat\$have_had_hadnt_hasnt_havent_has_w have_had_hadnt_hasnt_havent_has_what \$ havent, has, what \$have, had, hadnt, hasnt, nt..has..what\$have_had_hadnt_hasnt_have nt_hasnt_havent_has_what\$have_had_had nt_havent_has_what\$have_had_hadnt_has s,what\$have,had,hadnt,hasnt,havent,ha snt_havent_has_what\$have_had_hadnt_ha t\$have_had_hadnt_hasnt_havent_has_wha t_has_what\$have_had_hadnt_hasnt_have n t_hasnt_havent_has_what\$have_had_had n t_havent_has_what\$have_had_hadnt_has n ve_had_hadnt_hasnt_havent_has..what\$ha vent_has_what\$have_had_hadnt_hasnt_ha what\$have,.had,.hadnt,.hasnt,.havent,.has...

T = have _ had _ had nt _ has nt _ have nt _ has _ what \$
B = tedttshhhhhhhhaavv _ _ _ w \$ _ edsaaannnaa _
MTF(B) = 85520087000007090800010929987001000105

Clicker Question

Consider $T = have_had_hadnt_hasnt_havent_has_what$ \$.

The BWT is $B = \text{tedttshhhhhhhaavv}_{\text{uuuu}} \text{w$_{u}$edsaaannnaa}_{u}$.

How can we explain the long run of hs in *B*?

A) h is the most frequent character

B h always appears at the beginning of a word

C almost all words start with h

 $\left(\mathbf{D} \right)$ h is always followed by a

E all as are preceded by h

h is the 4th character in the alphabet

→ sli.do/cs566

Clicker Question

Consider $T = \text{have_had_hadnt_hasnt_havent_has_what}$. The BWT is $B = \text{tedttts_hhhhhhhhaavv}_{\square\square\square\square}$ w\$_edsaaannnaa_. How can we explain the long run of hs in B?

- A h is the most frequent character
- (B) h always appears at the beginning of a word
- C almost all words start with h
- D) h is always followed by a
- $\stackrel{\frown}{E}$ all as are preceded by h \checkmark
- F h is the 4th character in the alphabet

→ sli.do/cs566

Run-length BWT Compression

- amazingly, just run-length compressing the BWT is already powerful!
- ightharpoonup r = number of runs in BWT
- ► $r = O(z \log^2(n))$, z number of LZ77 phrases proven in 2019 (!)

Example:

```
S = \mathsf{alf_ueats_ualfalfa\$}
B = \mathsf{asff\$f_ue_ullaaata}
RL(B) = \begin{bmatrix} \mathsf{a} \\ 1 \end{bmatrix} \begin{bmatrix} \mathsf{s} \\ 1 \end{bmatrix} \begin{bmatrix} \mathsf{f} \\ 2 \end{bmatrix} \begin{bmatrix} \mathsf{f} \\ 1 \end{bmatrix} \begin{bmatrix} \mathsf{f} \\ 1 \end{bmatrix} \begin{bmatrix} \mathsf{e} \\ 1 \end{bmatrix} \begin{bmatrix} \mathsf{e} \\ 1 \end{bmatrix} \begin{bmatrix} \mathsf{e} \\ 1 \end{bmatrix} \begin{bmatrix} \mathsf{d} \\ 3 \end{bmatrix} \begin{bmatrix} \mathsf{a} \\ 3 \end{bmatrix} \begin{bmatrix} \mathsf{t} \\ 1 \end{bmatrix} \begin{bmatrix} \mathsf{a} \\ 1 \end{bmatrix}
\Rightarrow r = |RL(B)| = 12; \quad n = 17
```

Larger Example:

$$S = \text{have_had_hadnt_hasnt_havent_has_what\$}$$
 $\Rightarrow r = 19; n = 36$

7.10 Inverse BWT

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

not even obvious that it is at all invertible!

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

not even obvious that it is at all invertible!

► "Magic" solution:

- **1.** Create array D[0..n] of pairs: D[r] = (B[r], r).
- **2.** Sort *D* <u>stably</u> with respect to *first entry*.
- **3.** Use *D* as linked list with (char, next entry)

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

10 (b, 10) 11 (b, 11)

D ► "Magic" solution: o(a, 0)**1.** Create array D[0..n] of pairs: ı (r, 1) D[r] = (B[r], r).2 (d, 2) 2. Sort D stably with **3** (\$, 3) respect to first entry. 4 (r, 4) 3. Use D as linked list with 5 (c, 5) (char, next entry) 6 (a, 6) 7 (a, 7) Example: 8 (a, 8) B = ard\$rcaaaabb9 (a, 9) S =

not even obvious that

it is at all invertible!

