ALGORITHMS\$EFF ΙC E CIENTALGORITHMS \$ EFF HMSS EFFI C F. N **A** I. G R. Т n Т тнмѕ\$ ENTALGO RΙ E ਜ ਜ N 0 F F R T S 3 E Т C E. Т Δ C т н Т F Δ M S R C7

Graph Algorithms

9 December 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25) Philipps-Universität Marburg version 2024-12-16 09:28

Learning Outcomes

Unit 9: Graph Algorithms

- 1. Know basic terminology from graph theory, including types of graphs.
- **2.** Know adjacency matrix and adjacency list representations and their performance characteristica.
- 3. Know graph-traversal based algorithm, including efficient implementations.
- 4. Be able to proof correctness of graph-traversal-based algorithms.
- 5. Know algorithms for maximum flows in networks.
- 6. Be able to model new algorithmic problems as graph problems.

Outline

9 Graph Algorithms

- 9.1 Introduction & Definitions
- 9.2 Graph Representations
- 9.3 Graph Traversal
- 9.4 BFS and DFS
- 9.5 Advanced Uses of DFS
- 9.6 Network flows
- 9.7 The Ford-Fulkerson Method
- 9.8 The Edmonds-Karp Algorithm

9.1 Introduction & Definitions

Graphs in real life

- a graph is an abstraction of *entities* with their (pairwise) *relationships*
- abundant examples in real life (often called network there)
 - ▶ social networks: e.g. persons and their friendships, ... Five/Six? degrees of separation
 - ▶ physical networks: cities and highways, roads networks, power grids etc., the Internet, ...
 - content networks: world wide web, ontologies, ...

Many More examples, e.g., in Sedgewick & Wayne's videos: https://www.coursera.org/learn/algorithms-part2

Flavors of Graphs

Since graphs are used to model so many different entities and relations, they come in several variants

Property	Yes	No
edges are one-way	directed graph (digraph)	undirected graph
≤ 1 edge between u and v	<i>simple</i> graph	<i>multigraph / with parallel</i> edges
edges can lead from v to v	with loops (Schlause, Schlip)	(loop-free)
edges have weights	(edge-) weighted graph	unweighted graph

any combination of the above can make sense . . .

Synonyms:

- vertex ("Knoten") = node = point = "Ecke"
- edge ("Kante") = arc = line = relation = arrow = "Pfeil"
- graph = network

Graph Theory

- default: unweighted, undirected, loop-free & simple graphs
- *Graph* G = (V, E) with
 - ► *V* a finite of *vertices*

e= {u,v}

• $E \subseteq [V]^2$ a set of *edges*, which are 2-subsets of V: $[V]^2 = \{e : e \subseteq V \land |e| = 2\}$

Graph Theory

- default: unweighted, undirected, loop-free & simple graphs
- *Graph* G = (V, E) with
 - ► *V* a finite of *vertices*
 - $E \subseteq [V]^2$ a set of *edges*, which are 2-subsets of $V: [V]^2 = \{e : e \subseteq V \land |e| = 2\}$

Example

Graphical representation

$$\begin{split} V &= \{0, 1, 2, 3, 4, 5\} \\ E &= \{\{0, 1\}, \{1, 2\}, \{1, 4\}, \{1, 3\}, \{0, 2\}, \\ \{2, 4\}, \{2, 3\}, \{3, 4\}, \{3, 5\}, \{4, 5\}\}. \end{split}$$

Graph Theory

- default: unweighted, undirected, loop-free & simple graphs
- *Graph* G = (V, E) with
 - ► *V* a finite of *vertices*
 - $E \subseteq [V]^2$ a set of *edges*, which are 2-subsets of $V: [V]^2 = \{e : e \subseteq V \land |e| = 2\}$

