il

4 7

) B =R H 1] [
2L NOL M <
L ZH NS E
H M T =0
1O FRL T =0
T HWNHMOF T
) [L = A H = T
LD OWNMHF
1RO =Z0xh
A H AT VO
T NEBH U0
2= OB H < ¢
IO =2mbB<U
iR A0 2=
I HIHU R =
1RO dHMKFE
2OZ2H<COHF
COMRMLEBEHDC
ldHL 2 ML HC
><C O [[[[T

| |

Graph Algorithms

9 December 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024 /25)

Philipps-Univer:

sitat Marburg

version 2024-12-16 69:28

Learning Outcomes

Unit 9: Graph Algorithms

1.
2.

Know basic terminology from graph theory, including types of graphs.

Know adjacency matrix and adjacency list representations and their performance
characteristica.

Know graph-traversal based algorithm, including efficient implementations.
Be able to proof correctness of graph-traversal-based algorithms.
Know algorithms for maximum flows in networks.

Be able to model new algorithmic problems as graph problems.

Outline

9 Graph Algorithms

9.1 Introduction & Definitions

9.2 Graph Representations

9.3 Graph Traversal

9.4 BFS and DFS

9.5 Advanced Uses of DFS

9.6 Network flows

9.7 The Ford-Fulkerson Method
9.8 The Edmonds-Karp Algorithm

9.1 Introduction & Definitions

Graphs in real life

» a graph is an abstraction of entities with their (pairwise) relationships

» abundant examples in real life (often called network there)
» social networks: e.g. persons and their friendships, . .. Five/Six? degrees of separation
» physical networks: cities and highways, roads networks, power grids etc., the Internet, .. .

» content networks: world wide web, ontologies, . ..
> ..

Many More examples, e. g., in Sedgewick & Wayne’s videos:

https://www.coursera.org/learn/algorithms-part2 ~

Flavors of Graphs

>

Since graphs are used to model so many different entities and relations, they come in
several variants

Property Yes No

edges are one-way directed graph (digraph) — undirected graph

< 1 edge between u and v simple graph multigraph / with parallel edges
edges can lead from v tov with loops (Sclleug Secl) (loop-free)

edges have weights (edge-) weighted graph ~ unweighted graph

* any combination of the above can make sense . ..

Synonyms:
> vertex (, Knoten”) = node = point = , Ecke”
> edge (,Kante”) = arc = line = relation = arrow =, Pfeil”

» graph = network

Graph Theory

» default: unweighted, undirected, loop-free & simple graphs
» Graph G = (V, E) with
> V afinite of vertices e={uvl

> EC [V]?asetof edges, which are 2-subsets of V: [V]? = {e e CVAlel = 2}

Graph Theory

> default: unweighted, undirected, loop-free & simple graphs
» Graph G = (V, E) with

» V a finite of vertices
> EC [V]?asetof edges, which are 2-subsets of V: [V]? = {e e CVAlel = 2}

Example Graphical representation

Vv = {0,1,2,3,4,5}

E = {{0,1},{1,2},{1,4},{1,3},{0,2},
{2,4},{2,3},{3,4},{3,5},{4,5}}.

like so...

Graph Theory

> default: unweighted, undirected, loop-free & simple graphs

» Graph G = (V, E) with

» V a finite of vertices

> EC [V]?asetof edges, which are 2-subsets of V: [V]? = {e e CVAlel = 2}

Example
{0,1,2,3,4,5}
E = {{0,1},{1,2},{1,4},{1,3},{0,2},

{2,4},{2,3},{3,4},{3,5},{4,5}}.

Graphical representation

(same graph)

Digraphs
» default digraph: unweighted, loop-free & simple
» Digraph (directed graph) G = (V, E) with
» V a finite of vertices

> ECV2)\ {(U,U) (v € V} a set of (directed) edges,
V2=V xV={(x,y) : xe VAy eV} 2tuples / ordered pairs over V

@x)@

Digraphs
» default digraph: unweighted, loop-free & simple
» Digraph (directed graph) G = (V, E) with
» V a finite of vertices

> ECV2)\ {(U,U) (v € V} a set of (directed) edges,
V2=V xV={(x,y): x€ VAy€eV} 2-tuples / ordered pairs over V

Example Graphical representation
vV = {0,1,2,3,4,5}

E = {(0,2),(1,0),(1,4),(2,1),(24), @\
3,1),(3,2),(4,3),(4,5),(5,3)} ?

S

d

Graph Terminology

Undirected Graphs Directed Graphs (where different)
> V(G) set of vertices, E(G) set of edges
» write uv (or vu) for edge {u, v} » 1o for (u,v)
> edges incident at vertex v: E(v)
» 1 and v are adjacent iff {u, v} € E, » iff (u,v) € EV (v,u) € E
» neighborhood N (v) = {w € V : w adjacent to v} » in-/out-neighbors Njn(v), Nout(?)
» degree d(v) = |E(v)| » in-/out-degree din(v), dout(v)

Graph Terminology

Undirected Graphs Directed Graphs (where different)

| 2

vV Vvy Vv Vvyy

vVvyyy

V(G) set of vertices, E(G) set of edges
write uv (or vu) for edge {u, v} » 1o for (u,v)

edges incident at vertex v: E(v)

u and v are adjacent iff {u,v} € E, » iff (u,v) € EV (v,u) € E
neighborhood N (v) = {w € V : w adjacent to v} » in-/out-neighbors Njn(v), Nout(?)
degree d(v) = |E(v)| » in-/out-degree din(v), dout(v)

leran

Ko
walk w of length n: sequence of vertices w([0..n] with Vi € [0..n) : w[i]w[i + 1] € E

pZth p is a (vertex-) simple walk: without duplicate vertices except possibly its endpoints
edge-simple walk: no edge used twice
cycle c is a closed path, i.e., c[0] = c[n] CoprdJossaer Lo, 200, kewss ¢ 25 6lur)

Graph Terminology

Undirected Graphs Directed Graphs (where different)
> V(G) set of vertices, E(G) set of edges
» write uv (or vu) for edge {u, v} » 1o for (u,v)
> edges incident at vertex v: E(v)
» 1 and v are adjacent iff {u, v} € E, » iff (u,v) € EV (v,u) € E
» neighborhood N (v) = {w € V : w adjacent to v} » in-/out-neighbors Njn(v), Nout(?)
» degree d(v) = |E(v)| » in-/out-degree din(v), dout(v)
» walk w of length n: sequence of vertices w[0..n] with Vi € [0..n) : w[i]w[i + 1] € E
» path p is a (vertex-) simple walk: without duplicate vertices excepmndpoints
» edge-simple walk: no edge used twice
» cycle c is a closed path, i.e., c[0] = c[n]
» G is connected » strongly connected for digraphs
iff for all u # v € V there is a path from u to v (weakly connected = connected ignoring directions)
> G isacyclic iff A cycle (of lengthn > 1)in G

Typical graph-processing problems

»> Path: Is there a path between s and ¢?
Shortest path: What is the shortest path (distance) between s and ¢?

» Cycle: Is there a cycle in the graph?
Euler tour: Is there a cycle that uses each edge exactly once?
Hamilton(ian) cycle: Is there a cycle that uses each vertex exactly once. j

> Connectivity: Is there a way to connect all of the vertices?
MST: What is the best way to connect all of the vertices?
Biconnectivity: Is there a vertex whose removal disconnects the graph?

» Planarity: Can you draw the graph in the plane with no crossing edges?

> Graph isomorphism: Are two graphs the same up to renaming vertices? |
canvary a lot, despite superficial similarity of problems
Challenge: Which of these problems
can be computed in (near) linear time?
in reasonable polynomial time?
are intractable?

Tools to work with graphs

» Convenient GUI to edit & draw graphs: yEd live
yworks.com/yed-live

» graphviz cmdline utility to draw graphs
» Simple text format for graphs: DOT

graph G {
0 --2; 2 -- 4; ‘II.’ ‘II'
1--0; 2--3; ""
1-- 4; 3 -- 4; 0"’
1--3; 31 --5; ‘II' ‘l"
2 --1; 4 --5;

}
dot -Tpdf graph.dot -Kfdp > graph.pdf

» graphs are typically not built into programming languages, but libraries exist

» e.g. part of Google Guava for Java
» they usually allow arbitrary objects as vertices

» aimed at ease of use

9.2 Graph Representations

Graphs in Computer Memory

»> We defined graphs in set-theoretic terms. . .
but computers can't directly deal with sets efficiently

~+ need to choose a representation for graphs.
» which is better depends on the required operations

Graphs in Computer Memory

»> We defined graphs in set-theoretic terms. . .
but computers can't directly deal with sets efficiently

~+ need to choose a representation for graphs.
» which is better depends on the required operations

Key Operations:
» isAdjacent(u,v)
Test whether uv € E

> adj(v)
Adjacency list of v (iterate through (out-) neighbors of v)

» most others can be computed based on these

Graphs in Computer Memory

»> We defined graphs in set-theoretic terms. . .
but computers can't directly deal with sets efficiently

~+ need to choose a representation for graphs.
» which is better depends on the required operations

Key Operations:
» isAdjacent(u,v)
Test whether uv € E

> adj(v)
Adjacency list of v (iterate through (out-) neighbors of v)

» most others can be computed based on these

Conventions:
» (di)graph G = (V,E) (omitted if clear from context)
> n=|V|, m=|E|

» in implementations assume|V = [0..1) (if needed, use symbol table to map complex objects to V)

Adjacency Matrix Representation

» adjacency matrix A € {0, 1}"*" of G: matrix with A[u,v] = [uv € E] = 5

1
(@]

uve &
c

Soeu

> works for both directed and undirected graphs (undirected ~ A = AT symmetric)

» can use a weight w(uv) or multiplicity in A[u, v] instead of 0/1

» can represent loops via A[v, v]

Example: @ S R
o/0 0 1 00 0

S 1100010
ST
701 00 00

(3) (4) 1000101

e s5\o0 0010 0

10

Adjacency Matrix Representation

» adjacency matrix A € {0, 1}"*" of G: matrix with A[u, v] = [uv € E]

> works for both directed and undirected graphs (undirected ~ A = AT symmetric)

» can use a weight w(uv) or multiplicity in A[u, v] instead of 0/1

» can represent loops via A[v, v]

®
0
ee‘e

Example:

S O O O = O

[ﬁ] isAdjacent in O(1) time
[@ O(n?) (bits of) space wasteful for sparse graphs
E@ adj (v) iteration takes O(n) (independent of d(v))

o O R, Rk OO

O OO O O =

_ =0 = O O

O O O = O

O = O O O O

10

Adjacency List Representation

> Store a linked list of neighbors for each vertex v:
» 4dj[0..n) bag of neighbors (as linked list)
» undirected edge {1, v} ~ v inadj[u]and u in adj[v]
> weighted edge w/wﬁ store pair (v, w(uv)) in adj[u]
> multiple edges and loops can be represented
adj[0..1n)

v oe W N R oo

11

Adjacency List Representation

> Store a linked list of neighbors for each vertex v: GAQ
» 4dj[0..n) bag of neighbors (as linked list) v
» undirected edge {1, v} ~» v inadj[u]and u in adj[v] e e
> weighted edge uv ~» store pair (v, w(uv)) in adj[u]
> multiple edges and loops can be represented e

adj[0..1n)

[+]
[~]
[«]

E@ isAdjacent (u,v) takes ®(d(u)) time (worst case)

[b adj (v) iteration O(1) per neighbor
[(b O(n + m) (words of) space for any graph (< ©(n2) bits for moderate 1)

~+ de-facto standard for graph algorithms

11

Graph Types and Representations

> Note that adj matrix and lists for undirected graphs effectively are representation of
directed graph with directed edges both ways
» conceptually still important to distinguish!
» multigraphs, loops, edge weights all naturally supported in adj lists

» good if we allow and use them

> but requires explicit checks to enforce simple / loopfree / bidirectional!