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

	D	sorted D	not even obvious that it is at all invertible!
► "Magic" solution:	o (a, 0)	char next 0 (\$, 3)	
1. Create array $D[0n]$ of pairs: $D[r] = (B[r], r)$.	1 (r, 1) 2 (d, 2)	1 (a, 0) 2 (a, 6)	
2. Sort <i>D</i> stably with respect to first entry.	3 (\$, 3) 4 (r, 4)	3 (a, 7) 4 (a, 8)	
3. Use <i>D</i> as linked list with (char, next entry)	5 (c, 5) 6 (a, 6)	5 (a, 9) 6 (b, 10)	
Example:	7 (a, 7) 8 (a, 8)	7 (b, 11) 8 (c, 5)	
B = ard rcaaaabb S =	9 (a, 9)	9 (d, 2)	
	10 (b, 10) 11 (b, 11)	10 (r, 1) 11 (r, 4)	

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

11 (b, 11)

11 (r, 4)

D sorted D char next ► "Magic" solution: o(a, 0)(\$, 3)-**1.** Create array D[0..n] of pairs: ı (r, 1) (a, A D[r] = (B[r], r).2 (d, 2) (a, 6)2. Sort D stably with **3** (\$, 3) 3 (a, 7) respect to first entry. 4 (r, 4) 4 (a, 8) 3. Use D as linked list with 5 (c, 5) 5 (a, 9) (char, next entry) 6 (a, 6) 6 (b, 10) 7 (a, 7) 7 (b, 11) Example: 8 (a, 8) 8 (c, 5) B = ard\$rcaaaabb9 (a, 9) 9 (d, 2) $S = \mathbf{a}$ 10 (b, 10) 10 (r, 1)

not even obvious that it is at all invertible!

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

	D	sorted D
► "Magic" solution:		char next
Wiagic Solution.	o(a, 0)	0 (\$, 3)
1. Create array $D[0n]$ of pairs:	ı (r, 1)	ı (a, 0)
D[r] = (B[r], r).	2 (d, 2)	2 (a, 6)
2. Sort D stably with	з (\$, 3)	з (a, 7)
respect to first entry.	4 (r, 4)	4 (a, 8)
3. Use D as linked list with	s (c, 5)	5 (a, 9)
(char, next entry)	6 (a, 6)	6 (b, 10)
Example:	7 (a, 7)	7 (b, 11)
B = ard\$rcaaaabb	8 (a, 8)	8 (c, 5)
S = ab	9 (a, 9)	9 (d, 2)
	10 (b, 10)	10 (r, 1)
	11 (b, 11)	11 (r, 4)

not even obvious that it is at all invertible!

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

not even obvious that D sorted D it is at all invertible! char next ► "Magic" solution: 0 (\$, 3) o(a, 0)**1.** Create array D[0..n] of pairs: ı (r, 1) 1 (a, 0) D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort D stably with **3** (\$, 3) з (a, 7) respect to first entry. 4 (a, 8) 4 (r, 4) 3. Use D as linked list with 5 (c, 5) 5 (a, 9) (char, next entry) 6 (a, 6) 6 (b, 10) 7 (a, 7) (b, 11)Example: 8 (a, 8) 8 (c, 5) B = ard rcaaaabb9 (a, 9) S = abr10 (b, 10) 11 (b, 11)

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

D sorted D char next ► "Magic" solution: 0 (\$, 3) o(a, 0)**1.** Create array D[0..n] of pairs: ı (r, 1) 1 (a, 0) D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort D stably with **3** (\$, 3) з (a, 7) respect to first entry. 4 (r, 4) (a, 8)3. Use D as linked list with 5 (c, 5) (a, 9)(char, next entry) (b, 10)6 (a, 6) 7 (a, 7) (b.11) Example: 8 (a, 8) B = ard\$rcaaaabb9 (a, 9) (d, S = abra10 (b, 10) (r, 1)11 (b, 11)

not even obvious that it is at all invertible!