Example

$$\begin{split} V &= \{0, 1, 2, 3, 4, 5\} \\ E &= \{\{0, 1\}, \{1, 2\}, \{1, 4\}, \{1, 3\}, \{0, 2\}, \\ \{2, 4\}, \{2, 3\}, \{3, 4\}, \{3, 5\}, \{4, 5\}\}. \end{split}$$

(same graph)

Digraphs

- default digraph: unweighted, <u>loop-free</u> & simple
- Digraph (directed graph) G = (V, E) with
 - ► *V* a finite of *vertices*
 - ► $E \subseteq V^2 \setminus \{(v, v) : v \in V\}$ a set of (*directed*) edges, $V^2 = V \times V = \{(x, y) : x \in V \land y \in V\}$ 2-tuples / ordered pairs over V

Digraphs

- default digraph: unweighted, loop-free & simple
- Digraph (directed graph) G = (V, E) with
 - ► *V* a finite of *vertices*
 - ► $E \subseteq V^2 \setminus \{(v, v) : v \in V\}$ a set of (*directed*) edges, $V^2 = V \times V = \{(x, y) : x \in V \land y \in V\}$ 2-tuples / ordered pairs over V

Example

$$V = \{0, 1, 2, 3, 4, 5\}$$

 $E = \{(0,2), (1,0), (1,4), (2,1), (2,4), \\(3,1), (3,2), (4,3), (4,5), (5,3)\}$

Graphical representation

Graph Terminology

Undirected Graphs

- ► *V*(*G*) set of vertices, *E*(*G*) set of edges
- write uv (or vu) for edge $\{u, v\}$
- edges *incident* at vertex v: E(v)
- u and v are *adjacent* iff $\{u, v\} \in E$,
- *neighborhood* $N(v) = \{w \in V : w \text{ adjacent to } v\}$
- degree d(v) = |E(v)|

Directed Graphs (where different)

- ▶ *uv* for (*u*, *v*)
- ▶ iff $(u, v) \in E \lor (v, u) \in E$
- in-/out-neighbors $N_{in}(v)$, $N_{out}(v)$
- in-/out-degree $d_{in}(v)$, $d_{out}(v)$

Graph Terminology

Undirected Graphs

- V(G) set of vertices, E(G) set of edges
- write uv (or vu) for edge $\{u, v\}$
- edges *incident* at vertex v: E(v)
- u and v are *adjacent* iff $\{u, v\} \in E$,
- *neighborhood* $N(v) = \{w \in V : w \text{ adjacent to } v\}$
- degree d(v) = |E(v)|

Directed Graphs (where different)

- ▶ *uv* for (*u*, *v*)
- ▶ iff $(u, v) \in E \lor (v, u) \in E$
- in-/out-neighbors $N_{in}(v)$, $N_{out}(v)$
- in-/out-degree $d_{in}(v)$, $d_{out}(v)$

Konknuz **walk** w of length n: sequence of vertices w[0..n] with $\forall i \in [0..n) : w[i]w[i+1] \in E$

- \blacktriangleright path p is a (vertex-) simple walk: without duplicate vertices except possibly its endpoints
- edge-simple walk: no edge used twice
- ► cycle c is a closed path, i.e., c[0] = c[n] (ges closseen Wey, $2 \times led$, Kreis, $2 \times led$)

Graph Terminology

Undirected Graphs

- ► *V*(*G*) set of vertices, *E*(*G*) set of edges
- write uv (or vu) for edge $\{u, v\}$
- edges *incident* at vertex v: E(v)
- u and v are *adjacent* iff $\{u, v\} \in E$,
- *neighborhood* $N(v) = \{w \in V : w \text{ adjacent to } v\}$
- degree d(v) = |E(v)|

Directed Graphs (where different)