» we focus on static graphs
dynamically changing graphs much harder to handle

12

9.3 Graph Traversal

Generic Graph Traversal

» Plethora of graph algorithms can be expressed as a systematic exploration of a graph

>

VVYVYVVYVYVVYVYYVYY

depth-first search, breadth-first search
connected components

detecting cycles

topological sorting

Hierholzer’s algorithm for Euler walks
strong components

testing bipartiteness

Dijkstra’s algorithm

Prim’s algorithm

Lex-BFS for perfect elimination orders of chordal graphs

visiting all nodes & edges

I

I e

13

Generic Graph Traversal

» Plethora of graph algorithms can be expressed as a systematic exploration of a graph

» depth-first search, breadth-first search visiting all nodes & edges

connected components

detecting cycles
topological sorting

Hierholzer’s algorithm for Euler walks

I

strong components
testing bipartiteness
Dijkstra’s algorithm
Prim’s algorithm

Lex-BFS for perfect elimination orders of chordal graphs

I e

%H—'Hh—'uﬂ

VVYVYVVYVYVVYVYYVYY

1| 1

~+ Formulate generic traversal algorithm

» first in abstract terms to argue about correctness

» then again for concrete instance with efficient data structures

Tricolor Graph Traversal

Tricolor Graph Search:

» maintain vertices in 3 (dynamic) sets

P Gray: unseen vertices
The traversal has not reached these vertices so far.

< Green: done vertices (a.k.a. visited vertices)
=)

Invariant:
No edges from domne to unseen vertices

These vertices have been visited and all their edges have been explored already.

Red: active vertices (a.k.a. frontier (,Rand”) of traversal)
All others, i. e., vertices that have been reached and some unexplored edges remain;

initially some selected start vertices S.
Luom{- ‘c) Cu(] of 5(\4.& [N

» (implicitly) maintain status of each edge ~ b do Bl waed wiglbors hore red
> not yet used
> used edge

> Vertices “want” to turn green.

initial state during traversal final state

14

Generic Tricolor Graph Traversal — Code

1 procedure genericGraphTraversal(G, S)

2 // (di)graph G = (V, E) and start vertices S C V

3 C[0..n) := unseen // Color array, all cells initialized to unseen
4 fors € S do C[s] := active end for

5 unusedEdges := E

6 while v : C[v] == active

7 v := nextActiveVertex() // Freedom 1: Which frontier vertex?

8 if Aow € unusedEdges // no more edges from v ~ done with v

9 Clv] := done

10 else

11 w := nextUnusedEdge(v) // Freedom 2: Which of its edges?

12 if Clw] == unseen

13 Clw] := active

14 end if Invariant:
1 i e) No edges from done to unseen vertices
16 end if

17 end while

15

Generic Tricolor Graph Traversal — Code

1 procedure genericGraphTraversal(G, S)

2 // (di)graph G = (V, E) and start vertices S C V

3 C[0..n) := unseen // Color array, all cells initialized to unseen
4 fors € S do C[s] := active end for

5 unusedEdges := E

6 while v : C[v] == active

7 I v := nextActiveVertex() I// Freedom 1: Which frontier vertex?

8 if Alvw € unusedEdges // no more edges from v ~ done with v

9 Clv] := done

10 else

11 | w := nextUnusedEdge(v) I// Freedom 2: Which of its edges?

12 if C[w] == unseen

13 Clw] := active

14 end if Invariant:
1 Lt B e @) No edges from done to unseen vertices
16 end if

17 end while

»> Implementations of nextActiveVertex() and nextUnusedEdge(v) depends on
(and defines!) specific traversal-based graph algorithms

15

Generic Tricolor Graph Traversal — Code

1 procedure genericGraphTraversal(G, S)

2 // (di)graph G = (V, E) and start vertices S C V

3 C[0..n) := unseen // Color array, all cells initialized to unseen

4 fors € S do C[s] := active end for

5 unusedEdges := E

6 while v : C[v] == active

I v := nextActiveVertex() I// Freedom 1: Which frontier vertex?

~

8 if Aow € unusedEdges // no more edges from v ~~ done with v
©) Clv] := done

10 else

| w := nextUnusedEdge(v) I// Freedom 2: Which of its edges?

12 if Clw] == unseen
13 Clw] := active

1 end if Invariant:
1 Lt B e @) No edges from done to unseen vertices
16 end if
17 end while

»> Implementations of nextActiveVertex() and nextUnusedEdge(v) depends on
(and defines!) specific traversal-based graph algorithms

15

Generic Reachability

» Any choices nextActiveVertex() and nextUnusedEdge(v) suffice
to find exactly the vertices reachable from S in done

16

Generic Reachability

» Any choices nextActiveVertex() and nextUnusedEdge(v) suffice
to find exactly the vertices reachable from S in done
> Invariant: o S
1. No edges from done to unseen vertices Ts-
2. For every done or active vertex v, there exists a path from s € S to v.

(D Qe 9 color v fnel
na tég}s Yo verern pn:-w v

(2%
(2y o, TH /

() Qone I eloe w wd
@/

(Z) S5¢ TU S ~Asv-aW

during traversal final state
hanes. Samw

initial state

16

Generic Reachability

» Any choices nextActiveVertex() and nextUnusedEdge(v) suffice
to find exactly the vertices reachable from S in done

» Invariant:
1. No edges from done to unseen vertices

2. For every done or active vertex v, there exists a path from s € S to v.

initial state during traversal final state

~+ 1n final state:
» v cdone ~» pathfromS ~» reachablefrom S
» v € unseen ~» notreachable from done 2 S ~~ not reachable from S
Casoe wed Han somv Qud vder o palls ol 55 vosee Loy
P WS&BQ: é@)

16

Data Structures for Frontier

»> We need efficient support for
» test Jv : C[v] = active, nextActiveVertex()
» test Jvw € unusedEdges, nextUnusedEdge(v)

» unusedEdges.remove(vw)

17

Data Structures for Frontier

»> We need efficient support for

» test Jv : C[v] = active, nextActiveVertex()

» test Jvw € unusedEdges, nextUnusedEdge(v)

» unusedEdges.remove(vw) ad; I /Tq AT
» Typical solution maintains bag “frontier” of pairs (v, i)

where v € V and i is an iterator in adj[v] (v

» unusedEdges represented implicitly: edge used iff previously returned by i

~ don’t need unusedEdges.remove(vw)

17

Data Structures for Frontier

»> We need efficient support for
» test Jv : C[v] = active, nextActiveVertex()
» test Jvw € unusedEdges, nextUnusedEdge(v)
» unusedEdges.remove(vw)
» Typical solution maintains bag “frontier” of pairs (v, i)
where v € V and i is an iterator in adj[v]
» unusedEdges represented implicitly: edge used iff previously returned by i
~ don’t need unusedEdges.remove(vw)
» Implement 3v : C[v] = active via frontier.isEmpty()
» Implement Jow € unusedEdges via i.hasNext() assuming (v, 7) € frontier

» Implement nextUnusedEdge(v) via i.next() assuming (v, 7) € frontier

~» all operations apart from nextActiveVertex() in O(1) time

~ frontier requires O(n) extra space

17

9.4 BFS and DFS

Breadth-First Search

» Maintain frontier in a queue (FIFO: first in, first out)

18

Breadth-First Search dishance g (vi S)

» Maintain frontier in a queue (FIFO: first in, first out) — i dishoweo (v. s)
seS W\ ¢
Hed 58

&:,‘5“4 oc S\LQV‘LG{'

» Invariant:
1. No edges from done to unseen vertices Hmyest clges
L -
2. All done or active vertices are reached via a shortest path from S padls frowr s & v

3. Vertices enter and leave frontier in order of increasing distance from S

initial state during traversal final state

~- in final state, we reach all reachable vertices via shortest paths

18

Pruc S [B’FS 77ﬂ\/qwm{ (ch,echd WM‘QM)

() (ollacs S:’QW do gsruna'c Frdu(\ gor '{h"cc[or 'Aruwivsa,é

G(ﬂhMmln\Lﬁ_ g(vl = i n CIA-SLDAI‘CQG (S‘v)

SeS

-’I_i (Q) OKILQI/ Se S are QCL\‘M oY Q}O(/_Q o
wa MOCL S via (J“{l‘ [5] [&45(61 OJ /

(3) mu‘éf/ se€ S home enlised ool - ‘E\zw‘ Lere are Mnm‘.mag wel. 8
E,H' 2v\qu{mé s Mgmc{ e [D mow.,

li mu;"cLJ wy(ngL‘mc \rwéw(V-

(‘) v ng YO vt ub\ukC{ Ezzyg, =3 wuxrk v oas almu

@) v %-07 CLMS,Gx CQCQ)(=> skl L. lds 65/ TIH
(3) by TH (v EMLLHCI ‘prcmk'w a\[C‘:Yv({{ Au_l £ gu ere ﬁw&ps @(d&r‘f =5 (Z) shey LmZ(f(‘

(r(\ v has aueller eiéz v e ﬁu/“uv d\"s{vruﬁufféi

({L‘,Q\ W i oQLw‘M of Q‘QLA_L => no c[na,uén

== r'quria,m(<had Lmasls

(,{,b) w (> Luseen = engueur v QMCZ wredka a:La‘u(
by TH, we "’KOQL\LA v Ey ch.nr/u(f;aéL a{ 8(\/) QC{§<§
amd ams noda A il §l) < SE\ iy down (since bedsma v)

=S S/m}? S(V}+ 4 axmi wae NG{L'\ W vlo o QL(QV‘LtJ{ (JGJ"[/L => C?)J

4 RUCU L lu SLuw JJAc\é amy X w(‘u\ S(X) :S(v}

PR QCL‘N X% J(}u(EY o ;
W &5&’\45 oo o @mmhw weus s occ@\fd)"vg ko sorked ovdes 67 §.

