
8 Clever Codes
2 December 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25)
Philipps-Universität Marburg

version 2024-12-03 13:01

Learning Outcomes

Unit 8: Clever Codes

1. Know the principles and performance characteristics of arithmetic coding.

2. Judge the use of arithmetic coding in applications.

3. Understand the context of error-prone communication.

4. Understand concepts of error-detecting codes and error-correcting codes.

5. Know and understand Hamming codes, in particular (7,4) Hamming code.

6. Reason about the suitability of a code for an application.

1

Outline

8 Clever Codes
8.1 Arithmetic Coding
8.2 Practical Arithmetic Coding
8.3 Error Correcting Codes
8.4 Coding Theory
8.5 Hamming Codes

8.1 Arithmetic Coding

Stream Codes
▶ Recall: (binary) character encoding 𝐸 : Σ → {0, 1}★

▶ Huffman codes optimal for any given character frequencies
⇝ encoding all characters with that code minimizes compressed size

2

Stream Codes
▶ Recall: (binary) character encoding 𝐸 : Σ → {0, 1}★

▶ Huffman codes optimal for any given character frequencies
⇝ encoding all characters with that code minimizes compressed size

. . . if we assume that all characters must be encoded individually by a codeword!

2

Stream Codes
▶ Recall: (binary) character encoding 𝐸 : Σ → {0, 1}★

▶ Huffman codes optimal for any given character frequencies
⇝ encoding all characters with that code minimizes compressed size

. . . if we assume that all characters must be encoded individually by a codeword!

▶ Stream codes instead compress entire sequence of characters
▶ RLE and LZW are examples of stream codes ⇝ can sometimes do better

▶ Two indicative examples
1. “Low entropy bits:” Σ = {0, 1}, highly skewed: 𝑝0 = 0.99

⇝ entropy H(1
100 ,

99
100) ≈ 0.08 bits per character,

Huffman code must use 1 bit per character!
⇝ “optimal” Huffman code gives 12-fold space increase over entropy!

2

Stream Codes
▶ Recall: (binary) character encoding 𝐸 : Σ → {0, 1}★

▶ Huffman codes optimal for any given character frequencies
⇝ encoding all characters with that code minimizes compressed size

. . . if we assume that all characters must be encoded individually by a codeword!

▶ Stream codes instead compress entire sequence of characters
▶ RLE and LZW are examples of stream codes ⇝ can sometimes do better

▶ Two indicative examples
1. “Low entropy bits:” Σ = {0, 1}, highly skewed: 𝑝0 = 0.99

⇝ entropy H(1
100 ,

99
100) ≈ 0.08 bits per character,

Huffman code must use 1 bit per character!
⇝ “optimal” Huffman code gives 12-fold space increase over entropy!
▶ Can certainly do better here (RLE!)

2. “Trits”: Σ = {0, 1, 2}, equally likely
⇝ entropy H(1

3 ,
1
3 ,

1
3) = lg(3) ≈ 1.58 bits per character,

Huffman code uses average of 1
3 · 1 + 2

3 · 2 = 5
3 ≈ 1.67

▶ Can we do better?
2

A Decent Hack: Block Codes
▶ Huffman on trits wastes ≈ 0.0817 bits per character and over 5 % of space

▶ A simple trick can reduce this substantially!
▶ treat 5 trits as one “supercharacter”, e. g., 21101

⇝ 35 = 243 possible combinations
⇝ encode these using 8 bits (with 28 = 256 possible combinations)
▶ entropy lg(35) ≈ 7.92 bits, so less than 0.1 % wasted space!

3

A Decent Hack: Block Codes
▶ Huffman on trits wastes ≈ 0.0817 bits per character and over 5 % of space

▶ A simple trick can reduce this substantially!
▶ treat 5 trits as one “supercharacter”, e. g., 21101

⇝ 35 = 243 possible combinations
⇝ encode these using 8 bits (with 28 = 256 possible combinations)
▶ entropy lg(35) ≈ 7.92 bits, so less than 0.1 % wasted space!

▶ We can even use a Huffman code for the supercharacters to handle nonuniformity!

▶ For the low-entropy bits, could use 3 bits
⇝ probabilities:

000 : 0.97
001 , 010 , 100 : 0.0098
011 , 101 , 110 : 0.000099
111 : 0.000001

⇝ with Huffman code, 1.06 bits per superchar of 3 input bits
⇝ almost factor 3 better; can improve with larger blocks!

3

Block Codes – A Panacea?
▶ Using supercharacters works well in our examples.

Hmmm . . . so why don’t we treat the entire source text as one large block?
Wouldn’t that be even better!?

4

Block Codes – A Panacea?
▶ Using supercharacters works well in our examples.

Hmmm . . . so why don’t we treat the entire source text as one large block?
Wouldn’t that be even better!?

⇝ We can optimally compress any text, without doing anything intelligent!

4

Block Codes – A Panacea?
▶ Using supercharacters works well in our examples.

Hmmm . . . so why don’t we treat the entire source text as one large block?
Wouldn’t that be even better!?

⇝ We can optimally compress any text, without doing anything intelligent!?

4

Block Codes – A Panacea?
▶ Using supercharacters works well in our examples.

Hmmm . . . so why don’t we treat the entire source text as one large block?
Wouldn’t that be even better!?

⇝ We can optimally compress any text, without doing anything intelligent!?

� For general case, need to communicate the supercharacter encoding
▶ Blocks of 𝑘 characters need Ω(𝜎𝑘) space for code
▶ Huffman code has to be part of coded message
⇝ Can only sensibly use block codes for small 𝜎 and 𝑘

There is no such thing as a free lunch . . .