- ▶ *uv* for (*u*, *v*)
- ▶ iff $(u, v) \in E \lor (v, u) \in E$
- in-/out-neighbors $N_{in}(v)$, $N_{out}(v)$
- in-/out-degree $d_{in}(v)$, $d_{out}(v)$
- ▶ *walk* w of length n: sequence of vertices w[0..n] with $\forall i \in [0..n) : w[i]w[i+1] \in E$
- *path p* is a (vertex-) simple walk: without duplicate vertices except possibly its endpoints
- edge-simple walk: no edge used twice
- *cycle* c is a closed path, i. e., c[0] = c[n]
- *G* is *connected* iff for all $u \neq v \in V$ there is a path from *u* to *v*
- *G* is *acyclic* iff \nexists cycle (of length $n \ge 1$) in *G*

 strongly connected for digraphs (weakly connected = connected ignoring directions)

Typical graph-processing problems

- Path: Is there a path between *s* and *t*?Shortest path: What is the shortest path (distance) between *s* and *t*?
- Cycle: Is there a cycle in the graph?
 Euler tour: Is there a cycle that uses each edge exactly once?
 Hamilton(ian) cycle: Is there a cycle that uses each vertex exactly once.
- Connectivity: Is there a way to connect all of the vertices?
 MST: What is the best way to connect all of the vertices?
 Biconnectivity: Is there a vertex whose removal disconnects the graph?
- ▶ Planarity: Can you draw the graph in the plane with no crossing edges?
- ► Graph isomorphism: Are two graphs the same up to renaming vertices?

can vary a lot, despite superficial similarity of problems

Challenge: Which of these problems can be computed in (near) linear time? in reasonable polynomial time? are intractable?

Tools to work with graphs

- Convenient GUI to edit & draw graphs: yEd live yworks.com/yed-live
- graphviz cmdline utility to draw graphs
 - Simple text format for graphs: DOT
 - graph G {
 0 -- 2; 2 -- 4;
 1 -- 0; 2 -- 3;
 1 -- 4; 3 -- 4;
 1 -- 3; 3 -- 5;
 2 -- 1; 4 -- 5;
 }

dot -Tpdf graph.dot -Kfdp > graph.pdf

graphs are typically not built into programming languages, but libraries exist

- e.g. part of *Google Guava* for Java
- they usually allow arbitrary objects as vertices
- aimed at ease of use

9.2 Graph Representations

Graphs in Computer Memory

- We defined graphs in set-theoretic terms... but computers can't directly deal with sets efficiently
- \rightsquigarrow need to choose a *representation* for graphs.
 - which is better depends on the required operations

Graphs in Computer Memory

- We defined graphs in set-theoretic terms... but computers can't directly deal with sets efficiently
- \rightsquigarrow need to choose a *representation* for graphs.
 - which is better depends on the required operations

Key Operations:

- isAdjacent(u, v) Test whether $uv \in E$
- ▶ adj(v)

Adjacency list of v (iterate through (out-) neighbors of v)

most others can be computed based on these

Graphs in Computer Memory

- We defined graphs in set-theoretic terms... but computers can't directly deal with sets efficiently
- \rightsquigarrow need to choose a *representation* for graphs.
 - which is better depends on the required operations

Key Operations:

- isAdjacent(u, v) Test whether $uv \in E$
- ▶ adj(v)

Adjacency list of v (iterate through (out-) neighbors of v)

most others can be computed based on these

Conventions:

- (di)graph G = (V, E) (omitted if clear from context)
- $\blacktriangleright n = |V|, m = |E|$
- in implementations assume V = [0..n)

(if needed, use symbol table to map complex objects to V)

Adjacency Matrix Representation

- adjacency matrix $A \in \{0,1\}^{n \times n}$ of G: matrix with $A[u,v] = [uv \in E] = \begin{cases} 1 & z_1 \vee e^{E} \\ 0 & s_2 \vee e^{E} \end{cases}$
 - works for both directed and undirected graphs (undirected $\rightsquigarrow A = A^T$ symmetric)
 - can use a weight w(uv) or multiplicity in A[u, v] instead of 0/1
 - can represent loops via A[v, v]

