ik

4 7

) B HEA H [[.
2L NOH I -
L EH NS
HME T =0
1O FRML D=L
A HNHMOE T
) [L = A H = T
)LD OWNMHF
1RO =0
A H AT UOL
T NEBEH UL
2= OB H< 6
IO =2mBb<U
1R A0 2
I HIHU I = ¢
1RO dHIE
2OZ2H<COHF
COMRMLBEHEDOC
1 dHL 2 ML HC
> <L O [[[[T

= | |

Clever Codes

2 December 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024 /25)

Philipps-Univer:

sitat Marburg

version 2024-12-03 13:01

Learning Outcomes

Unit 8: Clever Codes

1.

A R

Know the principles and performance characteristics of arithmetic coding.
Judge the use of arithmetic coding in applications.

Understand the context of error-prone communication.

Understand concepts of error-detecting codes and error-correcting codes.
Know and understand Hamiming codes, in particular (7,4) Hamming code.

Reason about the suitability of a code for an application.

Outline

8 Clever Codes

8.1
8.2
8.3
8.4
8.5

Arithmetic Coding
Practical Arithmetic Coding
Error Correcting Codes
Coding Theory

Hamming Codes

8.1 Arithmetic Coding

Stream Codes

> Recall: (binary) character encoding E : © — {0, 1}*
> Huffman codes optimal for any given character frequencies

~+ encoding all characters with that code minimizes compressed size

Stream Codes

> Recall: (binary) character encoding E : © — {0, 1}*
» Huffman codes optimal for any given character frequencies

~+ encoding all characters with that code minimizes compressed size

. if we assume that all characters must be encoded individually by a codeword!

Stream Codes

> Recall: (binary) character encoding E : © — {0, 1}*
» Huffman codes optimal for any given character frequencies

~+ encoding all characters with that code minimizes compressed size

. if we assume that all characters must be encoded individually by a codeword!

> Stream codes instead compress entire sequence of characters
» RLE and LZW are examples of stream codes ~+ can sometimes do better

» Two indicative examples
1. “Low entropy bits:” X = {0,1}, highly skewed: pg = 0.99

~ entropy H(1l5, 1o5) ~ 0.08 bits per character,
Huffman code must use 1 bit per character!
~+ “optimal” Huffman code gives 12-fold space increase over entropy!

Stream Codes

> Recall: (binary) character encoding E : © — {0, 1}*
» Huffman codes optimal for any given character frequencies

~+ encoding all characters with that code minimizes compressed size

. if we assume that all characters must be encoded individually by a codeword!

> Stream codes instead compress entire sequence of characters
» RLE and LZW are examples of stream codes ~+ can sometimes do better

» Two indicative examples
1. “Low entropy bits:” X = {0,1}, highly skewed: pg = 0.99

~ entropy H(1l5, 1o5) ~ 0.08 bits per character,
Huffman code must use 1 bit per character!
~+ “optimal” Huffman code gives 12-fold space increase over entropy!

» Can certainly do better here (RLE!)
2. “Trits”: X = {0, 1 2} equally likely
~ entropy H(3, 1, 1) =1g(3) ~ 1.58 bits per character,
Huffman code uses average of \1 1+ 3 ‘2= j ~ 1.67

» Can we do better?

A Decent Hack: Block Codes
» Huffman on trits wastes ~ 0.0817 bits per character and over 5 % of space

> A simple trick can reduce this substantially!
» treat 5 trits as one “supercharacter”, e.g.,
~~ 3% = 243 possible combinations
~~ encode these using 8 bits (with 28 = 256 possible combinations)

> entropy lg(3°) ~ 7.92 bits, so less than 0.1 % wasted space!

A Decent Hack: Block Codes

» Huffman on trits wastes ~ 0.0817 bits per character and over 5 % of space

> A simple trick can reduce this substantially!
» treat 5 trits as one “supercharacter”, e.g.,
~~ 3% = 243 possible combinations
~~ encode these using 8 bits (with 28 = 256 possible combinations)

> entropy lg(3°) ~ 7.92 bits, so less than 0.1 % wasted space!

»> We can even use a Huffman code for the supercharacters to handle nonuniformity!

» For the low-entropy bits, could use 3 bits
~ probabilities:
:0.97
(@01, 010, : 0.0098
(017, [@eT, : 0.000099
(11T: 0.000001
~+ with Huffman code, 1.06 bits per superchar of 3 input bits

~+ almost factor 3 better; can improve with larger blocks!

Block Codes — A Panacea?

» Using supercharacters works well in our examples.

m Hmmm .. . so why don’t we treat the entire source text as one large block?
@ Wouldn't that be even better!?

Block Codes — A Panacea?

» Using supercharacters works well in our examples.

m Hmmm .. . so why don’t we treat the entire source text as one large block?
@ Wouldn't that be even better!?

~~ We can optimally compress any text, without doing anything intelligent!

Block Codes — A Panacea?

» Using supercharacters works well in our examples.

m Hmmm .. . so why don’t we treat the entire source text as one large block?
@ Wouldn't that be even better!?) l, (

2 <3
~~ We can optimally compress any text, without doing anything intelligent!? w
s

Block Codes — A Panacea?

» Using supercharacters works well in our examples.
m Hmmm .. . so why don’t we treat the entire source text as one large block?
@ Wouldn't that be even better!?) ; (
. . . o WS
~~ We can optimally compress any text, without doing anything intelligent!? w
e

% For general case, need to communicate the supercharacter encoding

> Blocks of k characters need Q(c¥) space for code
» Huffman code has to be part of coded message

~» Can only sensibly use block codes for small ¢ and k

There is no such thing as a free lunch . . .