4

Arithmetic Coding
▶ Also: Block codes still had Θ(𝑛) wasted

except in isolated lucky cases

space for sequences of 𝑛 symbols

5

Arithmetic Coding
▶ Also: Block codes still had Θ(𝑛) wasted

except in isolated lucky cases

space for sequences of 𝑛 symbols

▶ Arithmetic Coding:
0. Maintain [ℓ , ℓ + 𝑝) ⊆ [0, 1); initially ℓ = 0, 𝑝 = 1
1. Zoom into subinterval for each character
2. Output dyadic encoding of final interval

▶ Step 1: “Zoom” for each character (trit) in 𝑆[0..𝑛): 0 1

0 1 2
0 11

3
2
3

▶ Of the current subinterval [ℓ , ℓ + 𝑝),
take first, second or last third
depending whether 𝑆[𝑖] = 0, 1, resp. 2:
ℓ := ℓ + 𝑆[𝑖] · 1

3 · 𝑝
𝑝 := 𝑝 · 1

3

5

Arithmetic Coding
▶ Also: Block codes still had Θ(𝑛) wasted

except in isolated lucky cases

space for sequences of 𝑛 symbols

▶ Arithmetic Coding:
0. Maintain [ℓ , ℓ + 𝑝) ⊆ [0, 1); initially ℓ = 0, 𝑝 = 1
1. Zoom into subinterval for each character
2. Output dyadic encoding of final interval

▶ Step 1: “Zoom” for each character (trit) in 𝑆[0..𝑛): 0 1

0 1 2
0 11

3
2
3

▶ Of the current subinterval [ℓ , ℓ + 𝑝),
take first, second or last third
depending whether 𝑆[𝑖] = 0, 1, resp. 2:
ℓ := ℓ + 𝑆[𝑖] · 1

3 · 𝑝
𝑝 := 𝑝 · 1

3

▶ Step 2: Dyadic encoding
▶ Find smallest 𝑚 so that ∃𝑥 ∈ ℕ0 with

h 𝑥
2𝑚 ,

𝑥 + 1
2𝑚

�
⊆ [ℓ , ℓ + 𝑝)

▶ Output 𝑥 in binary using 𝑚 bits.

5

Arithmetic Coding
▶ Also: Block codes still had Θ(𝑛) wasted

except in isolated lucky cases

space for sequences of 𝑛 symbols

▶ Arithmetic Coding:
0. Maintain [ℓ , ℓ + 𝑝) ⊆ [0, 1); initially ℓ = 0, 𝑝 = 1
1. Zoom into subinterval for each character
2. Output dyadic encoding of final interval

▶ Step 1: “Zoom” for each character (trit) in 𝑆[0..𝑛): 0 1

0 1 2
0 11

3
2
3

▶ Of the current subinterval [ℓ , ℓ + 𝑝),
take first, second or last third
depending whether 𝑆[𝑖] = 0, 1, resp. 2:
ℓ := ℓ + 𝑆[𝑖] · 1

3 · 𝑝
𝑝 := 𝑝 · 1

3

▶ Step 2: Dyadic encoding
▶ Find smallest 𝑚 so that ∃𝑥 ∈ ℕ0 with

h 𝑥
2𝑚 ,

𝑥 + 1
2𝑚

�
⊆ [ℓ , ℓ + 𝑝)

▶ Output 𝑥 in binary using 𝑚 bits.

⇝ Encode 𝑛 trits in 𝑛 lg(3) + 2 bits(!) without cheating
5

Arithmetic Coding – Encode Trits Example
▶ 𝑆[0..𝑛) = 21101 (𝑛 = 5)

▶ Step 1: Zoom into subintervals

Iteration ℓ 𝑝 Interval (rounded)

0 0 1 [0.00000, 1.00000)
1 2

3
1
3 [0.66667, 1.00000)

2 7
9

1
9 [0.77778, 0.88889)

3 22
27

1
27 [0.81482, 0.85185)

4 66
81

1
81 [0.81482, 0.82716)

5 199
243

1
243 [0.81893, 0.82305)

6

Arithmetic Coding – Encode Trits Example
▶ 𝑆[0..𝑛) = 21101 (𝑛 = 5)

▶ Step 1: Zoom into subintervals

Iteration ℓ 𝑝 Interval (rounded)

0 0 1 [0.00000, 1.00000)
1 2

3
1
3 [0.66667, 1.00000)

2 7
9

1
9 [0.77778, 0.88889)

3 22
27

1
27 [0.81482, 0.85185)

4 66
81

1
81 [0.81482, 0.82716)

5 199
243

1
243 [0.81893, 0.82305)

▶ Step 2: Dyadic encoding for interval [ℓ , ℓ + 𝑝) =
h199
243 ,

200
243

�
▶ Must have 𝑚 ≥ lg(1/𝑝) > 7

6

Arithmetic Coding – Encode Trits Example
▶ 𝑆[0..𝑛) = 21101 (𝑛 = 5)

▶ Step 1: Zoom into subintervals

Iteration ℓ 𝑝 Interval (rounded)

0 0 1 [0.00000, 1.00000)
1 2

3
1
3 [0.66667, 1.00000)

2 7
9

1
9 [0.77778, 0.88889)

3 22
27

1
27 [0.81482, 0.85185)

4 66
81

1
81 [0.81482, 0.82716)

5 199
243

1
243 [0.81893, 0.82305)

▶ Step 2: Dyadic encoding for interval [ℓ , ℓ + 𝑝) =
h199
243 ,

200
243

�
▶ Must have 𝑚 ≥ lg(1/𝑝) > 7

▶ 𝑚 = 8: smallest 𝑥/2𝑚 ≥ 199
243 is 𝑥 = 210, but [210/256, 211/256) ≈ [0.82031, 0.82422) ⊄ [ℓ , ℓ + 𝑝)

6

Arithmetic Coding – Encode Trits Example
▶ 𝑆[0..𝑛) = 21101 (𝑛 = 5)

▶ Step 1: Zoom into subintervals

Iteration ℓ 𝑝 Interval (rounded)

0 0 1 [0.00000, 1.00000)
1 2

3
1
3 [0.66667, 1.00000)

2 7
9

1
9 [0.77778, 0.88889)

3 22
27

1
27 [0.81482, 0.85185)

4 66
81

1
81 [0.81482, 0.82716)

5 199
243

1
243 [0.81893, 0.82305)