Sum,m,. e PAL’[A lo % Foes via & S s U - X o S(u\< S(v) QMJ LIS (JUML

=> aﬂ 14513 LA =5 3¢ hawe bea usa-:(a/mi "umuxg >x s QCL{M .Ng ({ou_e

((/JJL cCAlA'—u:é (Aﬂv{ QQL\‘M > qu: Y WI‘U/‘ g(y)> (S\/qu) Ca QM‘QV\L'M LJ;, IH 7
\HAuir aéﬂi‘k‘om blxﬁ(}d‘c o wnuCn(quw w‘uﬁn\t\ﬂ{ e A'mvam'aM{ cn/ vLng [‘)L/M—?)

= G/

Breadth-First Search

» Maintain frontier in a queue (FIFO: first in, first out)

» Invariant:
1. No edges from done to unseen vertices Hmyest clges
2. All done or active vertices are reached via a shortest path from S
3. Vertices enter and leave frontier in order of increasing distance from S

initial state during traversal final state
~- in final state, we reach all reachable vertices via shortest paths

» To preserve that knowledge, we collect extra information during traversal
> parent[v] stores predecessor on path from S via which v was reached e whee v cons
_ e
» distFromS[v] stores the length of this path calond wd

Breadth-First Search — Code

1 procedure bfs(G, S)

2 // (di)graph G = (V, E) and start vertices S C V

3 C[0..n) := unseen // New array initialized to all unseen

4 frontier := new Queue;

5 parent[0..n) := NOT_VISITED; distFromS[0..n) = oo

6 forse S

7 parent[s] := NONE; distFromS[s] := 0

8 Cls] := active; frontier.enqueue((s, G.adj[s].iterator()))
9

end for
10 while —frontier.isEmpty()
11 (v, 1) = frontier.peek()
12 if —~i.hasNext() /v has no unused edge
13 Clv] := done; frontier.dequeue
14 else
15 w := inext() // Advance i in adj|v]
16 if C[w] == unseen
17 parent[w] := v; distFromS[w] := distFromS[v] + 1
18 Clw] := active; frontier.enqueue((w, G.adj[w].iterator()))
19 end if
20 end if
21 end while

19

Breadth-First Search — Code

1
2
&
4
5
6
7
8
9

procedure bfs(G, S)
// (di)graph G = (V, E) and start vertices S C V
C[0..n) := unseen // New array initialized to all unseen
frontier := new Queue;
parent[0..n) := NOT_VISITED; distFromS[0..n) = oo
forse S
parent[s] := NONE; distFromS[s] := 0
Cls] := active; frontier.enqueue((s, G.adj[s].iterator()))
end for

while —frontier.isEmpty()
(v, 1) = frontier.peek()
if —~i.hasNext() /v has no unused edge
Clv] := done; frontier.dequeue()
else
w := inext() // Advance i in adj|v]
if C[w] == unseen
parent[w] := v; distFromS[w] := distFromS[v] + 1
Clw] := active; frontier.enqueue((w, G.adj[w].iterator()))
end if
end if
end while

» parent stores a
shortest-path tree/forest

» can retrieve shortest path to v
from some vertex s € S
(backwards) by following
parent[v] iteratively

19

Breadth-First Search — Code

1
2
&
4
5
6
7
8
9

procedure bfs(G, S)
// (di)graph G = (V, E) and start vertices S C V
C[0..n) := unseen // New array initialized to all unseen
frontier := new Queue;
parent[0..n) := NOT_VISITED; distFromS[0..n) = oo
forse S
parent[s] := NONE; distFromS[s] := 0
Cls] := active; frontier.enqueue((s, G.adj[s].iterator()))
end for

while —frontier.isEmpty()
(v, 1) = frontier.peek()
if —~i.hasNext() /v has no unused edge
Clv] := done; frontier.dequeue()
else
w := inext() // Advance i in adj|v]
if C[w] == unseen
parent[w] := v; distFromS[w] := distFromS[v] + 1
Clw] := active; frontier.enqueue((w, G.adj[w].iterator()))
end if
end if
end while

parent stores a
shortest-path tree/forest

can retrieve shortest path to v
from some vertex s € S
(backwards) by following
parent[v] iteratively

running time ©(n + m)

extra space ©(n)

19

Depth-First Search

» Maintain frontier in a stack (LIFO: last in, first out)

» only consider S = {s}

» usual mode of operation: call dfs(v) for all unseen v, forv =0, ...

20

Depth-First Search

» Maintain frontier in a stack (LIFO: last in, first out)
» only consider S = {s}

» usual mode of operation: call dfs(v) for all unseen v, forv =0,...,n -1

» Invariant:

1. No edges from done to unseen vertices

Leochve . .
2. All done or active vertices are reached via a path from s

[g

3. The active vertices form a single path from s 222
6000000 ¢

initial state during traversal final state

20

Depth-First Search — Code

1 procedure dfsTraversal(G)

2 C[0..n) := unseen

3 forv :=0,...,n—-1

4 if C[v] == unseen

5 dfs(G, v)

6

7 procedure dfs(G, s)

8 frontier := new Stack;

9 Cls] := active; frontier.push((s, G.adj[s].iterator()))
10 while —frontier.isEmpty()

11 (v, i) = frontier.top()

12 if —~i.hasNext() /v has no unused edge

13 Cl[v] := done; frontier.pop(); postorderVisit(v)
14 else

15 w := inext(); visitEdge(vw)

16 if C[w] == unseen

17 preorderVisit(w)

18 Clw] := active; frontier.push((w, G.adj[w].iterator()))
19 end if

20 end if

21 end while

> define hooks to implement
further operations

» preorder: visit v when
made active (start of T(v))

» postorder: visit v when
marked done (end of T(v))

» visitEdge: do something for
every edge

» if needed, can store DFS
forest via parent array

21

Depth-First Search — Code

1 procedure dfsTraversal(G)

2 C[0..n) := unseen

3 forv :=0,...,n—-1

4 if C[v] == unseen

5 dfs(G, v)

6

7 procedure dfs(G, s)

8 frontier := new Stack;

9 Cls] := active; frontier.push((s, G.adj[s].iterator()))
10 while —frontier.isEmpty()

11 (v, i) = frontier.top()

12 if —~i.hasNext() /v has no unused edge

13 Cl[v] := done; frontier.pop(); postorderVisit(v)
14 else

15 w := inext(); visitEdge(vw)

16 if C[w] == unseen

17 preorderVisit(w)

18 Clw] := active; frontier.push((w, G.adj[w].iterator()))
19 end if

20 end if

21 end while

> define hooks to implement
further operations

» preorder: visit v when
made active (start of T(v))

» postorder: visit v when
marked done (end of T(v))

» visitEdge: do something for

every edge

» if needed, can store DFS
forest via parent array

> running time ©(n + m)

> extra space ©(n)

21

Simple DFS Application: Connected Components

» In an undirected graph, find all connected components.
- TTe—
» Given: simple undirected G = (V,E)
» Goal: assign component ids CC[0..n), s.t. CC[v] = CC[u] iff 3 path from v to u

22

Simple DFS Application: Connected Components

» In an undirected graph, find all connected components.
» Given: simple undirected G = (V,E)
» Goal: assign component ids CC[0..n), s.t. CC[v] = CC[u] iff 3 path from v to u

1 procedure connectedComponents(G): 1 // same as before
2 // undirected graph G = (V,E) with V = [0..n) 2 procedure dfs(G, s)
3 C[0..n) := unseen 3 frontier := new Stack;
. CC[0..17) := NONE 4 C[s] := active; frontier.push((s, G.adj[s].iterator()))
9 o 5 while —frontier.isEmpty()
° id =0 6 (v, i) = frontier.top()
g forv:=0,...,n-1 7 if —i.hasNext() // v has no unused edge
7 if C[v] == unseen 8 Clv] := done; frontier.pop()
8 dfs(G, 0) 9 postorderVisit(v)
9 | id = id+1 10 else
10 return CC 1 w := inext(); visitEdge(vw)
1 12 if C[w] == unseen
12 procedure preorderVisit(v): L3 preorderVISl_t(w)
1 CClo] = id 14 C[w]v := active o
15 frontier.push((w, G.adj[w].iterator()))
16 end if
17 end if
18 end while

22

Dijkstra’s Algorithm & Prim’s Algorithm

» On edge-weighted graphs, we can use tricolor traversal with a priority queue as frontier

» Dijkstra’s Algorithm for shortest paths from s in digraphs with weakly positive edge
weights

» priority of vertex v = length of shortest path known so far from s to v

» Prim’s Algorithm for finding a minimum spanning tree

» priority of vertex v = weight of cheapest edge connecting v to current tree

~ Detailed discussion in Unit 11

23

9.5 Advanced Uses of DFS

Properties of DFS

»> Recall DFS Invariant 3:
The active vertices form a single path from s

input graph G DES forest

OCE}G

initial state

during traversal final state

stack over time

PN

S

o No
0°

24

Properties of DFS
»> Recall DFS Invariant 3: ﬂ
The active vertices form a single path froms ™ o el fralsate

input graph G DFS forest stack over time

vo

time

24

Properties of DFS
» Recall DFS Invariant 3: ﬂ

The active vertices form a single path from s ™' uring v fal e
input graph G DFS forest stack over time
e : time

~~ Each vertex v spends time interval T(v) as active vertex

24

Properties of DFS
» Recall DFS Invariant 3: ﬂ

The active vertices form a single path from s ™' uring v fal e
input graph G DFS forest stack over time
e : time

~~ Each vertex v spends time interval T(v) as active vertex

1. frontieris stack ~» {T(v):v € V} forms laminar set family: (“disjoint or contained”)
either T(v) N T(w) =0 or T(v) C T(w) or T(v) 2 T(w)

24

Properties of DFS
» Recall DFS Invariant 3: ﬂ

The active vertices form a single path froms ™ Tt fnal st
input graph G DES forest stack over time
e : time

~~ Each vertex v spends time interval T(v) as active vertex
1. frontieris stack ~» {T(v):v € V} forms laminar set family: (“disjoint or contained”)
either T(v) N T(w) =0 or T(v) € T(w) or T(v) 2 T(w)
2. Parenthesis Theorem: T(v) 2 T(w) iff v is ancestor of w in DFS tree
‘=’ during T(v), all discovered vertices become descendants of v
‘<’ T(v) covers v’s entire subtree, which contains w’s subtree

24

Properties of DFS — Unseen-Path Theorem

»> Unseen-Path Theorem: In a DFS forest of a (di)graph G, w is a descendant of v iff
at the time of preorderVisit(v), there is a path from v to w
@
j(
w

using only unseen vertices.
q;L o LM v owuas Wa& Né

25

Properties of DFS — Unseen-Path Theorem
w v
»> Unseen-Path Theorem: In a DFS forest of a (di)graph G, is a descendant of # iff
at the time of preorderVisit(v), there is a path from v to w
using only unseen vertices.