Arithmetic COding except in isolated lucky cases

> Also: Block codes still had ©(n) wasted space for sequences of 1 symbols

Arithmetic Coding

except in isolated lucky cases

> Also: Block codes still had ©(n) wasted space for sequences of 1 symbols

» Arithmetic Coding:

0. Maintain [¢,{ + p) C [0,1); initially ¢ =0, p =1

1. Zoom into subinterval for each character

2. Output dyadic encoding of final interval

» Step 1: “Zoom” for each character (trit) in S[0..n): ?)1
» Of the current subinterval [/, { + p), —0 o 1 *)
take first, second or last third 0 i Z 1
depending whether S[i] = 0, 1, resp. 2:
— 1.1 2
@.—£’+1S[1]~§-p N 2
p=p-} —T
0 -
E/,J/_/h/) &~ r
— S l
SR wa L= 5 pe g
SOV el g e 1.0
sty T

Arithmetic COding except in isolated lucky cases
> Also: Block codes still had ©(n) wasted space for sequences of 1 symbols
» Arithmetic Coding:
0. Maintain [¢,{ + p) C [0,1); initially ¢ =0, p =1
1. Zoom into subinterval for each character

2. Output dyadic encoding of final interval

» Step 1: “Zoom” for each character (trit) in S[0..n): ?)1
» Of the current subinterval [/, { + p), —0 o 1 * 2)
take first, second or last third 0 i Z 1
depending whether S[i] = 0, 1, resp. 2:
C:=(+S[i]-3-p
p::p'% [9(01(13 (A«J[’ va\‘u fm o—:‘c(c

» Step 2: Dyadic encoding
x x+1
2m’ gm

» Find smallest m so that 3x € Ny with [) ClL,l+p)

» Output x in binary using m bits.

Arlthmetlc COding except in isolated lucky cases

> Also: Block codes still had ©(n) wasted space for sequences of 1 symbols

» Arithmetic Coding:
0. Maintain [¢,{ + p) C [0,1); initially ¢ =0, p =1
1. Zoom into subinterval for each character

2. Output dyadic encoding of final interval

» Step 1: “Zoom” for each character (trit) in S[0..n): ?)1
» Of the current subinterval [/, { + p), —0 o 1 *)
take first, second or last third 0 i Z 1

depending whether S[i] = 0, 1, resp. 2:
C:=(+S[i]-3-p
pi=p- %

» Step 2: Dyadic encoding

+1
» Find smallest 2 so that 3x € Ny with@ [¢,¢+p)

» Output x in binary using m bits.

~> Encode n trits in 1 1g(3) + 2 bits(!) without cheating

Arithmetic Coding — Encode Trits Example
» S5[0..n) =21101 (n =5)

»> Step 1: Zoom into subintervals

w N

[KY

(e]

S ey

N

[teration ! p Interval (rounded)
0 0 1 [0.00000,1.00000)
1 2 1 [0.66667,1.00000) —_—
2 Z L [0.77778,0.88889)
22 1
3 Z L [0.81482,0.85185)
66 1
4 g L [0.81482,0.82716)
199 1
5 I3 55 [0.81893,0.82305)

Arithmetic Coding — Encode Trits Example
» S5[0..n) =21101 (n =5)

»> Step 1: Zoom into subintervals

[teration ! p Interval (rounded)
0 0 1 [0.00000,1.00000)
1 2 1 [0.66667,1.00000) —_—
2 Z L [0.77778,0.88889)
22 1
3 Z L [0.81482,0.85185)
66 1
4 g L [0.81482,0.82716)
199 1
5 I3 55 [0.81893,0.82305)

» Step 2: Dyadic encoding for interval [{,¢ +p) = [%' %)

» Must have m > 1g(1/p) > 7

Arithmetic Coding — Encode Trits Example
» S5[0..n) =21101 (n =5)

»> Step 1: Zoom into subintervals

[teration ! p Interval (rounded)
0 0 1 [0.00000,1.00000) |
1 2 1 [0.66667,1.00000) —_—
2 Z L [0.77778,0.88889) —
22 1
3 % 5 [0.81482,0.85185) H
66 1
4 g L [0.81482,0.82716) H
199 1
5 3 a3 [0.81893,0.82305) |

199 200)

» Step 2: Dyadic encoding for interval [{,¢ +p) = [243 243

» Must have m > 1g(1/p) > 7
» m = 8: smallest x /2" > 22 is x = 210, but [210/256, 211/256) ~ [0.82031,0.82422) ¢ [¢,{ +p)

Arithmetic Coding — Encode Trits Example

» S5[0..n) =21101 (n =5)

»> Step 1: Zoom into subintervals

[teration ! p Interval (rounded)
0 0 1 [0.00000,1.00000) |
1 2 1 [0.66667,1.00000) —_—
2 Z L [0.77778,0.88889) —
22 1
3 % 5 [0.81482,0.85185) H
66 1
4 g L [0.81482,0.82716) H
199 1
5 I3 55 [0.81893,0.82305) |

» Step 2: Dyadic encoding for interval [{,¢ +p) = [

59 i)
2437 243

» Must have m > 1g(1/p) > 7

> m =8 smallest x/2" > 132 is x = 210, but [210/256,211/256) ~ [0.82031,0.82422) ¢ [(, ¢ +p)
> m =9: smallest x/2" > 12 is x = 420 and [420/512,421/512) ~ [0.82031,0.82227) C [¢, £+ p) \/