▶ Step 2: Dyadic encoding for interval [ℓ , ℓ + 𝑝) =
h199
243 ,

200
243

�
▶ Must have 𝑚 ≥ lg(1/𝑝) > 7

▶ 𝑚 = 8: smallest 𝑥/2𝑚 ≥ 199
243 is 𝑥 = 210, but [210/256, 211/256) ≈ [0.82031, 0.82422) ⊄ [ℓ , ℓ + 𝑝)

▶ 𝑚 = 9: smallest 𝑥/2𝑚 ≥ 199
243 is 𝑥 = 420 and [420/512, 421/512) ≈ [0.82031, 0.82227) ⊂ [ℓ , ℓ + 𝑝)✓

6

Arithmetic Coding – Encode Trits Example
▶ 𝑆[0..𝑛) = 21101 (𝑛 = 5)

▶ Step 1: Zoom into subintervals

Iteration ℓ 𝑝 Interval (rounded)

0 0 1 [0.00000, 1.00000)
1 2

3
1
3 [0.66667, 1.00000)

2 7
9

1
9 [0.77778, 0.88889)

3 22
27

1
27 [0.81482, 0.85185)

4 66
81

1
81 [0.81482, 0.82716)

5 199
243

1
243 [0.81893, 0.82305)

▶ Step 2: Dyadic encoding for interval [ℓ , ℓ + 𝑝) =
h199
243 ,

200
243

�
▶ Must have 𝑚 ≥ lg(1/𝑝) > 7

▶ 𝑚 = 8: smallest 𝑥/2𝑚 ≥ 199
243 is 𝑥 = 210, but [210/256, 211/256) ≈ [0.82031, 0.82422) ⊄ [ℓ , ℓ + 𝑝)

▶ 𝑚 = 9: smallest 𝑥/2𝑚 ≥ 199
243 is 𝑥 = 420 and [420/512, 421/512) ≈ [0.82031, 0.82227) ⊂ [ℓ , ℓ + 𝑝)✓

⇝ Output 𝑥 = 420 in binary with 𝑚 = 9 digits: 110100100

6

Versatility of Arithmetic Coding – Adaptive Model

adapted from Figure 6.4 of MacKay: Information Theory, Inference, and Learning Algorithms 2003

7

Arithmetic Coding – General framework
▶ Note: Arithmetic coder doesn’t care if probabilities or even 𝜎 change all the time!

▶ As long as encoder and decoder know from context what they are!

8

Arithmetic Coding – General framework
▶ Note: Arithmetic coder doesn’t care if probabilities or even 𝜎 change all the time!

▶ As long as encoder and decoder know from context what they are!

General stochastic sequence:
Sequence of random variables 𝑋0 ,𝑋1 ,𝑋2 , . . . such that

1. 𝑋𝑖 ∈ [0..𝑈𝑖) ∪ {$} (We use $ to signal “end of text”)
2. ℙ[𝑋𝑖 = 𝑗] = 𝑃𝑖𝑗

3. both 𝑈𝑖 and 𝑃𝑖𝑗 are random variables as they depend on 𝑋0 , . . .𝑋𝑖−1,
but conditioned on 𝑋0 , . . . ,𝑋𝑖−1, they are fixed and known:
𝑃𝑖𝑗 = 𝑃𝑖𝑗(𝑋0 , . . . ,𝑋𝑖−1) = ℙ[𝑋𝑖 = 𝑗 | 𝑋0 , . . . ,𝑋𝑖−1]
𝑈𝑖 = 𝑈𝑖(𝑋0 , . . . ,𝑋𝑖−1) = max{ 𝑗 : 𝑃𝑖𝑗(𝑋0 , . . . ,𝑋𝑖−1) > 0}

8

Arithmetic Coding – General framework
▶ Note: Arithmetic coder doesn’t care if probabilities or even 𝜎 change all the time!

▶ As long as encoder and decoder know from context what they are!

General stochastic sequence:
Sequence of random variables 𝑋0 ,𝑋1 ,𝑋2 , . . . such that

1. 𝑋𝑖 ∈ [0..𝑈𝑖) ∪ {$} (We use $ to signal “end of text”)
2. ℙ[𝑋𝑖 = 𝑗] = 𝑃𝑖𝑗

3. both 𝑈𝑖 and 𝑃𝑖𝑗 are random variables as they depend on 𝑋0 , . . .𝑋𝑖−1,
but conditioned on 𝑋0 , . . . ,𝑋𝑖−1, they are fixed and known:
𝑃𝑖𝑗 = 𝑃𝑖𝑗(𝑋0 , . . . ,𝑋𝑖−1) = ℙ[𝑋𝑖 = 𝑗 | 𝑋0 , . . . ,𝑋𝑖−1]
𝑈𝑖 = 𝑈𝑖(𝑋0 , . . . ,𝑋𝑖−1) = max{ 𝑗 : 𝑃𝑖𝑗(𝑋0 , . . . ,𝑋𝑖−1) > 0}

▶ Can model arbitrary dependencies on previous outcomes

▶ Assume here that random process is known by both encoder and decoder (fixed coding)
otherwise extra space needed to encode model!

8

Arithmetic Coding – Encoding
1 procedure arithmeticEncode(𝑋0 , . . . ,𝑋𝑛):
2 // Assume model 𝑈𝑖 and 𝑃𝑖𝑗 are fixed.
3 // Assume 𝑋𝑖 ∈ [0..𝑈𝑖) for 𝑖 < 𝑛 and 𝑋𝑛 = $
4 // Step 1: Interval zooming
5 ℓ := 0; 𝑝 := 1
6 for 𝑖 := 0, . . . , 𝑛 − 1 do

7 𝑞 :=
𝑋𝑖−1Õ
𝑗=0

𝑃𝑖𝑗 ;