‘=’ If w is a descendant of v, T(w) C T(v) by the Parenthesis Theorem.
Hence the path from v to w in the DFS tree consists (at time of preorderVisit(v)) of solely
unseen vertices.

@ -

25

Properties of DFS — Unseen-Path Theorem

»> Unseen-Path Theorem: In a DFS forest of a (di)graph G, w is a descendant of v iff

N

at the time of preorderVisit(v), there is a path from v to w
using only unseen vertices.

If w is a descendant of v, T(w) € T(v) by the Parenthesis Theorem.
Hence the path from v to w in the DFS tree consists (at time of preorderVisit(v)) of solely
unseen vertices.

Suppose towards a contradiction that there was a w with an unseen path p[0..¢] with

p[0] = v and p[¢] = w, but w is not a descendant of v. W.l.0.g. let w be a first such vertex, i.e.,
plO],..., p[¢ — 1] = u are descendants of v.

SoT(u)c T(v) (»).

Upon processing 1, we will discover edge 1w, so whether or not w is already done at this
point, w will be marked done before 1. Hence max T (w) < max T'(11).

With (+), we obtain min T'(v) < min T (1) < max T(w) < max T (1), so by laminarity,

T(w) c T(u) c T(v) and w is a descendant of v 4.

25

Topological Sorting & Cycle Detection

> Application: Given a set of tasks with precedence constraints of the form
“a must be done before b”, can we find a legal ordering for all tasks?

~+ Model as directed graph!

> tasks are the vertices V @ /—é@

» add an edge (a, b) when a2 must be done before b

26

Topological Sorting & Cycle Detection

> Application: Given a set of tasks with precedence constraints of the form
“a must be done before b”, can we find a legal ordering for all tasks?

~+ Model as directed graph!
» tasks are the vertices V

» add an edge (a, b) when a2 must be done before b

» Definition: R[0..n) is a topological (order) ranking of digraph G = (V,E)if

Y(u,v) € E : R[u] < R[v] Bk . BTN boe sbd Ge o
» Lemma DAG iff topo:

A directed graph G has a topological ranking iff it does not contain a directed cycle.

26

Topological Sorting & Cycle Detection

> Application: Given a set of tasks with precedence constraints of the form
“a must be done before b”, can we find a legal ordering for all tasks?

~+ Model as directed graph!
» tasks are the vertices V

» add an edge (a, b) when a2 must be done before b

» Definition: R[0..n) is a topological (order) ranking of digraph G = (V, E) if
Y(u,v) € E : R[u] < R[v]

» Lemma DAG iff topo:

A directed graph G has a topological ranking iff it does not contain a directed cycle.

»> Topological Sorting
> Given: simple digraph G = (V,E)

»> Goal: Compute topological ranking of vertices R[0..7)
or output a directed cycle in G.

» Amazingly, can do all with one pass of DFS!

26

DEFS Edge Types

input digraph G

0§)9

27

DEFS Edge Types

input digraph G

DFS forest

stack over time

e

time

\
7

27

DEFS Edge Types

input digraph G

DFS forest

stack over time

e

» During DFS traversal, an edge vw has one of these 4 types:

. treeedge: — w € unseen ~» vw part of DFS forest.

. back edges: --» w € active; ~» w points to ancestor of v.

1
2
3. forward edges*: ---> w € done A w is descendant of v in DFS tree.
4

. cross edges*: --» w € done A w is not descendant of v.

*only possible in w graphs

time >

example:
(0,1),(0,2), (2,3)
(3,0

0,3)

(3,0

27

Cycle Detection

If G contains a directed cycle, DFS will find a directed cycle:

» any back edge implies a cycle:
» DEFS visits an edge (v, w) where w € active, w is already on the stack

~+ DFS tree contains path w ~» v and we have edge v — w.

(g)
©

28

Cycle Detection

If G contains a directed cycle, DFS will find a directed cycle:
> any back edge implies a cycle:
» DEFS visits an edge (v, w) where w € active, w is already on the stack

~+ DFS tree contains path w ~» v and we have edge v — w.

» conversely any cycle C[0..k] once reached must have some back edge or cross edge
(tree and forward edges go from smaller to larger preorder index)

» cannot be a cross edge since cycle is strongly connected
all cycle vertices must be descendants of first reached cycle vertex

~ cycle contributes a back edge

28

DEFS Postorder Implementation

1
2
3!
4
]
6
7
8
9

procedure dfsPostorder(G):
C[0..n) := unseen
P[0..n) := NONE; r :=0
parent[0..n) := NONE
cycle := NONE
forv :=0,...,n—-1

if C[v] == unseen
dfs(G, v)

return (P, cycle)

procedure postorderVisit(v):
Plo]l =7, r=r+1

procedure visitEdge(vw):
if Clw] == active
if cycle # NONE return
while v # w
cycle.append(v)
v := parent[v]
cycle.append(v)

1 //dfs is as in CC but with parent
2 procedure dfs(G, s)
3 frontier := new Stack;

4 parent[s] := NONE;

5 Cls] := active; frontier.push((s, G.adj[s].iterator()))
6 while —frontier.isEmpty()

7 (v, i) = frontier.top()

8 if —i.hasNext() // v has no unused edge

9 C[v] := done; frontier.pop()

10 postorderVisit(v)

11 else

12 w := inext() // Advance i in adj[v]

13 visitEdge(vw)

14 if C[w] == unseen

15 parent[w] := v;

16 preorder Visit(w)

17 Clw] := active; frontier.push((w, G.adj[w].iterator()))
18 end if

19 end if

20 end while

29

DEFS Postorder & Topological Sort

» DFS Postorder: The DFS postorder numbers is a numbering P[0..n) of V such that
P[v] = r iff exactly r vertices reached state done before v in a DFS.

30

DEFS Postorder & Topological Sort

» DFS Postorder: The DFS postorder numbers is a numbering P[0..1) of V such that
P[v] = r iff exactly r vertices reached state done before v in a DFS.

directed acyclic graph
» Lemma rev postorder: yaesmp

Let G be a simple, connected DAG and R[0..1) a reverse DFS postorder of G, i.e.,

R[v] = n —1 - P[v] for a DFS postorder P[0..n2). Then R is a topological ranking of G.

» Invariant: If v € done and (v, w) € E then w € done and R[v] < R[w].
> initially true (done = 0) -

» upon postorderVisit(v), all outgoing edges vw lead to w € done (Parenthesis Theorem)

30

Topological Sorting & Cycle Detection — Summary

> Putting everything together we obtain topological sorting

» can produce either the ranking or the sequence of vertices in topological order,

whatever is more convenient

1 procedure topologicalRanking(P):

2 (P[0..1), cycle) := dfsPostorder(G)
3 if cycle # NULL

4 return NOT A DAG

5 R[0..n) := NONE

6 forv :=0,...,n—-1

7 R[v] =n—-1-Plv]

8 return R

1 procedure topologicalSort(P):

2 (P[0..1), cycle) := dfsPostorder(G)
3 if ¢ # NULL

4 return NOT_A DAG
5 S[0..n) := NONE

6 forv :=0,...,n—-1

7 S[n—-1-Plv]] :=v
8 return S

» O(n + m) time

> O(n) extra space

31

Euler Cycles

Euler Walk: Walk using every edge in G = (V, E) exactly once.

KONINGSBERGA

=) - -
123143542 123145342 123413542 123453142 123541342

173543142 124134532 124135432 124314532 124354132
A A A A A
=D

) =D £y L LEN
HSHAT AT I

124531432 124534132 132143542 132145342 132435412

132453412 134123542 134124532 134214532 134235412
~ ~ ~ 2

Loy L2 Loy Loy
v. L v vl

134532142 134532412 135412342 135412432 135421432
135423412 135432142 135432412 142134532 142135432

192345312 142354312 143123542 143124532 143213542
~ ~ ~ ~ ~

143245312 149562132 TATSEIT2 ASIIIIN2 145313432
ol

i

o

185321342 145324312 145342132 145342312

32

Euler Cycles

Euler Walk: Walk using every edge in G = (V, E) exactly once.

KONINGSBERGA

123143542 123145342 123413542 123453142 123541342

123543142 124134552 124135432 124314632 124354132

r‘““'u

mwm msamz uzu:um uzusuz umsuz

132453472 134123542 134124532 134214532 134235412

3'4)4 :«u;

it e e usumz s

135423412 135432142 135432412 142134532 142135432

192345312 142354312 143123542 143124532 143213542
~ ~ ~ ~ ~

i
0‘9

185321342 145324312 145342132 145342312

32

Euler Cycles
Euler Walk: Walk using every edge in G = (V, E) exactly once.

BRRRA

123143542 123145342 123413542 123453142 123541342

() HRRRK

&
1ERSAD1 12 1ZATRASSE TEATISASE TEATIISER 120354132
.;?q -'A. -A‘ L?‘ ’a
T S e e umsm

i = QeRRR

132453412 134123542 134124532 134214532 134235uz
A~

nﬁzwa

134532142 134532472 135412342 135412432 135421432
A

wmsm usmuz mmmz 132134532 umsm

\

Euler’s Theorem:
Euler walk exists iff G connected and 0 or 2 vertices have odd degree.