Arithmetic Coding — Encode Trits Example

» S5[0..n) =21101 (n =5)

»> Step 1: Zoom into subintervals

[teration ! p Interval (rounded)
0 0 1 [0.00000,1.00000) |
1 2 1 [0.66667,1.00000) —_—
2 Z L [0.77778,0.88889) —
22 1
3 % 5 [0.81482,0.85185) H
66 1
4 g L [0.81482,0.82716) H
199 1
5 I3 55 [0.81893,0.82305) |

» Step 2: Dyadic encoding for interval [{,¢ +p) = [

59 i)
2437 243

» Must have m > 1g(1/p) > 7

> m =8 smallest x/2" > 132 is x = 210, but [210/256,211/256) ~ [0.82031,0.82422) ¢ [(, ¢ +p)
> m =9: smallest x/2" > 12 is x = 420 and [420/512,421/512) ~ [0.82031,0.82227) C [¢, £+ p) \/

~» Output x = 420 in binary with m = 9 digits: 110100100
== sttt

Versatility of Arithmetic Coding -

ba

bba
Bbba

S
o011 20!
o101 2010
o111 2011
ioo1 0100
o011 10!
o101 110
o111 11t
10001 1000

10014 1001

010

011

(of

bb ibb bbbb

bbb

10100
10101

1010

10111 s

10110 e

o
g

=

| ———oO

bbO

tioo1 1100
Hoys 1101
101 1110

iy, 1t

-
-

(=]

-

Adaptive Model

hoba Q

Context
(sequence thus far)

P(a)=

b P(a|b)=
bb P(a|bb)=
bbb P(a|bbb)=
bbba P(a|bbba) =

Probability of next symbol
0.425 P(b)=0.425 P(D)
0.28 P(b|b)=0.57 P(O|b)
0.21 P(b|bb)=0.64 P(0|bb)
0.17 P(b|bbb)=0.68 P(O|bbb)
0.28 P(b|bbba)=0.57 P(O|bbba)

=0.15
=0.15
=0.15
=0.15
=0.15

adapted from Figure 6.4 of MacKay: Information Theory, Inference, and Learning Algorithms 2003

- 10011100

i 10011110
* ?\ 10011111

10010111
10011000

10011001
10011010

10011011 10011

10011101

-\10100000

100111104

Arithmetic Coding — General framework

> Note: Arithmetic coder doesn’t care if probabilities or even ¢ change all the time!
» Aslong as encoder and decoder know from context what they are!

Arithmetic Coding — General framework

> Note: Arithmetic coder doesn’t care if probabilities or even ¢ change all the time!
» Aslong as encoder and decoder know from context what they are!

General stochastic sequence:
Sequence of random variables Xy, X1, X», . .. such that

1. X; e€[0..U;)u{s} (We use $ to signal “end of text”)

2. P[X;=jl=Pj

3. both U; and Pj; are random variables as they depend on Xy, ... Xj_1,
but conditioned on Xp, ..., X;_1, they are fixed and known:
Pjj = Pij(Xo, ..., Xi-1) = P[X;=j|Xo,...,Xi-1]
U; = U;j(Xop,...,Xj—1) = max{j: Pi]'(X(), ..., X;j_1) >0}

Arithmetic Coding — General framework

> Note: Arithmetic coder doesn’t care if probabilities or even ¢ change all the time!
» Aslong as encoder and decoder know from context what they are!

General stochastic sequence:
Sequence of random variables Xy, X1, X», . .. such that
1. X; e€[0..U;)u{s} (We use $ to signal “end of text”)
2. P[Xi=jl="Pj
3. both U; and Pj; are random variables as they depend on Xy, ... Xj_1,
but conditioned on Xp, ..., X;_1, they are fixed and known:
Pjj = Pij(Xo, ..., Xi-1) = P[X;=j|Xo,...,Xi-1]
U = Ui(Xo, ..., Xi-1) = max{j: P;j(Xo,..., Xj-1) > 0}

» Can model arbitrary dependencies on previous outcomes

» Assume here that random process is known by both encoder and decoder (fixed coding)
otherwise extra space needed to encode model!

Arithmetic Coding — Encoding

1 procedure arithmeticEncode(Xj, . .., Xy):

2 /] Assume model U; and P;; are fixed.

3 /] Assume X; € [0..U;) fori < nand X;, = $
An =%

4 // Step 1: Interval zooming <& S

5 (=0, p:=1 —— ‘ ,

6 fori :=0,...,n—1do " —
X;—1

7 q:= ZPZ']‘; 9 = me\OM S *ﬁz,!
j=0

8 {:=0+q-p;, p=p-Pix

9 end for

10 q := 1= Py // encode $ as last character

1 C=0+q-p;, p:=p-Pus

12 // Step 2: Dyadic encoding

13 m := [lg(1/p)] -1

14 do

15 m:=m+1;, x:=[f-2"]
16 while (x +1)/2™ > { +p

17 return x in binary using m bits

Arithmetic Coding — Decoding

AN

1 procedure arithmeticDecode(C|0..1m)):

2

w

wl’i // final interval [x /2™, (x + 1)/2)

E’(W‘Wﬂl > a<LaVJL\'M Wua{.‘g

(-2 [“7}‘,,,5)