8 ℓ := ℓ + 𝑞 · 𝑝; 𝑝 := 𝑝 · 𝑃𝑖 ,𝑋𝑖

9 end for
10 𝑞 := 1 − 𝑃𝑛 ,$ // encode $ as last character
11 ℓ := ℓ + 𝑞 · 𝑝; 𝑝 := 𝑝 · 𝑃𝑛 ,$
12 // Step 2: Dyadic encoding
13 𝑚 := ⌈lg(1/𝑝)⌉ − 1
14 do
15 𝑚 := 𝑚 + 1; 𝑥 := ⌈ℓ · 2𝑚⌉
16 while (𝑥 + 1)/2𝑚 > ℓ + 𝑝
17 return 𝑥 in binary using 𝑚 bits

9

Arithmetic Coding – Decoding
1 procedure arithmeticDecode(𝐶[0..𝑚)):
2 // Assume model 𝑈𝑖 and 𝑃𝑖𝑗 are fixed.
3 // 𝐶[0..𝑚) bit string produced by arithmeticEncode
4 𝑥 =

Í𝑚−1
𝑖=0 𝐶[𝑖] · 2𝑚−1−𝑖 // final interval [𝑥/2𝑚 , (𝑥 + 1)/2𝑚)

5 ℓ := 0; 𝑝 := 1; 𝑖 := 0
6 while true
7 𝑐 := 0; 𝑞 := 0 // Decode next character 𝑐
8 while ℓ + 𝑞 · 𝑝 < 𝑥/2𝑚 // Iterate through characters until final interval
9 if 𝑐 == 𝑈𝑖 + 1 // reached $

10 𝑋[𝑖] := $
11 return 𝑋[0..𝑖]
12 else
13 𝑞 := 𝑞 + 𝑃𝑖 ,𝑐 ; 𝑐 := 𝑐 + 1
14 end while
15 𝑐 := 𝑐 − 1; 𝑞 := 𝑞 − 𝑃𝑖 ,𝑐 // we overshot by 1
16 𝑋[𝑖] := 𝑐
17 ℓ := ℓ + 𝑞 · 𝑝; 𝑝 := 𝑝 · 𝑃𝑖 ,𝑐
18 𝑖 := 𝑖 + 1
19 end for

10

8.2 Practical Arithmetic Coding

Arithmetic Coding – Numerics
▶ As implemented above, 𝑝 usually gets smaller by a

constant factor with each character
⇝ 𝑝 gets exponentially small in 𝑛!
▶ ℓ does not get smaller in absolute terms, but

we need it to ever higher accuracy

⇝ requires Ω(𝑛) bit precision and exact arithmetic!

11

Arithmetic Coding – Numerics
▶ As implemented above, 𝑝 usually gets smaller by a

constant factor with each character
⇝ 𝑝 gets exponentially small in 𝑛!
▶ ℓ does not get smaller in absolute terms, but

we need it to ever higher accuracy

⇝ requires Ω(𝑛) bit precision and exact arithmetic!

▶ With a clever trick, this can be avoided!
▶ If [ℓ , ℓ + 𝑝) ⊆ [0, 1

2), we know:
▶ Our final 𝑥 with

� 𝑥
2𝑚 , 𝑥+1

2𝑚
� ⊆ [ℓ , ℓ + 𝑝)

must start with a 0-bit!
⇝ Output a 0 and renormalize interval:

ℓ := 2ℓ ; 𝑝 := 2𝑝

11

Arithmetic Coding – Numerics
▶ As implemented above, 𝑝 usually gets smaller by a

constant factor with each character
⇝ 𝑝 gets exponentially small in 𝑛!
▶ ℓ does not get smaller in absolute terms, but

we need it to ever higher accuracy

⇝ requires Ω(𝑛) bit precision and exact arithmetic!

▶ With a clever trick, this can be avoided!
▶ If [ℓ , ℓ + 𝑝) ⊆ [0, 1

2), we know:
▶ Our final 𝑥 with

� 𝑥
2𝑚 , 𝑥+1

2𝑚
� ⊆ [ℓ , ℓ + 𝑝)

must start with a 0-bit!
⇝ Output a 0 and renormalize interval:

ℓ := 2ℓ ; 𝑝 := 2𝑝
▶ If [ℓ , ℓ + 𝑝) ⊆ [1

2 , 1), similarly:
▶ Output 1 and renormalize:

ℓ := ℓ − 1
2

ℓ := 2ℓ ; 𝑝 := 2𝑝
11

Arithmetic Coding – Renormalization
Does this guarantee ℓ and 𝑝 stay in a reasonable range?

12

Arithmetic Coding – Renormalization
Does this guarantee ℓ and 𝑝 stay in a reasonable range?

▶ No! Consider (uniform) trits in {0, 1, 2} again and encode
11111111111111111 . . .

⇝ 𝑝 =
1
3
�𝑛 , ℓ =

1
3 + 1

9 + 1
27 + · · · =

𝑛Õ
𝑖=1

3−𝑖 =
1
2 − 3−𝑛

2
⇝ ℓ < 1

2 and ℓ + 𝑝 > 1
2 ⇝ next bit unknown as of yet

12

Arithmetic Coding – Renormalization
Does this guarantee ℓ and 𝑝 stay in a reasonable range?

▶ No! Consider (uniform) trits in {0, 1, 2} again and encode
11111111111111111 . . .

⇝ 𝑝 =
1
3
�𝑛 , ℓ =

1
3 + 1

9 + 1
27 + · · · =

𝑛Õ
𝑖=1

3−𝑖 =
1
2 − 3−𝑛

2
⇝ ℓ < 1

2 and ℓ + 𝑝 > 1
2 ⇝ next bit unknown as of yet

But: If [ℓ , ℓ + 𝑝) ⊆ [1
4 ,

3
4), next two bits are either 01 or 10

▶ Remember an “outstanding opposite bit” (increment counter)

▶ Renormalize:
ℓ := ℓ − 1

4
ℓ := 2ℓ ; 𝑝 := 2𝑝

⇝ ℓ and 𝑝 remain in range of 𝑃𝑖𝑗

⇝ round 𝑃𝑖𝑗 to integer multiple of 2−𝐹 ⇝ fixed-precision arithmetic
12

Fixed Precision Arithmetic Encode
Detailed code from Moffat, Neal, Witten, Arithmetic Coding Revisited, ACM Trans. Inf. Sys. 1998
Note: 𝐿 is our ℓ , 𝑅 is our 𝑝, 𝑏 ≤ 𝑤 is #bits for variables

13

Fixed Precision Renormalize

14

Fixed Precision Arithmetic Decode
Functions decode_target and arithmetic_decode to be called alternatingly.