'“vT" v;‘i'a vﬁ’a r:-“%:. K
P M» 1]S 1K)
‘=’ trivial (need to enter and exit intermediate vertices equally often) 5w g woi nom e

) 1) o
‘<’ Following algorithm constructs Euler walk under this assumption | !:i X1

135321342 145324312 145342132 145342312

Euler Cycles — Hierholzer’s Algorithm

> use an edge-centric DFS

> We mark edges (not vertices)
~+ stack = edge-simple walk

» We remember iterator i globally
per v to resume traversal

procedure eulerWalk(G):
/] Assume G = (V, E) is connected (multi)graph
Vodd = {v € V : d(v) odd}
if |Voqql € {0, 2} return NOT EULERIAN
if Vogq = {x, y} thens := xelses := 0
euler[0..m) := NONE; j:=m—1
visited[0..n,0..n) := false // mark edges as visited
forv :=0,...,n—1
// globally remember next unexplored edge
nextEdge[v] := G.adj[w].iterator())
edgeDFS(s)
return culer

1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20

procedure edgeDFS(s):

frontier := new Stack;
frontier.push(s)
while —frontier.isEmpty()
v = frontier.top()
if —i.hasNext() // v has no unused edge
frontier.pop()
if —frontier.isEmpty()
// assign edge leading here largest free index
euler[j] := (frontier.top(), v); j:=j—1
end if
else
w = i.next()
if —wisited[v, w]
visited[v, w] := true
visited[w, v] := true
frontier. push(w)
end if
end if
end while

33

Clicker Question

-

Mark all correct statements about a dfsTraversal (Slide 21) of a DAG G:

-

Listing vertices in the order they are marked done is a topological
sorting of G.

Listing vertices in the reverse order they are marked done is a
topological sorting of G.
S © &

If v is marked done before vertex w, there is a path v ~ w.

If v is marked done before vertex w, there is a path w ~ v.

=

= E6E 6

(If v is marked done before vertex w, there cannot be a M

If v is marked done before vertex w, there cannot be a path w ~~ v.

>

J

|~ sli.do/cs566 |

Clicker Question

-

Mark all correct statements about a dfsTraversal (Slide 21) of a DAG G:

Listing vertices in the reverse order they are marked done is a
topological sorting of G. \/

() s)

Hiomarked-domebeforeverter-there-connotbe-a-path-sm

If v is marked done before vertex w, there cannot be a path w ~~ v.

X

‘a sli.do/cs566

Strong Components
» Given: digraph G = (V,E)
» Goal: component ids SCCI[0..1), s.t. SCC[v] = SCC[u] iff 3 directed path from v to u

34

Strong Components
» Given: digraph G = (V,E)
» Goal: component ids SCC[0..1), s.t. SCC[v] = SCC[u] iff 3 directed path from v to u

strongly connected component

¥
» Component DAG G°“C: contract SCCs intro single vertices
V(G5CC) = {Cy,...,Cx} WithC1 U---UCr = V;
name by smallest vertex s.t. i < j iff min C; < min C;

» can’t have cycles (¥ maximality of SCC)
~ component DAG has a topological order R5C|[1..k]

34

Strong Components
» Given: digraph G = (V,E)
» Goal: component ids SCC[0..1), s.t. SCC[v] = SCC[u] iff 3 directed path from v to u

strongly connected component

» Component DAG G°CC: contract SCCs intro single vertices
V(G5CC) = {Cy,...,Cx} WithC1 U---UCr = V;
name by smallest vertex s.t. i < j iff min C; < min C;

» can’t have cycles (¥ maximality of SCC)

~ component DAG has a topological order R5C|[1..k]

A ! 4
= ’O\' If we call dfs on any v in the last SCC C, it will discover all vertices in C, and only those!
= (any edges between components lead into C by topological order)
B ey P y topol0g

And we can iterate this backwards through any topological order to get all SCCs!

34

Strong Components

>

| 2

\

4

Ig\’ "

\.I
'

Given: digraph G = (V,E)
Goal: component ids SCC[0..n), s.t. SCC[v] = SCC[u] iff 3 directed path from v to u

strongly connected component

Component DAG G°CC: contract SCCs intro single vertices
V(G5CC) = {Cy,...,Cx} WithC1 U---UCr = V;
name by smallest vertex s.t. i < j iff min C; < min C;
» can’t have cycles (¥ maximality of SCC)
~ component DAG has a topological order R5C|[1..k]

If we call dfs on any v in the last SCC C, it will discover all vertices in C, and only those!
(any edges between components lead into C by topological order)

And we can iterate this backwards through any topological order to get all SCCs!

Can we efficiently find the topological order of G5“©?
Without knowing the components to start with??

Amazingly, yes.
34

Component Graph DFS

»> Suppose we run dfsTraversal on G.
~ We can extend time intervals to SCCs: T(C;) := Uyec, T(v)

~ T(C;) = T(v;) for v; € C; the first vertex to be explored in a DFS on G ‘
(by Unseen Path & Parenthesis Thms)

A8

35

Component Graph DFS

> Suppose we run dfsTraversal on G.

~ We can extend time intervals to SCCs: T(C;) := Uyec, T(v)

~ T(C;) = T(v;) for v; € C; the first vertex to be explored in a DFS on G
(by Unseen Path & Parenthesis Thms)

~ DFS on G produces same T(C;) (up to time scaling) as DFS on G>“*!

~ reverse DFS postorder on G gives same relative order to vy, ..., vy as
reverse DFS postorder on GScC gives as relative order to Cy, ..., Cy

35

Component Graph DFS

> Suppose we run dfsTraversal on G.

~ We can extend time intervals to SCCs: T(C;) := Uyec, T(v)

~ T(C;) = T(v;) for v; € C; the first vertex to be explored in a DFS on G
(by Unseen Path & Parenthesis Thms)

~ DFS on G produces same T(C;) (up to time scaling) as DFS on G>“*!

~ reverse DFS postorder on G gives same relative order to vy, ..., vy as
reverse DFS postorder on GScC gives as relative order to Cy, ..., Cy
@ We need reverse topological order on G5, e. g., reversed reverse DES postorder
> If we had the actual reverse DFS postorder on G°C, could just reverse again!
» But we only have reverse DFS postorder S[0..1) on G!

¥ Reversing here would change v;, i. e., which vertices of an SCC we see first

35

Kosaraju-Sharir’s Algorithm

» Recall: Want reverse(topologicalRanking(G5©))

36

Kosaraju-Sharir’s Algorithm

» Recall: Want reverse(topologicalRanking(G5©))

» Transpose/Reverse Graph of G = (V,E): G’ = (V,E") where ET = {wv : vw € E}

Note: A adj matrix of G ~~ AT adj matrix of GT

» For any DAG, we obtain a reverse topological order from reversing all edges:
topologicalSort (GT) If we reverse iteration order in dfsTraversal, we get reverse(topologicalSort(G)) = topologicalsort(GL)

36

Kosaraju-Sharir’s Algorithm

» Recall: Want reverse(topologicalRanking(G5©))

» Transpose/Reverse Graph of G = (V,E): G’ = (V,E") where ET = {wv : vw € E}

Note: A adj matrix of G ~~ AT adj matrix of GT

» For any DAG, we obtain a reverse topological order from reversing all edges:
topologicalSort (GT) If we reverse iteration order in dfsTraversal, we get reverse(topologicalSort(G)) = topologicalsort(GL)

> Observation: (GT)* = (G5<¢)"

» strong components not affected by edge reversals

» Want: reverse (t opo lo g icalRankin g (GSCC)) (any ranking works, need not be reverse DFS postorder)

36

Kosaraju-Sharir’s Algorithm

» Recall: Want reverse(topologicalRanking(G5©))

» Transpose/Reverse Graph of G = (V,E): G’ = (V,E") where ET = {wv : vw € E}

Note: A adj matrixof G ~» AT adj matrix of GT

» For any DAG, we obtain a reverse topological order from reversing all edges:
topologicalSort (GT) If we reverse iteration order in dfsTraversal, we get reverse(topologicalSort(G)) = topologicalsort(GL)

> Observation: (GT)* = (G5<¢)"

» strong components not affected by edge reversals
» Want: reverse (t opo lo g icalRankin g (GSCC)) (any ranking works, need not be reverse DFS postorder)

~~ Get it from: topologicalRanking((G5““)T) = topologicalRanking((GT)5C)

36

Kosaraju-Sharir’s Algorithm

» Recall: Want reverse(topologicalRanking(G5©))

» Transpose/Reverse Graph of G = (V,E): G’ = (V,E") where ET = {wv : vw € E}

Note: A adj matrixof G ~» AT adj matrix of GT

» For any DAG, we obtain a reverse topological order from reversing all edges:
topologicalSort (GT) If we reverse iteration order in dfsTraversal, we get reverse(topologicalSort(G)) = topologicalsort(GL)

> Observation: (GT)* = (G5<¢)"

» strong components not affected by edge reversals
» Want: reverse (t opolog icalRan king(GSCC)) (any ranking works, need not be reverse DFS postorder)
~~ Get it from: topologicalRanking((G5““)T) = topologicalRanking((GT)5C)

~ Get that as induced ranking on vy, .. ., vy from reverse dfsPostorde r(GT)

36

Kosaraju-Sharir’s Algorithm — Code

1
2
3
4
5
6
7
8
9

procedure strongComponents(G):

// directed graph G = (V,E) with V = [0..n)

GT = (V,{wv : vw € E})

P[0..n) := dfsPostorder(GT) // postorder numbers

forv € V do S[P[v]] := v end for // postorder sequence
// Rest like connectedComponents (with permuted vertices)
C[0..n) := unseen

SCC[0..1n) := NONE

id :=0
forj :=n—1,...,0// reverse postorder seq
v = S[j]
if C[v] == unseen
dfs(G, v)
id :==id+1
return SCC

17 procedure preorderVisit(v):

18

SCClo] := id

37

Kosaraju-Sharir’s Algorithm — Code

1
2
3
4
5
6
7
8
9

procedure strongComponents(G):

// directed graph G = (V,E) with V = [0..n)

GT = (V,{wv : vw € E})

P[0..n) := dfsPostorder(GT) // postorder numbers

forv € V do S[P[v]] := v end for // postorder sequence
// Rest like connectedComponents (with permuted vertices)
C[0..n) := unseen

SCC[0..1n) := NONE

id :=0
forj :=n—1,...,0// reverse postorder seq
v = S[j]
if C[v] == unseen
dfs(G, v)
id :==id+1
return SCC

17 procedure preorderVisit(v):

18

SCClo] := id

» correctness follows from our
discussion

37

Kosaraju-Sharir’s Algorithm — Code

» correctness follows from our

1 procedure strongComponents(G):

2 // directed graph G = (V, E) with V = [0..n) discussion

3 GT = (V,{wv : vw € E})

4 P[0..n) := dfsPostorder(GT) // postorder numbers > Ordering of SCCs follows

5 forv € V do S[P[v]] := v end for // postorder sequence reverse topological sort of G5CC
6 // Rest like connectedComponents (with permuted vertices) . .