Adjacency Matrix Representation

- adjacency matrix $A \in \{0, 1\}^{n \times n}$ of *G*: matrix with $A[u, v] = [uv \in E]$
 - works for both directed and undirected graphs (undirected $\rightsquigarrow A = A^T$ symmetric)
 - ▶ can use a weight *w*(*uv*) or multiplicity in *A*[*u*, *v*] instead of 0/1
 - can represent loops via A[v, v]

 \square isAdjacent in O(1) time

 \bigcirc $O(n^2)$ (bits of) space wasteful for sparse graphs \bigcirc adj (v) iteration takes O(n) (independent of d(v))

Adjacency List Representation

- Store a linked list of neighbors for each vertex *v*:
 - ▶ *adj*[0..*n*) bag of neighbors (as linked list)
 - undirected edge $\{u, v\} \rightsquigarrow v$ in adj[u] and u in adj[v]
 - weighted edge $\underline{uv} \rightsquigarrow$ store pair (v, w(uv)) in adj[u]
 - multiple edges and loops can be represented

Adjacency List Representation

- Store a linked list of neighbors for each vertex *v*:
 - ▶ *adj*[0..*n*) bag of neighbors (as linked list)
 - undirected edge $\{u, v\} \rightsquigarrow v$ in adj[u] and u in adj[v]
 - weighted edge $uv \rightarrow \text{store pair}(v, w(uv)) \text{ in } adj[u]$
 - multiple edges and loops can be represented

) isAdjacent(u,v) takes $\Theta(d(u))$ time (worst case)

 \square adj (v) iteration O(1) per neighbor

 $\bigcirc \Theta(n+m)$ (words of) space for any graph

 \rightsquigarrow de-facto standard for graph algorithms

Graph Types and Representations

- Note that adj matrix and lists for undirected graphs effectively are representation of directed graph with directed edges both ways
 - conceptually still important to distinguish!
- multigraphs, loops, edge weights all naturally supported in adj lists
 - good if we allow and use them
 - but requires explicit checks to enforce simple / loopfree / bidirectional!

• we focus on **static graphs**

dynamically changing graphs much harder to handle

9.3 Graph Traversal

Generic Graph Traversal

- ▶ Plethora of graph algorithms can be expressed as a systematic exploration of a graph
 - depth-first search, breadth-first search
 - connected components
 - detecting cycles
 - topological sorting
 - Hierholzer's algorithm for Euler walks
 - strong components
 - testing bipartiteness
 - Dijkstra's algorithm
 - Prim's algorithm

▶ ...

Lex-BFS for perfect elimination orders of chordal graphs

visiting all nodes & edges

Generic Graph Traversal

- ▶ Plethora of graph algorithms can be expressed as a systematic exploration of a graph
 - depth-first search, breadth-first search
 - connected components
 - detecting cycles
 - topological sorting
 - Hierholzer's algorithm for Euler walks
 - strong components
 - testing bipartiteness
 - Dijkstra's algorithm
 - Prim's algorithm

►

Lex-BFS for perfect elimination orders of chordal graphs

- → Formulate generic traversal algorithm
 - first in abstract terms to argue about correctness
 - then again for concrete instance with efficient data structures

visiting all nodes & edges

Tricolor Graph Traversal

Tricolor Graph Search:

- maintain vertices in 3 (dynamic) sets
 - Gray: unseen vertices The traversal has not reached these vertices so far.
 - Green: done vertices (a.k.a. visited vertices) These vertices have been visited and all their edges have been explored already.
 - **Red: active vertices** (a.k.a. frontier ("Rand") of traversal) All others, i. e., vertices that have been reached and some unexplored edges remain; initially some selected start vertices S.