PLSt1-a] STo- <3

| Sfe -] + 4

/] Assume model U; and P;; are fixed.
// C[0..m) bit string produced by arithmeticEncode

=g p=iy =0

while true
¢ :=0; q :=0//Decode next character c
while ¢ + g - p < x/2™ // Iterate through characters until final interval

c+ Z

if c == U; + 1 //reached $ HZ: *?J
X[i] = $ [(f x \ —
return X[0..7] 9 %
else
qg:=q+Pi; c:=c+1
end while
c:i=c~-1; q:=q~P;.//weovershot by 1
X[i] :== ¢
t:=t+q-p; p=p-Pic
i=i+1
end for

10

8.2 Practical Arithmetic Coding

Arithmetic Coding — Numerics

> Asimplemented above, p usually gets smaller by a
constant factor with each character
~ p gets exponentially small in 7!

» (does not get smaller in absolute terms, but
we need it to ever higher accuracy

~~ requires ()(n) bit precision and exact arithmetic!

11

Arithmetic Coding — Numerics

> Asimplemented above, p usually gets smaller by a
constant factor with each character
~ p gets exponentially small in 7!

» (does not get smaller in absolute terms, but
we need it to ever higher accuracy

~~ requires ()(n) bit precision and exact arithmetic!

» With a clever trick, this can be avoided!
> If[¢,¢+p) C [0, 1), we know:
> Our final x with [, $5) C [¢, ¢+ p)
must start with a 0-bit!

~» Output a 0 and renormalize interval:
0:=20p:=2p

ba

= 00000
= 000010000
= 00010
= 000110001
= 00100
= 00101

0010

= 00110 Y

= 001110011

= 01000
— 01001
= 01010
= 01011
= 01100
= 01101
= 01110

— 011110111

0100

0101

0110

-
o

011

bba

bbb bbbb

bbb

bbba 5

= 10000
= 10001
S
SouR
SoTm

1000

100

bbO

bO

= 11000
= 11001

1100

= 11010 L

1101

=
o

11

N~

Arithmetic Coding — Numerics

> Asimplemented above, p usually gets smaller by a
constant factor with each character
~ p gets exponentially small in 7!

» (does not get smaller in absolute terms, but
we need it to ever higher accuracy

~~ requires ()(n) bit precision and exact arithmetic!

» With a clever trick, this can be avoided!
> If[¢,0+p)C O, %), we know:
» Our final x with [2—f,,, "z—J,r,ll) cle,t+p)
must start with a 0-bit!
~» Output a 0 and renormalize interval:
0:=20p:=2p
> If[(,¢+p) C [4,1), similarly:
» Output 1 and renormalize:
t=10-1
C:=20p:=2p

=000
0000
o100
: o

= 01100
= 01101

0110

= 01110
ba = 011110111

= 10000
= 10001 e

11

Arithmetic Coding — Renormalization

Does this guarantee { and p stay in a reasonable range?

12

Arithmetic Coding — Renormalization

Does this guarantee { and p stay in a reasonable range?

» No! Consider (uniform) trits in {0, 1, 2} again and encode

11111111111111111...
1.n 1 1 1 N .1 3™
> = = f:— = — 000 = 312___
r=0G)" 3Toty T Z 2" 72
1

i=1
~ {<landl+p >3 ~ nextbitunknown as of yet

12

Arithmetic Coding — Renormalization

Does this guarantee { and p stay in a reasonable range?

» No! Consider (uniform) trits in {0, 1, 2} again and encode

11111111111111111...

If[¢, 0 +p) C [4, 4) next two bits are either 01 or 10 e

Remember an “outstanding opposite bit”

Renormalize:
{ = —%
(=20, p:=2p

{ and p remain in range of P;;

23_ “7

next bit unknown as of yet

3—}1

U
(increment counter) T
&

round P;; to integer multiple of 27"~ fixed-precision arithmetic

— 00000

0000

= 00001

= 00010
— 00011
— 00100
= 00101

0001

0010

Zootto %0t

— 00111
= 01000
— 01001

0011

0100

0101

010

— 01010
T 01011
el £

= 01100
— 01101

0110

% 01110
= 01111

= 10000

— 10001
10010
10011
10100

= 10101 """
= 10110, .,

= 10111

0111

1000

1001

1010

1011

011

2

01

% 11000

= 11001

1100

— 11010

— 11011

1101

11

o

— 11100

1110

= 11101

= 11110
= 11111

1111

11

1

12

Fixed Precision Arithmetic Encode

Detailed code from Moffat, Neal, Witten, Arithmetic Coding Revisited, ACM Trans. Inf. Sys. 1998

Note: Lisour{, Risourp, b < w is #bits for variables

~—

arithmetic_encode(l, h,t)

(1)
(2)
(3)

(4)

/* Arithmetically encode the range [l/t,h/t) using low-precision arithmetic.
The state variables R and L are modified to reflect the new range, and then
renormalized to restore the initial and final invariants 2°2 < R < 2b°1,
0<L<20-20-2 and L+ R<2b */
Set r «— Rdivt
Set L «— L + r times [
If h <t then

set R + r times (h —)
else

set R +— R — 7 times |
While R < 26-2 do

Use Algorithm ENCODER RENORMALIZATION (Figure 7) to renormalize R,

adjust L, and output one bit

13

Fixed Precision Renormalize

In erithmetic.encode()
/* Reestablish the invariant on R, namely that 2°=2 < R < 2*~1. Each doubling
of R corresponds to the output of one bit, either of known value, or of value
opposite to the value of the next bit actually output */
(4) While R < 2°-2 do
If L+ R <201 then
bit_plus_follow(0)
else if 20=1 < L then
bit_plus_follow(1)
Set L « L — 2b-1
else
Set bits_outstanding « bits_outstanding +1 and L « L — 2b—2
Set L + 2L and R + 2R

bit_plus_follow(x)
/* Write the bit = (value 0 or 1) to the output bit stream, plus any outstanding

following bits, which are known to be of opposite polarity */
(1) write_one_bit(z).
(2) While bits_outstanding > 0 do
write_one_bit(1 — z)
Set bits.outstanding + bits_outstanding — 1