15

Arithmetic Coding Discussion
Subtle code (⇝ libraries!)

Typically slower to encode/decode than Huffman codes

Encoded bits can be produced/consumed in bursts

Extremely versatile w. r. t. random process

Almost optimal space usage / compression

Widely used (instead of Huffman) in JPEG, zip variants, . . .

16

8.3 Error Correcting Codes

Noisy Communication
▶ most forms of communication are “noisy”

▶ humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

17

Noisy Communication
▶ most forms of communication are “noisy”

▶ humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

▶ How do humans cope with that?
▶ slow down and/or speak up
▶ ask to repeat if necessary

17

Noisy Communication
▶ most forms of communication are “noisy”

▶ humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

▶ How do humans cope with that?
▶ slow down and/or speak up
▶ ask to repeat if necessary

▶ But how is it possible (for us)
to decode a message in the presence of noise & errors?

Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!

17

Noisy Communication
▶ most forms of communication are “noisy”

▶ humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

▶ How do humans cope with that?
▶ slow down and/or speak up
▶ ask to repeat if necessary

▶ But how is it possible (for us)
to decode a message in the presence of noise & errors?

Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!

⇝ We can
1. detect errors “This sentence has aao pi dgsdho gioasghds.”
2. correct (some) errors “Tiny errs ar corrrected automaticly.”

(sometimes too eagerly as in the Chinese Whispers / Telephone)

17

Noisy Channels
▶ computers: copper cables &

electromagnetic interference

▶ transmit a binary string

▶ but occasionally bits can “flip”

⇝ want a robust code

18

Noisy Channels
▶ computers: copper cables &

electromagnetic interference

▶ transmit a binary string

▶ but occasionally bits can “flip”

⇝ want a robust code

▶ We can aim at

1. error detection ⇝ can request a re-transmit
2. error correction ⇝ avoid re-transmit for common types of errors

18

Noisy Channels
▶ computers: copper cables &

electromagnetic interference

▶ transmit a binary string

▶ but occasionally bits can “flip”

⇝ want a robust code

▶ We can aim at

1. error detection ⇝ can request a re-transmit
2. error correction ⇝ avoid re-transmit for common types of errors

▶ This will require redundancy: sending more

that’s the opposite of compression!

bits than plain message
⇝ goal: robust code with lowest redundancy

18

Clicker Question

 → sli.do/cs566

What do you think, how many extra bits do we need to detect a
single bit error in a message of 100 bits?

Clicker Question

 → sli.do/cs566

What do you think, how many extra bits do we need to correct a
single bit error in a message of 100 bits?

8.4 Coding Theory

Block codes
▶ model:

▶ want to send message 𝑆 ∈ {0, 1}★ (bitstream) across a (communication) channel
▶ any bit transmitted through the channel might flip (0 → 1 resp. 1 → 0)

no other errors occur (no bits lost, duplicated, inserted, etc.)

▶ instead of 𝑆, we send encoded bitstream 𝐶 ∈ {0, 1}★
sender encodes 𝑆 to 𝐶, receiver decodes 𝐶 to 𝑆 (hopefully)

⇝ what errors can be detected and/or corrected?

19

Block codes
▶ model:

▶ want to send message 𝑆 ∈ {0, 1}★ (bitstream) across a (communication) channel
▶ any bit transmitted through the channel might flip (0 → 1 resp. 1 → 0)

no other errors occur (no bits lost, duplicated, inserted, etc.)

▶ instead of 𝑆, we send encoded bitstream 𝐶 ∈ {0, 1}★
sender encodes 𝑆 to 𝐶, receiver decodes 𝐶 to 𝑆 (hopefully)

⇝ what errors can be detected and/or corrected?

▶ all codes discussed here are block codes
▶ divide 𝑆 into messages 𝑚 ∈ {0, 1}𝑘 of 𝑘 bits each (𝑘 = message length)
▶ encode each message (separately) as 𝐶(𝑚) ∈ {0, 1}𝑛 (𝑛 = block length, 𝑛 ≥ 𝑘)

⇝ can analyze everything block-wise

19

Block codes
▶ model:

▶ want to send message 𝑆 ∈ {0, 1}★ (bitstream) across a (communication) channel
▶ any bit transmitted through the channel might flip (0 → 1 resp. 1 → 0)

no other errors occur (no bits lost, duplicated, inserted, etc.)

▶ instead of 𝑆, we send encoded bitstream 𝐶 ∈ {0, 1}★
sender encodes 𝑆 to 𝐶, receiver decodes 𝐶 to 𝑆 (hopefully)

⇝ what errors can be detected and/or corrected?

▶ all codes discussed here are block codes
▶ divide 𝑆 into messages 𝑚 ∈ {0, 1}𝑘 of 𝑘 bits each (𝑘 = message length)
▶ encode each message (separately) as 𝐶(𝑚) ∈ {0, 1}𝑛 (𝑛 = block length, 𝑛 ≥ 𝑘)

⇝ can analyze everything block-wise

▶ between 0 and 𝑛 bits might be flipped
▶ how many flipped bits can we definitely detect

invalid code

?
▶ how many flipped bits can we correct

i. e. decoding 𝑚 still possible

without retransmit?

19

Clicker Question

 → sli.do/cs566

What is the Hamming distance between heart and beard?