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

	D	sorted D
13 K ' 11 1 C		char next
► "Magic" solution:	0 (a, 0)	0 (\$, 3)
1. Create array $D[0n]$ of pairs:	ı (r, 1)	ı (a, 0)
D[r] = (B[r], r).	2 (d, 2)	2 (a, 6)
2. Sort <i>D</i> stably with	з (\$, 3)	з (a, 7)
respect to first entry.	4 (r, 4)	4 (a, 8)
3. Use <i>D</i> as linked list with	5 (c, 5)	s (a, 9)
(char, next entry)	6 (a, 6)	6 (b, 10)
Evample	7 (a, 7)	7 (b, 11)
Example: $B = \text{ard} \$ \text{rcaaaabb}$ $S = \text{abrac}$	8 (a, 8)	\hookrightarrow 8 (c, 5)
	9 (a, 9)	9 (d, 2)
<i>5</i> 42.45	10 (b, 10)	10 (r, 1)
	11 (b, 11)	11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

D sorted D char next ► "Magic" solution: 0 (\$, 3) o(a, 0)**1.** Create array D[0..n] of pairs: ı (r, 1) 1 (a, 0) D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort D stably with **3** (\$, 3) з (a, 7) respect to first entry. 4 (r, 4) 4 (a, 8) 3. Use D as linked list with 5 (c, 5) (a, 9)(char, next entry) 6 (a, 6) (b, 10)7 (a, 7) Example: 8 (c, 5) 8 (a, 8) B = ard\$rcaaaabb9 (a, 9) 9 (d, 2) S = abraca10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

	D	sorted D
"Magic" colution		char next
► "Magic" solution:	0 (a, 0)	o (\$, 3)
1. Create array $D[0n]$ of pairs:	ı (r, 1)	ı (a, 0)
D[r] = (B[r], r).	2 (d, 2)	2 (a, 6)
2. Sort D stably with	з (\$, 3)	з (a, 7)
respect to <i>first entry</i> .	4 (r, 4)	4 (a, 8)
3. Use D as linked list with (char, next entry)	s (c, 5)	5 (a, 9)
(Char, next entry)	6 (a, 6)	6 (b, 10)
Example:	7 (a, 7)	7 (b, 11)
B = ard rcaaaabb	8 (a, 8)	8 (c, 5)
S = abracad	9 (a, 9)	\hookrightarrow 9 (d, 2)
	10 (b, 10)	10 (r, 1)
	11 (b, 11)	11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

D sorted D char next ► "Magic" solution: 0 (\$, 3) o(a, 0)**1.** Create array D[0..n] of pairs: ı (r, 1) 1 (a, 0) D[r] = (B[r], r).2 (d, 2) (a, 6)2. Sort D stably with **3** (\$, 3) (a, 7)respect to first entry. (a, 8)4 (r, 4) 3. Use D as linked list with 5 (c, 5) (char, next entry) 6 (a, 6) 7 (a, 7) (b, 11)Example: 8 (c, 5) 8 (a, 8) B = ard rcaaaabb9 (a, 9) 9 (d, 2) S = abracada10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

D sorted D char next ► "Magic" solution: 0 (\$, 3) o(a, 0)**1.** Create array D[0..n] of pairs: ı (r, 1) 1 (a, 0) D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort D stably with **3** (\$, 3) (a, 7)respect to first entry. 4 (r, 4) 3. Use D as linked list with (a, 9)5 (c, 5) (char, next entry) (b, 10)6 (a, 6) 7 (b, 11) 7 (a, 7) Example: 8 (a, 8) 8 (c, 5) B = ard\$rcaaaabb9 (a, 9) 9 (d, 2) S = abracadab10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

	D	sorted D
"Magic" colution:		char next
► "Magic" solution:	o (a, 0)	o (\$, 3)
1. Create array $D[0n]$ of pairs:	ı (r, 1)	ı (a, 0)
D[r] = (B[r], r).	2 (d, 2)	2 (a, 6)
2. Sort D stably with	з (\$, 3)	з (a, 7)
respect to <i>first entry</i> .	4 (r, 4)	4 (a, 8)
3. Use <i>D</i> as linked list with (char, next entry)	s (c, 5)	5 (a, 9)
(Char, next entry)	6 (a, 6)	6 (b, 10)
Example:	7 (a, 7)	7 (b, 11)
B = ard\$rcaaaabb	8 (a, 8)	8 (c, 5)
S = abracadabr	9 (a, 9)	9 (d, 2)
	10 (b, 10)	→ 10 (r, 1)
	11 (b.11)	11 (r. 4)