14

Fixed Precision Arithmetic Decode

Functions decode_target and arithmetic_decode to be called alternatingly.

decode_target(t)
/* Returns an integer target, 0 < target < t that is guaranteed to lie in the
range [l,h) that was used at the corresponding call to erithmetic_encode() */
(1) Set r « Rdivt
(2) Return (min{t — 1, D div r})

¢ u)
arithmetic_decode(l, h, t) [
/* Adjusts the decoder’s state variables R and D to reflect the changes made
in the encoder during the corresponding call to arithmetic_encode(). Note
that, compared with Algorithm CACM CobEeR (Figure 6), the transformation
D =V — L is used. It is also assumed that r has been set by a prior call to
decode_target() */
(1) Set D + D —r times
(2) If h < t then
set R « r times (h — 1)
else
set R «— R —r times [
(3) While R <22 do
Set R+ 2R and D « 2D + read_one_bit()

15

Arithmetic Coding Discussion

E@ Subtle code (~ libraries!)
E@ Typically slower to encode/decode than Huffman codes

E(;) Encoded bits can be produced /consumed in bursts

[b Extremely versatile w. r. t. random process

[ﬁ Almost optimal space usage / compression

[ﬁ Widely used (instead of Huffman) in JPEG, zip variants, . ..

16

8.3 Error Correcting Codes

Noisy Communication

» most forms of communication are “noisy”

» humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

17

Noisy Communication

» most forms of communication are “noisy”

» humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

s N

» How do humans cope with that?
» slow down and/or speak up

» ask to repeat if necessary

Noisy Communication

» most forms of communication are “noisy”

» humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

s N

» How do humans cope with that?
» slow down and/or speak up

» ask to repeat if necessary

» But how is it possible (for us) L
to decode a message in the presence of noise & errors?

[Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!]

Noisy Communication

» most forms of communication are “noisy”

» humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

» How do humans cope with that?
» slow down and/or speak up

» ask to repeat if necessary

» But how is it possible (for us) -

€

~

to decode a message in the presence of noise & errors?

[Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!]

~ We can
1. detect errors “This sentence has aao pi dgsdho gioasghds.”
2. correct (some) errors “Tiny errs ar corrrected automaticly.”

(sometimes too eagerly as in the Chinese Whispers / Telephone)

UGH, PEOPLE ARE MAD AT ME AGAIN
BECPL)}SE THEY DON'T READ CAREFULLY.

T'MBEING PERFECTLY CLEAR.
TS NOT My FAULT IF EVERYONE
MISINTERPRETS WHAT L SAY.

WOL, SOUNDS LIKE YOURE
GREAT AT COMMUNICATING,
AN ACTIVITY THAT FAMOUSLY
INVOLVES JUST ONE. PERSON.

N

17

Noisy Channels

> computers: copper cables &
electromagnetic interference

» transmit a binary string

» but occasionally bits can “flip”

~+ want a robust code

18

Noisy Channels

> computers: copper cables &
electromagnetic interference

» transmit a binary string
> but occasionally bits can “flip”

~+ want a robust code

» We can aim at

1. error detection ~» can request a re-transmit

2. error correction ~» avoid re-transmit for common types of errors

18

Noisy Channels

> computers: copper cables &
electromagnetic interference

» transmit a binary string
> but occasionally bits can “flip”

~+ want a robust code

» We can aim at
1. error detection ~» can request a re-transmit
2. error correction ~» avoid re-transmit for common types of errors

» This will require redundancy: sending more bits than plain message

~~ goal: robust code with lowest redundancy '\, = . opposite of compression!

18

Clicker Question

What do you think, how many extra bits do we need to detect a
single bit error in a message of 100 bits?

o

D |~ sli.do/cs566

Clicker Question

What do you think, how many extra bits do we need to correct a
single bit error in a message of 100 bits?

o

D |~ sli.do/cs566

8.4 Coding Theory

Block codes

» model:

> want to send message S € {0, 1}* (bitstream) across a (communication) channel

> any bit transmitted through the channel might flip (6 — 1resp.1 — 0)
no other errors occur (no bits lost, duplicated, inserted, etc.)

» instead of S, we send encoded bitstream C € {0, 1}*
sender encodes S to C, receiver decodes C to S (hopefully)

~» what errors can be detected and/or corrected?

19

Block codes

» model:

> want to send message S € {0, 1}* (bitstream) across a (communication) channel

> any bit transmitted through the channel might flip (6 — 1resp.1 — 0)
no other errors occur (no bits lost, duplicated, inserted, etc.)