Code distance
▶ each block code is an injective

𝑚 ≠ 𝑚′ =⇒ 𝐶(𝑚) ≠ 𝐶(𝑚′)

function 𝐶 : {0, 1}𝑘 → {0, 1}𝑛

20

Code distance
▶ each block code is an injective

𝑚 ≠ 𝑚′ =⇒ 𝐶(𝑚) ≠ 𝐶(𝑚′)

function 𝐶 : {0, 1}𝑘 → {0, 1}𝑛

▶ define C = set of all codewords = 𝐶({0, 1}𝑘)

⇝ C ⊆ {0, 1}𝑛 |C| = 2𝑘 out of 2𝑛 𝑛-bit strings are valid codewords

▶ decoding = finding closest valid codeword

20

Code distance
▶ each block code is an injective

𝑚 ≠ 𝑚′ =⇒ 𝐶(𝑚) ≠ 𝐶(𝑚′)

function 𝐶 : {0, 1}𝑘 → {0, 1}𝑛

▶ define C = set of all codewords = 𝐶({0, 1}𝑘)

⇝ C ⊆ {0, 1}𝑛 |C| = 2𝑘 out of 2𝑛 𝑛-bit strings are valid codewords

▶ decoding = finding closest valid codeword

▶ distance of code:
𝑑 = minimal Hamming distance of any two codewords = min

𝑥 ,𝑦∈C
𝑑𝐻(𝑥 , 𝑦)

20

Code distance
▶ each block code is an injective

𝑚 ≠ 𝑚′ =⇒ 𝐶(𝑚) ≠ 𝐶(𝑚′)

function 𝐶 : {0, 1}𝑘 → {0, 1}𝑛

▶ define C = set of all codewords = 𝐶({0, 1}𝑘)

⇝ C ⊆ {0, 1}𝑛 |C| = 2𝑘 out of 2𝑛 𝑛-bit strings are valid codewords

▶ decoding = finding closest valid codeword

▶ distance of code:
𝑑 = minimal Hamming distance of any two codewords = min

𝑥 ,𝑦∈C
𝑑𝐻(𝑥 , 𝑦)

Implications for codes

1. Need distance 𝑑 to detect all errors flipping up to 𝑑 − 1 bits.

2. Need distance 𝑑 to correct all errors flipping up to
�
𝑑−1

2
�

bits.

20

Lower Bounds
▶ Main advantage of concept of code distance:

can prove lower bounds on block length

21

Lower Bounds
▶ Main advantage of concept of code distance:

can prove lower bounds on block length

Given block length 𝑛, message length 𝑘, code distance 𝑑, we must

otherwise no such code exists

have:

▶ Singleton bound: 2𝑘 ≤ 2𝑛−(𝑑−1) ⇝ 𝑛 ≥ 𝑘 + 𝑑 − 1
▶ proof sketch: We have 2𝑘 codeswords with distance 𝑑

after deleting the first 𝑑 − 1 bits, all are still distinct
but there are only 2𝑛−(𝑑−1) such shorter bitstrings.

21

Lower Bounds
▶ Main advantage of concept of code distance:

can prove lower bounds on block length

Given block length 𝑛, message length 𝑘, code distance 𝑑, we must

otherwise no such code exists

have:

▶ Singleton bound: 2𝑘 ≤ 2𝑛−(𝑑−1) ⇝ 𝑛 ≥ 𝑘 + 𝑑 − 1
▶ proof sketch: We have 2𝑘 codeswords with distance 𝑑

after deleting the first 𝑑 − 1 bits, all are still distinct
but there are only 2𝑛−(𝑑−1) such shorter bitstrings.

▶ Hamming bound: 2𝑘 ≤ 2𝑛Í⌊(𝑑−1)/2⌋
𝑓=0

𝑛
𝑓

�
▶ proof idea: consider “balls” of bitstrings around codewords

count bitstrings with Hamming-distance ≤ 𝑡 = ⌊(𝑑 − 1)/2⌋
correcting 𝑡 errors means all these balls are disjoint
so 2𝑘 · ball size ≤ 2𝑛

⇝ We will come back to these.
21

8.5 Hamming Codes

Parity Bit
▶ simplest possible error-detecting code: add a parity bit

0 1 1 0 1 1 1 1 0⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = 0

0 1 1 0 1 1 1 1 0 0

XOR

=

(
0 if number of ones is even
1 if number of ones is odd

22

Parity Bit
▶ simplest possible error-detecting code: add a parity bit

0 1 1 0 1 1 1 1 0⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = 0

0 1 1 0 1 1 1 1 0 0

XOR

=

(
0 if number of ones is even
1 if number of ones is odd

⇝ code distance 2

▶ can detect any single-bit error (actually, any odd number of flipped bits)

▶ used in many hardware (communication) protocols
▶ PCI buses, serial buses
▶ caches
▶ early forms of main memory

22

Parity Bit
▶ simplest possible error-detecting code: add a parity bit

0 1 1 0 1 1 1 1 0⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = 0

0 1 1 0 1 1 1 1 0 0

XOR

=

(
0 if number of ones is even
1 if number of ones is odd

⇝ code distance 2

▶ can detect any single-bit error (actually, any odd number of flipped bits)

▶ used in many hardware (communication) protocols
▶ PCI buses, serial buses
▶ caches
▶ early forms of main memory

very simple and cheap

cannot correct any errors
22

Clicker Question

 → sli.do/cs566

What do you think, how many extra bits do we need to detect a
single bit error in a message of 100 bits?

Error-correcting codes
▶ typical application: heavy-duty server

any downtime is expensive!

RAM
▶ bits can randomly flip (e. g., by cosmic rays)
▶ individually very unlikely,

but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

23

Error-correcting codes
▶ typical application: heavy-duty server

any downtime is expensive!

RAM
▶ bits can randomly flip (e. g., by cosmic rays)
▶ individually very unlikely,

but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

23

Error-correcting codes
▶ typical application: heavy-duty server

any downtime is expensive!

RAM
▶ bits can randomly flip (e. g., by cosmic rays)
▶ individually very unlikely,

but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

▶ Yes! store every bit three times!
▶ upon read, do majority vote
▶ if only one bit flipped, the other two (correct) will still win

23

Error-correcting codes
▶ typical application: heavy-duty server

any downtime is expensive!