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

► "Magic" solution: **1.** Create array D[0..n] of pairs: D[r] = (B[r], r).2. Sort D stably with respect to first entry. 3. Use D as linked list with (char, next entry) Example: B = ard\$rcaaaabbS = abracadabra

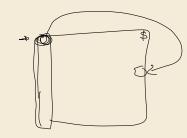
D sorted D char next 0 (\$, 3) o(a, 0)ı (r, 1) (a, 0)2 (d, 2) (a, 6)**3** (\$, 3) (a, 7)(a, 8)4 (r, 4) 5 (c, 5) 6 (a, 6) 7 (a, 7) (b, 11)8 (c, 5) 8 (a, 8) 9 (a, 9) 9 (d, 2) 10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

D sorted D char next ► "Magic" solution: $\rightleftharpoons 0 (\$, 3)$ o(a, 0)**1.** Create array D[0..n] of pairs: ı (r, 1) (a, 0)D[r] = (B[r], r).2 (d, 2) 2 (a, 6) 2. Sort D stably with **3** (\$, 3) з (a, 7) respect to first entry. 4 (r, 4) 4 (a, 8) 3. Use D as linked list with 5 (c, 5) 5 (a, 9) (char, next entry) 6 (a, 6) 6 (b, 10) 7 (a, 7) 7 (b, 11) Example: 8 (a, 8) 8 (c, 5) B = ard raaaabb9 (a, 9) 9 (d, 2) S = abracadabra\$ 10 (r, 1) 10 (b, 10) 11 (b, 11) 11 (r, 4)

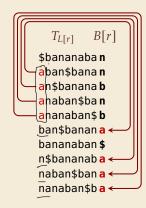
- ► Inverse BWT very easy to compute:
 - ▶ only sort individual characters in *B* (not suffixes)
 - \rightsquigarrow O(n) with counting sort
- ▶ but why does this work!?

- ► Inverse BWT very easy to compute:
 - ▶ only sort individual characters in *B* (not suffixes)
 - \rightsquigarrow O(n) with counting sort
- ▶ but why does this work!?
- decode char by char
 - ► can find unique \$ → starting row
- to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
 - → then we can walk through and decode



- ► Inverse BWT very easy to compute:
 - ▶ only sort individual characters in *B* (not suffixes)
 - \rightarrow O(n) with counting sort
- ▶ but why does this work!?
- decode char by char
 - ▶ can find unique \$ → starting row
- to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
 - $\rightsquigarrow\,$ then we can walk through and decode
- ► for (i): first column = characters of *B* in sorted order

- ► Inverse BWT very easy to compute:
 - ▶ only sort individual characters in *B* (not suffixes)
 - \rightarrow O(n) with counting sort
- ▶ but why does this work!?
- decode char by char
 - ► can find unique \$ → starting row
- to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
 - $\rightsquigarrow\,$ then we can walk through and decode
- ► for (i): first column = characters of *B* in sorted order
- ► for (ii): relative order of same character stays same: *i*th a in first column = *i*th a in BWT
 - \rightarrow stably sorting (B[r], r) by first entry enough



L[r]

3

4

6

8

BWT – Discussion

- ▶ Running time: $\Theta(n)$
 - encoding uses suffix sorting
 - decoding only needs counting sort
 - \rightsquigarrow decoding much simpler & faster (but same Θ -class)

BWT - Discussion

- ▶ Running time: $\Theta(n)$
 - encoding uses suffix sorting
 - decoding only needs counting sort
 - \rightsquigarrow decoding much simpler & faster (but same Θ -class)
- typically slower than other methods
- need access to entire text (or apply to blocks independently)
- BWT-MTF-RLE-Huffman (bzip2) pipeline tends to have best compression

Summary of Compression Methods

- Huffman Variable-width, single-character (optimal in this case)
 - RLE Variable-width, multiple-character encoding
 - LZW Adaptive, fixed-width, multiple-character encoding Augments dictionary with repeated substrings
 - MTF Adaptive, transforms to smaller integers should be followed by variable-width integer encoding
 - BWT Block compression method, should be followed by MTF