S

initial state

- (implicitly) maintain status of each edge
 - not yet used
 - used edge
- Vertices "want" to turn green.

done

Invariant: No edges from *done* to *unseen* vertices

want to color green ~ to do that need wighbors have red

Generic Tricolor Graph Traversal – Code

```
procedure genericGraphTraversal(G, S)
       // (di)graph G = (V, E) and start vertices S \subseteq V
 2
        C[0..n) := unseen // Color array, all cells initialized to unseen
 3
        for s \in S do C[s] := active end for
 4
        unusedEdges := E
 5
        while \exists v : C[v] == active
 6
             v := nextActiveVertex() // Freedom 1: Which frontier vertex?
 7
            if \nexists vw \in unusedEdges // no more edges from <math>v \rightsquigarrow done with v
 8
                 C[v] := done
 9
            else
10
                  w := \text{nextUnusedEdge}(v) // Freedom 2: Which of its edges?
11
                 if C[w] == unseen
12
                     C[w] := active
13
                 end if
14
                 unusedEdges.remove(vw)
15
            end if
16
        end while
17
```


Invariant:

No edges from *done* to *unseen* vertices

Generic Tricolor Graph Traversal – Code

procedure genericGraphTraversal(G, S) // (di)graph G = (V, E) and start vertices $S \subseteq V$ 2 C[0..n) := unseen // Color array, all cells initialized to unseen 3 for $s \in S$ do C[s] := active end for 4 unusedEdges := E5 while $\exists v : C[v] == active$ 6 v := nextActiveVertex() // Freedom 1: Which frontier vertex? 7 **if** $\nexists vw \in unusedEdges // no more edges from <math>v \rightsquigarrow$ done with v8 C[v] := done9 else w := nextUnusedEdge(v) // Freedom 2: Which of its edges? 11 if C[w] == unseen12 C[w] := active13 end if 14 unusedEdges.remove(vw) end if 16 end while 17

Invariant:
No edges from <i>done</i> to <i>unseen</i> vertices

Implementations of nextActiveVertex() and nextUnusedEdge(v) depends on (and defines!) specific traversal-based graph algorithms

Generic Tricolor Graph Traversal – Code

Invariant:
No edges from <i>done</i> to <i>unseen</i> vertices

Implementations of nextActiveVertex() and nextUnusedEdge(v) depends on (and defines!) specific traversal-based graph algorithms

Generic Reachability

Any choices nextActiveVertex() and nextUnusedEdge(v) suffice to find exactly the vertices reachable from S in *done*

Generic Reachability

Any choices nextActiveVertex() and nextUnusedEdge(v) suffice to find exactly the vertices reachable from S in *done*

Invariant:

- 1. No edges from *done* to *unseen* vertices
- **2.** For every *done* or *active* vertex v, there exists a path from $s \in S$ to v.

(1) (2)

TB:

Generic Reachability

Any choices nextActiveVertex() and nextUnusedEdge(v) suffice to find exactly the vertices reachable from S in *done*

Invariant:

- 1. No edges from *done* to *unseen* vertices
- **2.** For every *done* or *active* vertex v, there exists a path from $s \in S$ to v.

 \rightsquigarrow in final state:

v ∈ done → path from S → reachable from S
v ∈ unseen → not reachable from done ⊇ S → not reachable from S

(assume unit, then S → v Girst intex on path that is unseen has

done neighbor 4(1)

Data Structures for Frontier

- ► We need efficient support for
 - ▶ test ∃v : C[v] = active, nextActiveVertex()
 - ► test $\exists vw \in unusedEdges$, nextUnusedEdge(v)
 - unusedEdges.remove(vw)
Data Structures for Frontier

- ► We need efficient support for
 - ▶ test ∃v : C[v] = active, nextActiveVertex()
 - ► test $\exists vw \in unusedEdges$, nextUnusedEdge(v)
 - unusedEdges.remove(vw)
- ► Typical solution maintains bag "frontier" of pairs (v, i) where v ∈ V and i is an iterator in adj[v]
 - unusedEdges represented implicitly: edge used iff previously returned by i ~ don't need unusedEdges.remove(vw)