; C[0..1) := unseen > some implementations reverse
g SCC[0..11) := NONE G for 2nd DFS, not 1st

o id = 0 ~ output in (forward)

10 forj :=n —‘1, ..., 0// reverse postorder seq topological order

1 v = S[j]

o if C[v] == unseen » but derivation more natural
13 dfs(G, v) this way?

14 id :=id+1

15 return SCC

17 procedure preorderVisit(v):
18 SCClv] := id

Kosaraju-Sharir’s Algorithm — Code

1
2
3
4
5
6
7
8
9

procedure strongComponents(G):

// directed graph G = (V,E) with V = [0..n)

GT = (V,{wv : vw € E})

P[0..n) := dfsPostorder(GT) // postorder numbers

forv € V do S[P[v]] := v end for // postorder sequence
// Rest like connectedComponents (with permuted vertices)
C[0..n) := unseen

SCC[0..1n) := NONE

id :=0
forj :=n—1,...,0// reverse postorder seq
v = S[j]
if C[v] == unseen
dfs(G, v)
id :==id+1
return SCC

17 procedure preorderVisit(v):

18

SCClo] := id

» correctness follows from our
discussion

» ordering of SCCs follows
reverse topological sort of G5¢

> some implementations reverse
G for 2nd DFS, not 1st

~ output in (forward)
topological order

» but derivation more natural
this way?

» as all our traversals:
O(n + m) time,
©(n) extra space

37

9.6 Network flows

Clicker Question

4 Prior knowledge from linear optimization; check all apply.
I've seen LPs in lectures before.
I could model an application problem as (I)LP.
I’ know algorithms for solving LPs.
@ I know what weak and strong duality in LPs are.
o I could dualize an LP given to me.

I know about the complexity of LPs and ILPs.

LPs for me only mean music on vinyl.

G |~ sli.do/cs566

Networks and Flows — Informal

Informally, imagine a network of water pipes.
source s . TR
» Water can flow through the pipes up to a flow capacity limit
(up to c(e) liters per second, say).

» There’s infinite water pressing into the source s and
infinite drain capacity at the sink / target ¢

> At all other junctions, inflow = outflow (no leakage)

~+ How much water can flow through the network?

target ¢

38

Networks and Flows — Informal

Informally, imagine a network of water pipes.

S 4
source s

» Water can flow through the pipes up to a flow capacity limit
(up to c(e) liters per second, say).

» There’s infinite water pressing into the source s and
infinite drain capacity at the sink / target ¢

> At all other junctions, inflow = outflow (no leakage)

~+ How much water can flow through the network?

target ¢

38

Networks and Flows — Informal

Informally, imagine a network of water pipes.

S 4
source s

» Water can flow through the pipes up to a flow capacity limit
(up to c(e) liters per second, say).

» There’s infinite water pressing into the source s and
infinite drain capacity at the sink / target ¢

> At all other junctions, inflow = outflow (no leakage)

~+ How much water can flow through the network?

target ¢

38

Networks and Flows — Informal

Informally, imagine a network of water pipes.

S 4
source s

» Water can flow through the pipes up to a flow capacity limit
(up to c(e) liters per second, say).

» There’s infinite water pressing into the source s and
infinite drain capacity at the sink / target ¢

> At all other junctions, inflow = outflow (no leakage)

~+ How much water can flow through the network?

target ¢

38

Networks and Flows — Informal

Informally, imagine a network of water pipes.

S 4
source s

» Water can flow through the pipes up to a flow capacity limit
(up to c(e) liters per second, say).

» There’s infinite water pressing into the source s and
infinite drain capacity at the sink / target ¢

> At all other junctions, inflow = outflow (no leakage)

~» How much water can flow through the network?

38

Networks and Flows — Informal

Informally, imagine a network of water pipes.
N 4
source s . TR
» Water can flow through the pipes up to a flow capacity limit
(up to c(e) liters per second, say).

[
l‘
|)
®

» There’s infinite water pressing into the source s and
infinite drain capacity at the sink / target ¢

> At all other junctions, inflow = outflow (no leakage)

~» How much water can flow through the network?

In this example:

» not more than 5 +2 + 3 = 10 units of flow out of {0, 2} possible

~» not more than 10 units out of s possible

38

Networks and Flows — Informal

Informally, imagine a network of water pipes.
source’s
» Water can flow through the pipes up to a flow capacity limit
(up to c(e) liters per second, say).

[
l‘
|)
®

» There’s infinite water pressing into the source s and
infinite drain capacity at the sink / target ¢

> At all other junctions, inflow = outflow (no leakage)

~» How much water can flow through the network?

In this example:
» not more than 5 +2 + 3 = 10 units of flow out of {0, 2} possible
~» not more than 10 units out of s possible

v ~ shown flow is maximal

Remainder of this unit: general version of above (+ efficient algorithms)

38

Networks and Flows — Definitions

» S_t_(flow) network: for notational convenience only
> simple, directed, connected graph G = (V,E), n({ antiparallel edges (vw € E ~ wv ¢ E)
» edge capacities ¢ : E — Rxg

» distinguished vertices: source s € V, target/sink t € V

39

Networks and Flows — Definitions

> s—t—(ﬂow) network: for notational convenience only
» simple, directed, connected graph G = (V,E), n({ antiparallel edges (vw € E ~ wv ¢ E)
» edge capacities ¢ : E — Rxg
» distinguished vertices: source s € V, target/sink t € V

» (network) flow (in G): f :E — Ryg

> flow f isfeasible if it satisfies notational convenience: set f(vw) = c(vw) = 0 for vw ¢ E

» capacity constraints: Yo, w eV : 0 < f(ow) < c(vw)
» flow conservation: Yv € V\{s,t} : Yyev f(w,0) = Ypey f(v, w)

39

Networks and Flows — Definitions

> s—t—(ﬂow) network: for notational convenience only
» simple, directed, connected graph G = (V,E), n({ antiparallel edges (vw € E ~ wv ¢ E)
» edge capacities ¢ : E — Rxg
» distinguished vertices: source s € V, target/sink t € V

» (network) flow (in G): f :E — Ryg

> flow f isfeasible if it satisfies notational convenience: set f(vw) = c(vw) = 0 for vw ¢ E

» capacity constraints: Yo, w eV : 0 < f(ow) < c(vw)
» flow conservation: Yv € V\{s,t} : Yyev f(w,0) = Ypey f(v, w)

> wvalue | f| of flow f: |f| = Spev f(5,0) = Spev f(0,5)

39

Max-Flow Problem

» Maximum-Flow Problem:

» Given: s-t-flow network

» Goal: Find feasible flow f* with maximum | f*| among all feasible flows

40

Max-Flow Problem

» Maximum-Flow Problem:

» Given: s-t-flow network

» Goal: Find feasible flow f* with maximum | f*| among all feasible flows

> (N_ vs R as we will see

»> We focus on integral capacities here ~> can restrict ourselves to integral flows

» but: ideally want algorithms that work with arbitrary real numbers, too

40

Multiple Sources & Sinks, Antiparallel Edges

»> Some of the restrictions can be generalized easily.

O/\“J
» We forbid loops and antiparallel edges. (\OZO

>
>
>

The presented algorithms actually work fine with both!
but proofs are cleaner to write without them

also: can always remove loops and (anti)parallel edges by adding a new vertex in the
middle of the edge

same maximum | f|

41

Multiple Sources & Sinks, Antiparallel Edges

»> Some of the restrictions can be generalized easily.

» We forbid loops and antiparallel edges.

» The presented algorithms actually work fine with both!
> but proofs are cleaner to write without them

» also: can always remove loops and (anti)parallel edges by adding a new vertex in the
middle of the edge

~» same maximum | f|

»> We only allow a single source and a single sink

» can add a “supersource” and “supersink” with capacity-co edges to all sources resp. sinks

~» same maximum | f| % @ZD\ Qj\
20-

BENS .

41

Reductions

> Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network
flows are reductions of other problems

42

Reductions

> Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network
flows are reductions of other problems

1. Disjoint Paths
» Given: Unweighted (di)graph G = (V, E), vertices s, t € V
» Goal: How many edge-disjoint paths are there from s to t?

cle>=1

C) 1£%) < 1,

42

Reductions

> Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network
flows are reductions of other problems

1. Disjoint Paths
» Given: Unweighted (di)graph G = (V, E), vertices s, t € V

» Goal: How many edge-disjoint paths are there from s to t?

2. Assignment Problem, Maximum Bipartite Matching
» Given: workers W = {wq, ..., wy} tasks T = {t1, ..., t}, qualified-for relation Q C W x T
> Goal: Assignmenta : W — T U {_L} of workers to tasks such that

» workers are qualified: Yw € W : a(w) # L = (w,a(w)) € Q
» |a(W)|, the number of tasks assigned, is maximized

. 7M {7leye n/

@\@
) g [1 /
(e

Reductions

> Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network
flows are reductions of other problems

1. Disjoint Paths
» Given: Unweighted (di)graph G = (V, E), vertices s, t € V

» Goal: How many edge-disjoint paths are there from s to t?

2. Assignment Problem, Maximum Bipartite Matching
» Given: workers W = {wq, ..., wy} tasks T = {t1, ..., t}, qualified-for relation Q C W x T
> Goal: Assignmenta : W — T U {_L} of workers to tasks such that
» workers are qualified: Yw € W : a(w) # L = (w,a(w)) € Q
» |a(W)|, the number of tasks assigned, is maximized
» Both problems can be solved by (in both cases, 1. and 3. are very efficient)
1. constructing a specific flow network from their input data
2. computing a maximum flow in that network

3. “reading off” a solution for the oriénal problem from the max flow

42

9.7 The Ford-Fulkerson Method

Push Push Push!