RAM
▶ bits can randomly flip (e. g., by cosmic rays)
▶ individually very unlikely,

but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

▶ Yes! store every bit three times!
▶ upon read, do majority vote
▶ if only one bit flipped, the other two (correct) will still win

triples the cost! You want WHAT!?!

23

Error-correcting codes
▶ typical application: heavy-duty server

any downtime is expensive!

RAM
▶ bits can randomly flip (e. g., by cosmic rays)
▶ individually very unlikely,

but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

▶ Yes! store every bit three times!
▶ upon read, do majority vote
▶ if only one bit flipped, the other two (correct) will still win

triples the cost! You want WHAT!?!

Can do it with 11%

instead of 200% (!)

extra memory!

23

How to locate errors?
▶ Idea: Use several parity bits

▶ each covers a subset of bits
▶ clever subsets ⇝ violated/valid parity bit pattern narrows down error

24

How to locate errors?
▶ Idea: Use several parity bits

▶ each covers a subset of bits
▶ clever subsets ⇝ violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

24

How to locate errors?
▶ Idea: Use several parity bits

▶ each covers a subset of bits
▶ clever subsets ⇝ violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

▶ Consider 𝑛 = 7 bits 𝐵1 , . . . , 𝐵7 with the following constraints:

𝐵1

0012

𝐵2

0102

𝐵3

0112

𝐵4

1002

𝐵5

1012

𝐵6

1102

𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

24

How to locate errors?
▶ Idea: Use several parity bits

▶ each covers a subset of bits
▶ clever subsets ⇝ violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

▶ Consider 𝑛 = 7 bits 𝐵1 , . . . , 𝐵7 with the following constraints:

𝐵1

0012

𝐵2

0102

𝐵3

0112

𝐵4

1002

𝐵5

1012

𝐵6

1102

𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

Observe:
▶ No error (all 7 bits correct) ⇝ 𝐶 = 𝐶2𝐶1𝐶0 = 0002 = 0✓▶ What happens if (exactly) 1 bit, say 𝐵𝑖 flips?

24

How to locate errors?
▶ Idea: Use several parity bits

▶ each covers a subset of bits
▶ clever subsets ⇝ violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

▶ Consider 𝑛 = 7 bits 𝐵1 , . . . , 𝐵7 with the following constraints:

𝐵1

0012

𝐵2

0102

𝐵3

0112

𝐵4

1002

𝐵5

1012

𝐵6

1102

𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

Observe:
▶ No error (all 7 bits correct) ⇝ 𝐶 = 𝐶2𝐶1𝐶0 = 0002 = 0✓▶ What happens if (exactly) 1 bit, say 𝐵𝑖 flips?

𝐶𝑗 = 1 iff 𝑗th bit in binary representation of 𝑖 is 1

24

How to locate errors?
▶ Idea: Use several parity bits

▶ each covers a subset of bits
▶ clever subsets ⇝ violated/valid parity bit pattern narrows down error

flipped bit can be one of the parity bits!

▶ Consider 𝑛 = 7 bits 𝐵1 , . . . , 𝐵7 with the following constraints:

𝐵1

0012

𝐵2

0102

𝐵3

0112

𝐵4

1002

𝐵5

1012

𝐵6

1102

𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

Observe:
▶ No error (all 7 bits correct) ⇝ 𝐶 = 𝐶2𝐶1𝐶0 = 0002 = 0✓▶ What happens if (exactly) 1 bit, say 𝐵𝑖 flips?

𝐶𝑗 = 1 iff 𝑗th bit in binary representation of 𝑖 is 1 ⇝ 𝐶 encodes position of error!

24

(7, 4) Hamming Code
▶ How can we turn this into a code?

𝐵1

0012
𝐵2

0102
𝐵3

0112
𝐵4

1002
𝐵5

1012
𝐵6

1102
𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

25

(7, 4) Hamming Code
▶ How can we turn this into a code?

𝐵1

0012
𝐵2

0102
𝐵3

0112
𝐵4

1002
𝐵5

1012
𝐵6

1102
𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

▶ 𝐵4, 𝐵2 and 𝐵1 occur only in one constraint each ⇝ define them based on rest!

▶ (7, 4) Hamming Code – Encoding
1. Given: message 𝐷3𝐷2𝐷1𝐷0 of length 𝑘 = 4

25

(7, 4) Hamming Code
▶ How can we turn this into a code?

𝐵1

0012
𝐵2

0102
𝐵3

0112
𝐵4

1002
𝐵5

1012
𝐵6

1102
𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐷3 𝐷2 𝐷1 𝐷0

▶ 𝐵4, 𝐵2 and 𝐵1 occur only in one constraint each ⇝ define them based on rest!

▶ (7, 4) Hamming Code – Encoding
1. Given: message 𝐷3𝐷2𝐷1𝐷0 of length 𝑘 = 4
2. copy 𝐷3𝐷2𝐷1𝐷0 to 𝐵7𝐵6𝐵5𝐵3

25

(7, 4) Hamming Code
▶ How can we turn this into a code?

𝐵1

0012
𝐵2

0102
𝐵3

0112
𝐵4

1002
𝐵5

1012
𝐵6

1102
𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐷3 𝐷2 𝐷1 𝐷0𝑃2

⊕ 𝑃2 = 𝐷3 ⊕ 𝐷2 ⊕ 𝐷1

𝑃1

⊕ 𝑃1 = 𝐷3 ⊕ 𝐷2 ⊕ 𝐷0
𝑃0

⊕
𝑃0 = 𝐷3 ⊕ 𝐷1 ⊕ 𝐷0

▶ 𝐵4, 𝐵2 and 𝐵1 occur only in one constraint each ⇝ define them based on rest!

▶ (7, 4) Hamming Code – Encoding
1. Given: message 𝐷3𝐷2𝐷1𝐷0 of length 𝑘 = 4
2. copy 𝐷3𝐷2𝐷1𝐷0 to 𝐵7𝐵6𝐵5𝐵3
3. compute 𝑃2𝑃1𝑃0 = 𝐵4𝐵2𝐵1 so that 𝐶 = 0

25

(7, 4) Hamming Code
▶ How can we turn this into a code?