Data Structures for Frontier

- ► We need efficient support for
 - ▶ test ∃v : C[v] = active, nextActiveVertex()
 - ► test $\exists vw \in unusedEdges$, nextUnusedEdge(v)
 - unusedEdges.remove(vw)
- ► Typical solution maintains bag "frontier" of pairs (v, i) where v ∈ V and i is an iterator in adj[v]
 - unusedEdges represented implicitly: edge used iff previously returned by i
 or don't need unusedEdges.remove(vw)
 - ► Implement ∃v : C[v] = active via frontier.isEmpty()
 - ▶ Implement $\exists vw \in unusedEdges$ via *i*.hasNext() assuming $(v, i) \in frontier$
 - ▶ Implement nextUnusedEdge(v) via i.next() assuming (v, i) \in frontier
 - \rightsquigarrow all operations apart from <u>nextActiveVertex()</u> in O(1) time
 - \rightsquigarrow *frontier* requires O(n) extra space

9.4 BFS and DFS

Breadth-First Search

Maintain *frontier* in a **queue** (FIFO: first in, first out)

Breadth-First Search

Maintain *frontier* in a **queue** (FIFO: first in, first out)

Invariant:

- No edges from done to unseen vertices
 All *done* or *active* vertices are reached via a shortest path from S
- 3. Vertices enter and leave *frontier* in order of increasing distance from *S*

 \rightarrow in final state, we reach all reachable vertices via shortest paths

d

fewest edges

Breadth-First Search

Maintain *frontier* in a **queue** (FIFO: first in, first out)

Invariant:

1. No edges from done to unseen vertices

fewest edges

- 2. All *done* or *active* vertices are reached via a shortest path from S
- 3. Vertices enter and leave *frontier* in order of increasing distance from S

- \rightarrow in final state, we reach all reachable vertices via shortest paths
- To preserve that knowledge, we collect extra information during traversal
 - ▶ parent[v] stores predecessor on path from S via which v was reached the when v was ▶ distEramS[v] stores the length of this path
 - distFromS[v] stores the length of this path

Breadth-First Search – Code

```
procedure bfs(G, S)
       // (di)graph G = (V, E) and start vertices S \subseteq V
2
       C[0..n) := unseen // New array initialized to all unseen
3
       frontier := new Queue;
4
       parent[0..n) := NOT VISITED; distFromS[0..n) := \infty
5
       for s \in S
6
           parent[s] := NONE; distFromS[s] := 0
7
           C[s] := active; frontier.enqueue((s, G.adj[s].iterator()))
8
       end for
9
       while ¬frontier.isEmpty()
10
           (v, i) := frontier.peek()
11
           if \negi.hasNext() // v has no unused edge
12
                C[v] := done; frontier.dequeue()
13
           else
14
                w := i.next() // Advance i in adj[v]
15
                if C[w] == unseen
16
                    parent[w] := v; distFromS[w] := distFromS[v] + 1
17
                    C[w] := active; frontier.engueue((w, G.adj[w].iterator()))
18
                end if
19
           end if
20
       end while
21
```

Breadth-First Search – Code

```
procedure bfs(G, S)
       // (di)graph G = (V, E) and start vertices S \subseteq V
2
       C[0..n) := unseen // New array initialized to all unseen
3
      frontier := new Queue;
4
       parent[0..n) := NOT_VISITED; distFromS[0..n) := \infty
5
       for s \in S
6
           parent[s] := NONE; distFromS[s] := 0
7
           C[s] := active; frontier.enqueue((s, G.adj[s].iterator()))
8
       end for
9
       while ¬frontier.isEmpty()
10
           (v, i) := frontier.peek()
11
           if \negi.hasNext() // v has no unused edge
12
                C[v] := done; frontier.dequeue()
13
           else
14
                w := i.next() // Advance i in adj[v]
15
                if C[w] == unseen
16
                    parent[w] := v; distFromS[w] := distFromS[v] + 1
17
                    C[w] := active; frontier.engueue((w, G.adj[w].iterator()))
18
                end if
19
           end if
20
       end while
21
```