» Simple Idea: Iteratively find a path from s to ¢ that we can push more flow over.

1. Push 3 units of flow over
s —>2—>51>53->t

Example:

Problem: Cannot undo mistakes.
Here: shouldn’t have put so
much flow on (1,2) ...

43

Push Push Push!

» Simple Idea: Iteratively find a path from s to ¢ that we can push more flow over.

1. Push 3 units of flow over
s —>2—>51>53->t

Example:

2. Push 3 units of flow over
s—>1—>4—>t

Problem: Cannot undo mistakes.
Here: shouldn’t have put so
much flow on (1,2) ...

43

Push Push Push!

» Simple Idea: Iteratively find a path from s to ¢ that we can push more flow over.

1. Push 3 units of flow over
s —>2—>51>53->t

Example:

2. Push 3 units of flow over
s—>1—>4—>t

3. Push 2 units of flow over
s—>2 >4t

Problem: Cannot undo mistakes.
Here: shouldn’t have put so
much flow on (1,2) ...

43

Push Push Push!

» Simple Idea: Iteratively find a path from s to ¢ that we can push more flow over.

1. Push 3 units of flow over
s —>2—>51>53->t

Example:

2. Push 3 units of flow over
s—>1—>4—>t

3. Push 2 units of flow over
s—>2 >4t

~> Every s-t path now has a saturated edge.

Problem: Cannot undo mistakes.
Here: shouldn’t have put so
much flow on (1,2) ...

43

Push Push Push!?

» Simple Idea: Iteratively find a path from s to f that we can push more flow over.

1. Push 3 units of flow over
s —>2—>51>53->t

(=9

Example:

2. Push 3 units of flow over
s—1—-4—>t

3. Push 2 units of flow over
s—>2 >4t

~> Every s-t path now has a saturated edge.

A But: resulting flow is not optimal!

Problem: Cannot undo mistakes.
Here: shouldn’t have put so
much flow on (1,2) ...

43

Residual Networks

» Goal: Allow undoing flow (without backtracking)

44

Residual Networks

» Goal: Allow undoing flow (without backtracking)

» Residual network G¢: given network G = (V, E) and feasible flow f
clow) - f(vw) vw € E //add flow
> Gy = (V, Ef) with capacities c(vw) = § f(wv) wv € E //revert flow
Ef ={vw:cf(ow) > 0} 0 else

O

44

Residual Networks

» Goal: Allow undoing flow (without backtracking)

» Residual network G¢: given network G = (V, E) and feasible flow f
clow) - f(vw) vw € E //add flow

> Gy = (V, Ef) with capacities c(vw) = § f(wv) wv € E //revert flow
Ef ={vw:cf(ow) > 0} 0 else
j«—3
3,
¥ o5 6\
& N1 Do
O
2
—
» residual flow f’: feasible flow in G /(f *f)ew) = flew) + fow) - fwo)

~> for any f and residual flow f”in G, flow f + f” is a feasible flow in G

44

Residual Networks

» Goal: Allow undoing flow (without backtracking)

» Residual network G¢: given network G = (V, E) and feasible flow f
clow) - f(vw) vw € E //add flow
> Gy = (V, Ef) with capacities c(vw) = § f(wv) wv € E //revert flow
Ef ={vw:cf(ow) > 0} 0 else

» residual flow f’: feasible flow in G /(f *f)ew) = flew) + fow) - fwo)
~> for any f and residual flow f”in G, flow f + f” is a feasible flow in G

> augmenting path p: s-t-path Gy particularly simple f!

44

Residual Networks

» Goal: Allow undoing flow (without backtracking)

» Residual network G¢: given network G = (V, E) and feasible flow f
clow) - f(vw) vw € E //add flow

> Gy = (V, Ef) with capacities c(vw) = § f(wv) wv € E //revert flow
Ef ={vw:cf(ow) > 0} 0 else
j«—3
7]5\‘
& 1l ®
5 5
4

» residual flow f’: feasible flow in G (f + fow) = flow) + flow) = f(wo)
~> for any f and residual flow f”in G, flow f + f” is a feasible flow in G

> augmenting path p: s-t-path Gy particularly simple f!

44

Cuts

» Goal: Certificate for maximum flows

» s-t-cut (S, T): partiionSUT =V,s €S,
teT disjoick voron

» net flow across cut:

f8,1)=) D (flow) - fwv))
veS weT
» capacity of cut:

8,1 =) > flow)

veS weT

45

Cuts

» Goal: Certificate for maximum flows

» s-t-cut (S, T): partiionSUT =V,s €S,
teT

» net flow across cut:

f8,1)=) D (flow) - fwv))
veS weT
» capacity of cut:

8,1 =) > flow)

veS weT

> £(S,T)=5+3+3-1=10
> (S, T)=5+3+3=11

45

Cuts

» Goal: Certificate for maximum flows

» s-t-cut (S, T): partiionSUT =V,s €S,
. teT

» net flow across cut:

£8,1) =" > (flow) - f(wo)
veS weT
» capacity of cut:

«(8,1)=),), fww)

veS weT

> f(S,T)=5+3+3-1=10
» Lemma: For any cut (S, T), we have f(S,T) = |f].

(flow conservation!)

> ¢(S,T)=5+3+3=11

e S Lrmen S

\ows from 8
Qave eg,tuc,(
by Wow

@ o\auNVc‘L\\Q‘_,

Dl {S1= £, VNI ndinchor eu IS]
(5 aclcg v bk S

45

Cuts

» Goal: Certificate for maximum flows

» s-t-cut (S, T): partiionSUT =V,s €S,
teT

» net flow across cut:

£8,1) =" > (flow) - f(wo)
veS weT
» capacity of cut:

8,1 =) > flow)

veS weT

» Lemma: For any cut (S, T), we have f(S,T) = |f].
(flow conservation!)

» Corollary: |f| < ¢(S, T) for any s-t-cut (S, T)

u

Ctsets

> f(S,T)=5+3+3-1=10
Al
> (S, T)=5+3+3=11

45

The Max-Flow Min-Cut Theorem

» Max-Flow Min-Cut Theorem:
Let f be a feasible flow in s-t-network G = (V, E). Then the following conditions are

equivalent:
1. |f| =c(S,T) for some cut (S, T) of G.
2. fisamaximum flow in G
3. The residual network G has no augmenting path.

Pr&m{‘s LC’LW = (2 \k CafuMcAt/ ('M«/aﬂ/“") b2 Qe <) eu’*“ ?er p’ f {”[< C(S.T\ = /C(
"CZ\ => (‘S)L‘ ravxkr:f,o;rhn:ﬂ r'[G[e P ‘me N I’\'l { =3 Ce jucwec e [(C/
=3 [wd ol

S=bv: sl T=V\S = ($7T) is a <t
ﬁt(‘gﬂ Qevogy (§T> ave. SQ§\N¢{N<L Qan«a,(z 945))

(oY4 WPLK/ rf_?&ﬂ(,(w&xé QASKS

(3.1 = z L cbw) = cls.T)

v eSS weT

46

Generic Ford-Fulkerson Method

1 procedure genericFordFulkerson(G = (V, E), s, t, ¢):

2 // G is a flow network with source s € V, sink t € V and capacities ¢ : E — Rx
3 forvw € E do f(vw) := 0 end for

4 while 3 path p from s to t in G // Freedom: Which augmenting path?

5 A = min{cy(e) : e € p} // bottleneck capacity

6 foreep

7 if e € E // forward edge

8 fle) == fle)+A

9 else // backward edge

10 fle) :== f(e)—A

1 return f

» Returned flow is a maximum flow f* (Max-Flow Min-Cut Theorem)

» Ifc:E— Np,also f : E — Np: For all v, w € V holds:
» initially f(vw) =0¢€ Ny
> cr(vw) is difference of c(ow) € Ng and f(vw) € Ny
> Aequal to some cf(v'w’) € N> (Ef contains only non-zero capacity edges!)
~» new flow f(vw) + A € Ny

~~ For integral capacities, always terminate after < | f*| iterations

47

Bad Example

» Unfortunately, we might also take | f*| iterations!

\ o~
o' o

7 000

/
o N
op® ~ A

» (2 iterations with smarter augmenting paths would have sufficed here)

. _® %
o T 0/]000\@ @Q/C?\%\@
\

48

Bad Example

» Unfortunately, we might also take | f*| iterations!

O C i
0/]00 0 70 0

Q\‘@QQ A

» (2 iterations with smarter augmenting paths would have sufficed here)

. o ‘
\

48

Bad Example

» Unfortunately, we might also take | f*| iterations!

G /@0/]000 Gf 999//@\10
\

» (2 iterations with smarter augmenting paths would have sufficed here)

L O
\.\.m@“/]000\ % //999 x

48

Bad Example

» Unfortunately, we might also take | f*| iterations!

\

» (2 iterations with smarter augmenting paths would have sufficed here)

\\-\QQQ/ IOOO\é(/}Q‘)X/?! :)

48

Bad Example

» Unfortunately, we might also take | f*| iterations!

G

e Q/@\%@@ f qqg//(&ggg

. | O 0. | 0o
1./ —
/]00"\ x.\@““/ QQQW >

» (2 iterations with smarter augmenting paths would have sufficed here)

48

Bad Example

» Unfortunately, we might also take | f*| iterations!

Z G o

Z]000 999 . 99,
] ;
A

o)
0 /-1%9

@ ~0
Lz ¥ 00 999

~~ x-\'\@g/ Q il

» (2 iterations with smarter augmenting paths would have sufficed here)

48

Bad Example

» Unfortunately, we might also take | f*| iterations!

G
a0, ! o e
?’,\.\QQQ Ay /’L T 7
o OO SAgE -
o W ’

» (2 iterations with smarter augmenting paths would have sufficed here)

\

48

Bad Example

» Unfortunately, we might also take | f*| iterations!

Gy

]%]000\@ ‘q/q‘bl//)% !
o/ T /
/1000\ o _— %%/9/9% % f

o
1-/-1%9

2

» (2 iterations with smarter augmenting paths would have sufficed here)

48

Bad Example

» Unfortunately, we might also take | f*| iterations!

%] 000

,\.x@°°>@ %

» (2 iterations with smarter augmenting paths would have sufficed here)

o)
/Q [}
0 /-1%
© %

9

48

Bad Example

» Unfortunately, we might also take | f*| iterations!