» instead of S, we send encoded bitstream C € {0, 1}*
sender encodes S to C, receiver decodes C to S (hopefully)

~» what errors can be detected and/or corrected?
» all codes discussed here are block codes

» divide S into messages m € {0, 1}¥ of k bits each (k = message length)
» encode each message (separately) as C(m) € {0, 1}" (n = block length, n > k)

~+ can analyze everything block-wise

19

Block codes

» model:

> want to send message S € {0, 1}* (bitstream) across a (communication) channel

> any bit transmitted through the channel might flip (6 — 1resp.1 — 0)
no other errors occur (no bits lost, duplicated, inserted, etc.)

» instead of S, we send encoded bitstream C € {0, 1}*
sender encodes S to C, receiver decodes C to S (hopefully)

~» what errors can be detected and/or corrected?
» all codes discussed here are block codes

» divide S into messages m € {0, 1}¥ of k bits each (k = message length)
» encode each message (separately) as C(m) € {0, 1}" (n = block length, n > k)

~+ can analyze everything block-wise
> between 0 and 1 bits might be flipped ~ invalid code

» how many flipped bits can we definitely detect?
» how many flipped bits can we correct without retransmit?

i.e. decoding m still possible

19

Clicker Question

What is the Hamming distance between heart and beard?

tc&v:‘

o -

D |~ sli.do/cs566

Code distance

m#m’ = C(m)# C(m’)

» each block code is an injective function C : {0, 1}¥ — {0, 1}"

20

Code distance

m+m’ = C(m)# C(m’)

» each block code is an injective function C : {0, 1}F — {0, 1}"

» define C = set of all codewords = C({0, 1}*)

~ € c{0,1}" |C| = 2F out of 2" n-bit strings are valid codewords

» decoding = finding closest valid codeword

20

Code distance

m#m = C(m)# C(m’)

» each block code is an injective function C : {0, 1}¥ — {0, 1}"

» define C = set of all codewords = C({0, 1}*)

~ € c{0,1}" [I(?I = 2k out of 2" n-bit strings are valid codewords

» decoding = finding closest valid codeword

» distance of code:
d = minimal Hamming distance of any two codewords = mir(12 du(x,y)
x,y€

20

Code distance

m+m’ = C(m)# C(m’)

» each block code is an injective function C : {0, 1}F — {0, 1}"

» define C = set of all codewords = C({0, 1}*)

~ € c{0,1}" [I(?I = 2 out of 2" n-bit strings are valid codewords

» decoding = finding closest valid codeword

» distance of code:
d = minimal Hamming distance of any two codewords = miré du(x,y)
x,y€

Implications for codes

1. Need distance d to detect all errors flipping up to d — 1 bits.
2. Need distance d to correct all errors flipping up to Ld%lj bits.

20

Lower Bounds

» Main advantage of concept of code distance:
can prove lower bounds on block length

21

Lower Bounds

» Main advantage of concept of code distance:
can prove lower bounds on block length otherwise no such code exists

Given block length 7, message length k, code distance d, we must hgve: "

ﬁ/_—/’—;

» Singleton bound: 2F < 2"V o p>k+d-1 e
. V4
» proof sketch: We have 2K codeswords with distance d

after deleting the first d — 1 bits, all are still distinct

but there are only 2" ~(?~1) such shorter bitstrings.

21

Lower Bounds

» Main advantage of concept of code distance:
can prove lower bounds on block length otherwise no such code exists

Given block length 7, message length k, code distance d, we must have:

» Singleton bound: 2F < 2"V o p>k+d-1

» proof sketch: We have 2K codeswords with distance d
after deleting the first d — 1 bits, all are still distinct
but there are only 2"~ (?~1) such shorter bitstrings.

2n =9
d-1)/2
ZL()/2] ()

» proof idea: consider “balls” of bitstrings around codewords
count bitstrings with Hamming-distance < ¢ = [(d — 1)/2
correcting t errors means all these balls are disjoint

» Hamming bound: 2* <

~~ We will come back to these.

21

8.5 Hamming Codes

Parity Bit

> simplest possible error-detecting code: add a parity bit

[011011110]0
—— {0 if number of ones is even

38 8 8 & ¢ 1 if number of ones is odd
dlolelolol®ldld =0

XOR

22

Parity Bit
» simplest possible error-detecting code: add a parity bit

[011011110]0
—— {0 if number of ones is even

1 if number of ones is odd

dleleleleleolelsdl =0
XOR

. o = & '
~~ code distance 2 -

> can detect any single-bit error (actually, any odd number of flipped bits)

> used in many hardware (communication) protocols
» PCI buses, serial buses
> caches

» early forms of main memory

22

Parity Bit
» simplest possible error-detecting code: add a parity bit

[011011110]0
—— {0 if number of ones is even

1 if number of ones is odd

0101000101016 160 =0
XOR
~~ code distance 2

> can detect any single-bit error (actually, any odd number of flipped bits)

> used in many hardware (communication) protocols
» PCI buses, serial buses
> caches

» early forms of main memory
[b very simple and cheap

E(;) cannot correct any errors

22

Clicker Question

What do you think, how many extra bits do we need to detect a
single bit error in a message of 100 bits?

o

D |~ sli.do/cs566

Error-correcting codes

any downtime is expensive!

> typical application: heavy-duty server RAM
» bits can randomly flip (e.g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the- cosmic- rays-v2

23

Error-correcting codes

any downtime is expensive!

> typical application: heavy-duty server RAM
» bits can randomly flip (e.g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the- cosmic- rays-v2

267 ?

2 Can we correct a bit error without knowing where it occurred? How?

23

Error-correcting codes

any downtime is expensive!