- parent stores a shortest-path tree/forest
- can retrieve shortest path to v from some vertex s ∈ S (backwards) by following parent[v] iteratively

Breadth-First Search – Code

```
1 procedure bfs(G, S)
       // (di)graph G = (V, E) and start vertices S \subseteq V
2
       C[0..n) := unseen // New array initialized to all unseen
3
      frontier := new Queue;
4
       parent[0..n) := NOT_VISITED; distFromS[0..n) := \infty
5
       for s \in S
6
           parent[s] := NONE; distFromS[s] := 0
7
           C[s] := active; frontier.enqueue((s, G.adj[s].iterator()))
8
       end for
9
       while ¬frontier.isEmpty()
10
           (v, i) := frontier.peek()
11
           if \negi.hasNext() // v has no unused edge
12
                C[v] := done; frontier.dequeue()
13
           else
14
                w := i.next() // Advance i in adj[v]
15
                if C[w] == unseen
16
                    parent[w] := v; distFromS[w] := distFromS[v] + 1
17
                    C[w] := active; frontier.enqueue((w, G.adj[w].iterator()))
18
                end if
19
           end if
20
       end while
21
```

- parent stores a shortest-path tree/forest
- can retrieve shortest path to v from some vertex s ∈ S (backwards) by following parent[v] iteratively
- running time $\Theta(n+m)$
- extra space $\Theta(n)$

Depth-First Search

Maintain *frontier* in a stack (LIFO: last in, first out)

• only consider $S = \{s\}$

• usual mode of operation: call dfs(v) for all *unseen* v, for v = 0, ..., n - 1

Depth-First Search

Maintain *frontier* in a stack (LIFO: last in, first out)

- only consider $S = \{s\}$
- ▶ usual mode of operation: call dfs(v) for all *unseen* v, for v = 0, ..., n 1

Depth-First Search – Code

```
procedure dfsTraversal(G)
       C[0..n) := unseen
2
       for v := 0, ..., n - 1
3
           if C[v] == unseen
4
               dfs(G, v)
5
6
  procedure dfs(G, s)
7
       frontier := new Stack;
8
       C[s] := active; frontier.push((s, G.adj[s].iterator()))
9
       while ¬frontier.isEmpty()
10
           (v, i) := frontier.top()
11
           if \negi.hasNext() // v has no unused edge
12
               C[v] := done; frontier.pop(); postorderVisit(v)
13
           else
14
               w := i.next(); visitEdge(vw)
15
               if C[w] == unseen
16
                    preorderVisit(w)
17
                    C[w] := active; frontier.push((w, G.adj[w].iterator()))
18
               end if
19
           end if
20
       end while
21
```

- define *hooks* to implement further operations
 - preorder: visit v when made *active* (start of T(v))
 - postorder: visit v when marked *done* (end of T(v))
 - visitEdge: do something for every edge
- if needed, can store DFS forest via *parent* array

Depth-First Search – Code

```
procedure dfsTraversal(G)
       C[0..n) := unseen
2
       for v := 0, ..., n - 1
3
           if C[v] == unseen
4
               dfs(G, v)
5
6
  procedure dfs(G, s)
7
       frontier := new Stack;
8
       C[s] := active; frontier.push((s, G.adj[s].iterator()))
9
       while ¬frontier.isEmpty()
10
           (v, i) := frontier.top()
11
           if \negi.hasNext() // v has no unused edge
12
               C[v] := done; frontier.pop(); postorderVisit(v)
13
           else
14
               w := i.next(); visitEdge(vw)
15
               if C[w] == unseen
16
                    preorderVisit(w)
17
                    C[w] := active; frontier.push((w, G.adj[w].iterator()))
18
               end if
19
           end if
20
       end while
21
```