B Gy ,
%]000 9% > 98
A

o)
[}
0 /-1%

i

2
0\ ’L’\‘@QQ Q‘ i

» (2 iterations with smarter augmenting paths would have sufficed here)

48

Bad Example

» Unfortunately, we might also take | f*| iterations!

2%]000 qﬁﬂ / 99, S

2/] o) >@ 998 91
I~ AN W

» (2 iterations with smarter augmenting paths would have sufficed here)

o
@
1-/-1%

48

A Very Bad Example
» for irrational flows, might not even terminate
> example network with irrational initial flow

> w=¢p-1=(V5-1)/2~0618 ~ 1-w =w?~0.382

49

A Very Bad Example
» for irrational flows, might not even terminate
> example network with irrational initial flow

> w=¢p-1=(V5-1)/2~0618 ~ 1-w =w?~0.382

49

A Very Bad Example
» for irrational flows, might not even terminate
> example network with irrational initial flow

> w=¢p-1=(V5-1)/2~0618 ~ 1-w =w?~0.382

49

A Very Bad Example
» for irrational flows, might not even terminate
> example network with irrational initial flow

> w=¢p-1=(V5-1)/2~0618 ~ 1-w =w?~0.382

49

A Very Bad Example
» for irrational flows, might not even terminate
> example network with irrational initial flow

> w=¢p-1=(V5-1)/2~0618 ~ 1-w =w?~0.382

49

A Very Bad Example
» for irrational flows, might not even terminate
> example network with irrational initial flow

> w=¢p-1=(V5-1)/2~0618 ~ 1-w =w?~0.382

49

A Very Bad Example
» for irrational flows, might not even terminate
> example network with irrational initial flow

> w=¢p-1=(V5-1)/2~0618 ~ 1-w =w?~0.382

49

A Very Bad Example
» for irrational flows, might not even terminate
> example network with irrational initial flow

> w=¢p-1=(V5-1)/2~0618 ~ 1-w =w?~0.382

110

49

A Very Bad Example
» for irrational flows, might not even terminate
> example network with irrational initial flow

> w=¢p-1=(V5-1)/2~0618 ~ 1-w =w?~0.382

49

A Very Bad Example
» for irrational flows, might not even terminate
> example network with irrational initial flow

> w=¢p-1=(V5-1)/2~0618 ~ 1-w =w?~0.382

> after 2 paths, situation in 1-2-3-4 restored (rotated), but flows multiplied by w

~ augmenting paths have capacities w, w, w2, w2, wd, wd ...

~> never terminate, never exceed | f| > 5
49

9.8 The Edmonds-Karp Algorithm

Edmonds-Karp

» It turns out, many ways to choose augmenting paths systematically work fine

» Edmonds & Karp: take a shortest path (in #edges) Dava implesecctalton

gﬂ(“éﬁ‘w’ck £ woybq

1

2
3
4
5
6
7
8
9

procedure EdmondsKarp(G = (V,E), s, t, ¢):
// G is a flow network with source s € V, sink t € V and capacities ¢ : E — Rx
for vw € E do f(vw) := 0 end for 3 Tt
while true . C
bis(Gy, {sh) . BE patlh 1w &F
if distFrom(t] == oo return f
else p := pathTo(t)
A := min{cs(e) : e € p} // bottleneck capacity
forecp
if e € E // forward edge TT
fle) = f(e) +A
else // backward edge
fle) == fle)—A

end while

50

Edmonds-Karp — Analysis

» Theorem: The Edmonds-Karp algorithm terminates after O(nm) iterations
with a maximum flow. The total running time is in O(nm?).

51

Edmonds-Karp — Analysis

» Theorem: The Edmonds-Karp algorithm terminates after O(nm) iterations
with a maximum flow. The total running time is in O(nm?).

» Proof Plan:
> every augmenting path has a critical edge vw contributing the bottleneck capacity

> we will show: S6)
(1) distances of vertices from s in G s weakly increase over time
(2) before vw can be a critical edge again, v’s distance increases by at least 2

~~ each edge vw is critical for at most 11/2 augmenting paths (v’s distance € [1..n — 2])
~» O(nm) augmenting paths

» each iteration runs one BFS, which costs O(n + m) = O(m) times since G is connected.

51

Edmonds-Karp — Analysis

» Theorem: The Edmonds-Karp algorithm terminates after O(nm) iterations
with a maximum flow. The total running time is in O(nm?).

» Proof Plan:
> every augmenting path has a critical edge vw contributing the bottleneck capacity

> we will show:
(1) distances of vertices from s in G s weakly increase over time
(2) before vw can be a critical edge again, v’s distance increases by at least 2

~~ each edge vw is critical for at most 11/2 augmenting paths (v’s distance € [1..n — 2])
~» O(nm) augmenting paths

» each iteration runs one BFS, which costs O(n + m) = O(m) times since G is connected.

» Notation:
> Write fy, f1, ... for values of f during iterations of while loop
~ Gp, residual network after ith augmentation

> Write 0;(v) for shortest-path distance from s to v in G,

51

Edmonds-Karp — Analysis [2]

(1) » EK Monotonicity Lemma: For all i and v € V, we have 6;41(v) > 0i(v).

» fi: flow after ith augmentation

> §;(v) distance from s to v in Gy,

>

52

Edmonds-Karp — Analysis [2]

» EK Monotonicity Lemma: For all i and v € V, we have 06;:1(v) > 0;(v).

» fi: flow after ith augmentation

P T’OOf.' » 6;(v) distance from s to v in G,
» by induction over k, the value of 6;(v)
» IB: k = 0: only v = s possible; 0;+1(s) =0> 0 = 6;(s) v

» IH: Assume the claim is true for all shortest paths up to length k

52

Edmonds-Karp — Analysis [2]

» EK Monotonicity Lemma: For all i and v € V, we have 06;:1(v) > 0;(v).

» fi: flow after ith augmentation
Proof:

> 5,(0) distance from s to 0 in G
» by induction over k, the value of 6;(v)

» IB: k = 0: only v = s possible; 0;+1(s) =0> 0 = 6;(s) v

» IH: Assume the claim is true for all shortest paths up to length k

» IS: Suppose 0;4+1(v) = k + 1.

~ Jshortest path p[0..k + 1] in Gf.,, with pl0] = s and p[k + 1] = 0.
~» For w = p[k], p[0..k] is a shortest path from s tow ~» k = 0;11(w) > 6;(w)
H

52

Edmonds-Karp — Analysis [2]

» EK Monotonicity Lemma: For all i and v € V, we have 06;:1(v) > 0;(v).

> fi: flow after ith augmentation
P T’OOf.' » 6;(v) distance from s to v in G,
» by induction over k, the value of 6;(v) .
X3

» IB: k = 0: only v = s possible; 0;+1(s) =0> 0 = 6;(s) v @/\:52_5 ©—©

» IH: Assume the claim is true for all shortest paths up to length k

i @
L
» IS: Suppose 0;+1(v) = k + 1. <k
ppose 841(0) @NMQ

~ Jshortest path p[0..k + 1] in Gf.,, with pl0] = s and p[k + 1] = 0.

~» For w = p[k], p[0..k] is a shortest path froms tow ~» k = 0;+1(w) I%I o;(w)

> Case 1% ~ 0;(v) < 6j(w)+1 R

> Case2: wv ¢ E, ~» reverse edge vw in ith augmenting path, a shortest s-f-path
~ 0i(0) =0i(w)—1< 6;(w) +1

» in both cases: 0;11(v) = 0;41(w) +1 > 6;(w)+1 > 6;(v)
TV

52

Edmonds-Karp — Analysis [3]

{ 2) P Critical Distance Lemma: When critical edge vw becomes a critical again, 6(v) has
increase by at least 2.

53

Edmonds-Karp — Analysis [3]

» Critical Distance Lemma: When critical edge vw becomes a critical again, 6(v) has
increase by at least 2.

D

3

Proof: ® > @&

» Suppose vw is critical in ith iteration ~~ lies on shortest path
~ 6[(30):(5'%(0)""1 f G:C., (VI vat ?M&ﬁé

» before vw reappears in G, need to have had wv in augmenting path;
say this first happens in iteration j > i ~ 0;(v) = 0j(w) +1

2

o
@

5 o) (/@

53

Edmonds-Karp — Analysis [3]
» Critical Distance Lemma: When critical edge vw becomes a critical again, 6(v) has

increase by at least 2.

Proof:
» Suppose vw is critical in ith iteration ~~ lies on shortest path
~ Oi(w) = 0(i)(v) + 1

» before vw reappears in G, need to have had wv in augmenting path;
say this first happens in iteration j > i ~ 0;(v) = 0j(w) +1

» by EK Monotonicity Lemma:
(5/‘(2)) = (Sj(ZU) +1 > oi(w)+1 = 6i(v) +2

This concludes the proof of the theorem.

53

Maximum Flow - Discussion
[ﬁ) Edmonds-Karp is a robust choice
[ﬁ) easy to implement (see Sedgewick Wayne for an elegant Java version!)

worst-case time O(n°) for dense graphs quickly prohibitive
> but: worst-case results typically overly pessimistic
» other choices of augmenting flows possible

» in practice: push-relabel methods often faster

54

Maximum Flow - Discussion
[ﬁ) Edmonds-Karp is a robust choice
[:b easy to implement (see Sedgewick Wayne for an elegant Java version!)

worst-case time O(n°) for dense graphs quickly prohibitive
> but: worst-case results typically overly pessimistic
» other choices of augmenting flows possible

» in practice: push-relabel methods often faster

> 2022 theory breakthrough: almost linear(!) O('*°()) time max flow algorithm
Chen, Kyng, Liu, Peng, Gutenberg & Sachdeva, FOCS 2022

54

Maximum Flow - Discussion
[ﬁ) Edmonds-Karp is a robust choice
[:b easy to implement (see Sedgewick Wayne for an elegant Java version!)

worst-case time O(n°) for dense graphs quickly prohibitive
> but: worst-case results typically overly pessimistic
» other choices of augmenting flows possible

» in practice: push-relabel methods often faster

> 2022 theory breakthrough: almost linear(!) O('*°()) time max flow algorithm
Chen, Kyng, Liu, Peng, Gutenberg & Sachdeva, FOCS 2022

» max-flow min-cut theorem is a special case of LP duality

> can also solve generalization of min-cost flows
» each edge vw has a cost a(vw)
» costofa flow f:) a(vw) - f(vw)

» demand d at sink becomes part of constraints: | f| > d

54