> typical application: heavy-duty server RAM
» bits can randomly flip (e.g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the- cosmic- rays-v2

267 ?

2 Can we correct a bit error without knowing where it occurred? How?

> Yes! store every bit three times!

» upon read, do majority vote
» if only one bit flipped, the other two (correct) will still win

23

Error-correcting codes

any downtime is expensive!

> typical application: heavy-duty server RAM
» bits can randomly flip (e.g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the- cosmic- rays-v2

267 ?

2 Can we correct a bit error without knowing where it occurred? How?

> Yes! store every bit three times!
» upon read, do majority vote
» if only one bit flipped, the other two (correct) will still win
[@ triples the cost!

23

Error-correcting codes

any downtime is expensive!

> typical application: heavy-duty server RAM
» bits can randomly flip (e.g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the- cosmic- rays-v2

267 ?

2 Can we correct a bit error without knowing where it occurred? How?

> Yes! store every bit three times! 6(6 =&

» upon read, do majority vote (Mekv hrk)
» if only one bit flipped, the other two (correct) will still win
[@ triples the cost!

instead of 200% (!)

-:-ﬁﬁ /
@’@ Can do it with 11% extra memory!
N

23

How to locate errors?

> Idea: Use several parity bits
» each covers a subset of bits
» clever subsets ~» violated/valid parity bit pattern narrows down error

24

How to locate errors?

> Idea: Use several parity bits
» each covers a subset of bits
» clever subsets ~» violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

24

How to locate errors?

» Idea: Use several parity bits
» each covers a subset of bits

» clever subsets ~» violated/valid parity bit pattern narrows down error

A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..

f

111,
By

I

110,
Bg

[

101,
Bs

1

By

2

[
I
11,
B3

[
|
1

B>

2

[

1
By

Ca
C1
Co

nw= "¢

., B7 with the following constraints:

B4 ® Bs ® Bg @ By
B> ® B3 & Bg @ By
= B19 B3® B5 @ By

2 © 9

24

How to locate errors?

» Idea: Use several parity bits
» each covers a subset of bits
» clever subsets ~» violated/valid parity bit pattern narrows down error

A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, . .., By with the following constraints:

C, = By®Bs®Bs®By = 0 4
(((C1=B2®B3®B6®B7%0 0
Co = Bi®B3®Bs®By =0 ¢
((| (I (oo
111, 110, 101, 100, 011, 10, 1p

By Bg Bs By Bj B> B
2.

4L (4 (&) O o a1
Observe:

» No error (all 7 bits correct) ~~ C = CyC1Cpy =000, = O\/
» What happens if (exactly) 1 bit, say B; flips?

24

How to locate errors?

> Idea: Use several parity bits
» each covers a subset of bits
» clever subsets ~» violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..., By with the following constraints:

(([I((

111, 110, 101, 100, 011, 2 1,
By Bg Bs By Bj B> B

I

(Cqy = Bo® B3® Bg® By
| (Co = B1® B3® B5 ® By
1

Observe:
> No error (all 7 bits correct) ~» C = C,C;Co = 000, = o\/
» What happens if (exactly) 1 bit, say B; flips?

[C j =1 iff jthbitin binary representation of i is 1]

!

Cy = By®Bs@Bs® By = 0

0
0

24

How to locate errors?

> Idea: Use several parity bits

» each covers a subset of bits
» clever subsets ~» violated/valid parity bit pattern narrows down error

A flipped bit can be one of the parity bits!

., By with the following constraints:

Cy B4 ® Bs ® Bg @ By
C1 B> ® B3 @ By @ By
Co = B1® B3 ® Bs ® By

» Consider n = 7 bits By, ..

(([I((

111, 110, 101, 100, 011,
By Bg Bs By Bj B> B

= 1l= 1=
o o o

[

2 1

— T

[
|
1

Observe:
> No error (all 7 bits correct) ~» C = C,C;Co = 000, = o\/
» What happens if (exactly) 1 bit, say B; flips?
[C j =1 iff jthbitin binary representation of i is 1] ~» C encodes position of error!

24

(7, 4) Hamming Code

» How can we turn this into a code?

D e 9

> - Cy, = B4 ® B5@® Bg® By
‘ (((C1 = Bo® B3® Bg® By ;
((i r e | 7 Co = B1®Bs®Bs® By =

111, 110, 101, 100, 011, 010, 0013
By Bg Bs By B3 B> By

(7, 4) Hamming Code

» How can we turn this into a code?

C, = By®Bs@®Bs® By = 0
(((C1=Bz®B3EBB6€BB7$0
10,

111, 110, 101, 1 11, 2
RN SE

» B4, B> and By occur only in one constraint each ~» define them based on rest!

» (7,4) Hamming Code — Encoding
1. Given: message D3D>D1Dg of length k = 4

25

(7, 4) Hamming Code

» How can we turn this into a code?

C, = By®Bs@®Bs® By = 0

(((C1=Bz®B3EBB6€BB7$0
111, 110, 101, 100, 011, 010 1,
By Bg Bs By Bj B> B1

Ds D Dy Dy

» B4, B> and By occur only in one constraint each ~» define them based on rest!

» (7,4) Hamming Code — Encoding
1. Given: message D3D>D1Dg of length k = 4
2. copy D3D,D1Dy to ByB¢BsB3

25

(7, 4) Hamming Code

» How can we turn this into a code?