𝐵1

0012
𝐵2

0102
𝐵3

0112
𝐵4

1002
𝐵5

1012
𝐵6

1102
𝐵7

1112

𝐶0 = 𝐵1 ⊕ 𝐵3 ⊕ 𝐵5 ⊕ 𝐵7
!
= 0

𝐶1 = 𝐵2 ⊕ 𝐵3 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐶2 = 𝐵4 ⊕ 𝐵5 ⊕ 𝐵6 ⊕ 𝐵7
!
= 0

𝐷3 𝐷2 𝐷1 𝐷0𝑃2

⊕ 𝑃2 = 𝐷3 ⊕ 𝐷2 ⊕ 𝐷1

𝑃1

⊕ 𝑃1 = 𝐷3 ⊕ 𝐷2 ⊕ 𝐷0
𝑃0

⊕
𝑃0 = 𝐷3 ⊕ 𝐷1 ⊕ 𝐷0

▶ 𝐵4, 𝐵2 and 𝐵1 occur only in one constraint each ⇝ define them based on rest!

▶ (7, 4) Hamming Code – Encoding
1. Given: message 𝐷3𝐷2𝐷1𝐷0 of length 𝑘 = 4
2. copy 𝐷3𝐷2𝐷1𝐷0 to 𝐵7𝐵6𝐵5𝐵3
3. compute 𝑃2𝑃1𝑃0 = 𝐵4𝐵2𝐵1 so that 𝐶 = 0
4. send 𝐷3𝐷2𝐷1𝑃2𝐷0𝑃1𝑃0

25

(7, 4) Hamming Code – Decoding
▶ (7, 4) Hamming Code – Decoding

1. Given: block 𝐵7𝐵6𝐵5𝐵4𝐵3𝐵2𝐵1 of length 𝑛 = 7
2. compute 𝐶 (as above)
3. if 𝐶 = 0 no (detectable) error occurred

otherwise, flip 𝐵𝐶 (the 𝐶th bit was twisted)
4. return 4-bit message 𝐵7𝐵6𝐵5𝐵3

26

Clicker Question

 → sli.do/cs566

What is the code distance of (7, 4) Hamming code?

A 0

B 1

C 2

D 3

E 4

F 5

G 6

H ≥ 7

Clicker Question

 → sli.do/cs566

What is the code distance of (7, 4) Hamming code?

A 0

B 1

C 2

D 3✓

E 4

F 5

G 6

H ≥ 7

(7, 4) Hamming Code – Properties
▶ Hamming bound:

▶ 24 valid 7-bit codewords (on per message)
▶ any of the 7 single-bit errors corrected towards valid codeword
⇝ each codeword covers 8 of all possible 7-bit strings
▶ 24 · 23 = 27 ⇝ exactly cover space of 7-bit strings

27

(7, 4) Hamming Code – Properties
▶ Hamming bound:

▶ 24 valid 7-bit codewords (on per message)
▶ any of the 7 single-bit errors corrected towards valid codeword
⇝ each codeword covers 8 of all possible 7-bit strings
▶ 24 · 23 = 27 ⇝ exactly cover space of 7-bit strings

▶ distance 𝑑 = 3

▶ can correct any 1-bit error

27

(7, 4) Hamming Code – Properties
▶ Hamming bound:

▶ 24 valid 7-bit codewords (on per message)
▶ any of the 7 single-bit errors corrected towards valid codeword
⇝ each codeword covers 8 of all possible 7-bit strings
▶ 24 · 23 = 27 ⇝ exactly cover space of 7-bit strings

▶ distance 𝑑 = 3

▶ can correct any 1-bit error

▶ How about 2-bit errors?
▶ We can detect that something went wrong.
▶ But: above decoder mistakes it for a (different!) 1-bit error and “corrects” that

▶ Variant: store one additional parity bit for entire block
⇝ Can detect any 2-bit error, but not correct it.

27

Hamming Codes – General recipe
▶ construction can be generalized:

▶ Start with 𝑛 = 2ℓ − 1 bits for ℓ ∈ ℕ (we had ℓ = 3)

▶ use the ℓ bits whose index is a power of 2 as parity bits
▶ the other 𝑛 − ℓ are data bits

28

Hamming Codes – General recipe
▶ construction can be generalized:

▶ Start with 𝑛 = 2ℓ − 1 bits for ℓ ∈ ℕ (we had ℓ = 3)

▶ use the ℓ bits whose index is a power of 2 as parity bits
▶ the other 𝑛 − ℓ are data bits

▶ Choosing ℓ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

28

Hamming Codes – General recipe
▶ construction can be generalized:

▶ Start with 𝑛 = 2ℓ − 1 bits for ℓ ∈ ℕ (we had ℓ = 3)

▶ use the ℓ bits whose index is a power of 2 as parity bits
▶ the other 𝑛 − ℓ are data bits

▶ Choosing ℓ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

simple and efficient coding / decoding

fairly space-efficient

28

Outlook
▶ Indeed: (2ℓ−1, 2ℓ−ℓ−1) Hamming Code is “perfect”

= matches Hamming lower bound

code

⇝ cannot use fewer bits . . .

▶ if message length is 2ℓ − ℓ − 1 for ℓ ∈ ℕ≥2
i. e., one of 1, 4, 11, 26, 57, 120, 247, 502, 1013, . . .

▶ and we want to correct 1-bit errors

29

Outlook
▶ Indeed: (2ℓ−1, 2ℓ−ℓ−1) Hamming Code is “perfect”

= matches Hamming lower bound

code

⇝ cannot use fewer bits . . .

▶ if message length is 2ℓ − ℓ − 1 for ℓ ∈ ℕ≥2
i. e., one of 1, 4, 11, 26, 57, 120, 247, 502, 1013, . . .

▶ and we want to correct 1-bit errors

▶ For other scenarios, finding good codes is an active research area
▶ information theory predicts that almost all randomly chosen codes are good(!)
▶ but these are inefficient to decode
⇝ clever tricks and constructions needed

e. g. low density parity check codes

29