‘ ((([(
(i (1 (
111, 110, 101 100, 011, 010, 1,
By Bg Bs By B3 B> By
\ A \\\ A\\ AN

\ X, 2 ‘

=1 |

D D

2 2 \Z

D3 Dz D1 P2 Do Pl PO

» B4, B> and By occur only in one constraint each

» (7,4) Hamming Code — Encoding
1. Given: message D3D>D1Dg of length k = 4
2. copy D3DyD1Dy to ByBgBsB3
3. compute PoP1Py = B4ByBq so that C =0

P>
Py
Py

s

B4 @ Bs & Bg @ By
B> ® B3 & By @ By
B1® B3 ® Bs ® By

=1=11=
oo

= D3® D, ® D,
= D3® Dy ® Dy
D3 & D1 @ Dy

define them based on rest!

(7, 4) Hamming Code

» How

Ir

By

can we turn this into a code?
[([
| ([(
111, 110, 101, 100, 011, 010, 1,
B6 B5 B4 B3 Bz Bl
\ A \\\ A\\ AN
\ X = ‘
=1 |
D D
2 2 \Z
Dz D1 P2 Do Pl PO

D3

» B4, B> and By occur only in one constraint each

» (7,4) Hamming Code — Encoding

1.

2
38
4

Given: message D3D)D1Dg of length k = 4

. copy D3D>D; Dy to B7B¢B5B3

compute PoP1Py = B4BB1 so that C =0

. send D3D,D1PyDgP1 Py

1P =

Py
Py

s

B4 @ Bs & Bg @ By
B> ® B3 & By @ By
B1® B3 ® Bs ® By

=1=11=
oo

D3 @ D, & Dy
= D3® Dy ® Dy
D3 & D1 @ Dy

define them based on rest!

25

(7, 4) Hamming Code — Decoding

» (7,4) Hamming Code — Decoding

1.
2
35

Given: block ByBsB5B4B3B>B1 of length n =7
compute C (as above)

if C = 0 no (detectable) error occurred
otherwise, flip B¢ (the Cth bit was twisted)

return 4-bit message B7BB5B3

26

Clicker Question

4 What is the code distance of (7,4) Hamming code?
0 4
1 5
2 6
(o
(D) 3 >7
o

g |~ sli.do/cs566

Clicker Question

f What is the code distance of (7, 4) Hamming code?
= 4
1 5
o 2 6
©) s v .
.

g |~ sli.do/cs566

(7, 4) Hamming Code — Properties

» Hamming bound:
> 2% valid 7-bit codewords (on per message)
» any of the 7 single-bit errors corrected towards valid codeword
~» each codeword covers 8 of all possible 7-bit strings

> 24.23 =27 . exactly cover space of 7-bit strings

7

fc&wa'd

sce (&

het

St excoc

27

(7, 4) Hamming Code — Properties

» Hamming bound:

> 2% valid 7-bit codewords (on per message)
» any of the 7 single-bit errors corrected towards valid codeword
~+ each codeword covers 8 of all possible 7-bit strings

> 24.23 =27 . exactly cover space of 7-bit strings

» distance d =3

» can correct any 1-bit error

27

(7, 4) Hamming Code — Properties

» Hamming bound:

> 2% valid 7-bit codewords (on per message)
» any of the 7 single-bit errors corrected towards valid codeword
~+ each codeword covers 8 of all possible 7-bit strings

> 24.23 =27 . exactly cover space of 7-bit strings

> distance d = 3
» can correct any 1-bit error

» How about 2-bit errors?

» We can defect that something went wrong.

» But: above decoder mistakes it for a (different!) 1-bit error and “corrects” that

» Variant: store one additional parity bit for entire block

~~ Can defect any 2-bit error, but not correct it.

27

Hamming Codes — General recipe

> construction can be generalized:
> Start with n = 2 — 1 bits for £ € N (we had ¢ = 3)
——
» use the ¢ bits whose index is a power of 2 as parity bits
» the other n — ¢ are data bits

28

Hamming Codes — General recipe

> construction can be generalized:

> Start with n = 2 — 1 bits for £ € N (we had ¢ = 3)
> use the ¢ bits whose index is a power of 2 as parity bits

» the other 1 — { are data bits Vi
n=9-(-2¢

» Choosing ¢ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

28

Hamming Codes — General recipe

> construction can be generalized:

» Start with n = 2{ — 1 bits for £ € N (we had ¢ = 3)
» use the ¢ bits whose index is a power of 2 as parity bits
» the other n — ¢ are data bits

» Choosing ¢ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

[ﬂ) simple and efficient coding / decoding
[ﬁ) fairly space-efficient

28

Outlook

» Indeed: (2°-1, 2/~¢-1) Hamming Code is “perfect” code

~~ cannot use fewer bits . . . = matches Hamming lower bound

> if message lengthis 2/ — ¢ — 1 for £ € N,
i.e,oneof1,4,11,26,57,120,247,502,1013, ...

» and we want to correct 1-bit errors

29

Outlook

» Indeed: (2°-1, 2/~¢-1) Hamming Code is “perfect” code

~~ cannot use fewer bits . . . = matches Hamming lower bound

> if message lengthis 2/ — ¢ — 1 for £ € N,
i.e, oneof1,4,11,26,57,120,247,502,1013, ...

» and we want to correct 1-bit errors

» For other scenarios, finding good codes is an active research area
» information theory predicts that almost all randomly chosen codes are good(!)
> but these are inefficient to decode

~ clever tricks and constructions needed
e.g. low density parity check codes

29