- define *hooks* to implement further operations
 - preorder: visit v when made *active* (start of T(v))
 - postorder: visit v when marked *done* (end of T(v))
 - visitEdge: do something for every edge
- if needed, can store DFS forest via *parent* array
- running time $\Theta(n + m)$

```
• extra space \Theta(n)
```

Simple DFS Application: Connected Components

- ▶ In an <u>undirected graph</u>, find all *connected components*.
 - **Given:** simple undirected G = (V, E)
 - ▶ **Goal:** assign component ids CC[0..n), s.t. CC[v] = CC[u] iff \exists path from v to u

Simple DFS Application: Connected Components

- ▶ In an undirected graph, find all *connected components*.
 - **Given:** simple undirected G = (V, E)
 - ► **Goal:** assign component ids CC[0..n), s.t. CC[v] = CC[u] iff \exists path from v to u

1	<pre>procedure connectedComponents(G):</pre>			
2	<i>// undirected graph</i> $G = (V, E)$ <i>with</i> $V = [0n)$			
3	C[0n) := unseen			
4	$\int CC[0n) := NONE$			
5	id := 0			
6	for $v := 0,, n - 1$			
7	if $C[v] == unseen$			
8	dfs(G, v)			
9	id := id + 1			
10	return CC			
11	$\overline{}$			
12	<pre>procedure preorderVisit(v):</pre>			
13	CC[v] := id			

1	// same as before
2	procedure dfs(G, s)
3	<i>frontier</i> := new Stack;
4	C[s] := <i>active</i> ; <i>frontier</i> .push((s, G.adj[s].iterator()))
5	<pre>while ¬frontier.isEmpty()</pre>
6	(v, i) := frontier.top()
7	if $\neg i$.hasNext() // v has no unused edge
8	C[v] := done; frontier.pop()
9	postorderVisit(v)
10	else
11	w := i.next(); visitEdge(vw)
12	if C[w] == unseen
13	preorderVisit(w)
14	C[w] := active
15	<pre>frontier.push((w, G.adj[w].iterator()))</pre>
16	end if
17	end if
18	end while

Dijkstra's Algorithm & Prim's Algorithm

- ▶ On edge-weighted graphs, we can use tricolor traversal with a *priority queue* as *frontier*
- Dijkstra's Algorithm for shortest paths from s in digraphs with weakly positive edge weights
 - priority of vertex v = length of shortest path known so far from s to v
- Prim's Algorithm for finding a minimum spanning tree
 - priority of vertex v = weight of cheapest edge connecting v to current tree
- → Detailed discussion in Unit 11

9.5 Advanced Uses of DFS

Recall DFS Invariant 3:

The *active* vertices form a single **path** from *s*

DFS forest

input graph G

stack over time

Recall DFS Invariant 3:

The *active* vertices form a single **path** from *s*

input graph G

DFS forest

initial state

stack over time

final state

during traversal

Recall DFS Invariant 3:

The *active* vertices form a single **path** from *s*

input graph G

DFS forest

stack over time

 \sim Each vertex *v* spends *time interval* T(v) as *active* vertex

Recall DFS Invariant 3:

The *active* vertices form a single **path** from *s*

input graph G

initial state

stack over time

- \rightsquigarrow Each vertex *v* spends *time interval* T(v) as *active* vertex
- **1.** *frontier* is stack \rightsquigarrow { $T(v) : v \in V$ } forms *laminar set family*: ("disjoint or contained") either $T(v) \cap T(w) = \emptyset$ or $T(v) \subseteq T(w)$ or $T(v) \supseteq T(w)$

DFS forest

Recall DFS Invariant 3:

The *active* vertices form a single **path** from *s*

input graph G

DFS forest

stack over time

done

final state

s activ

during traversal

initial state

- \rightsquigarrow Each vertex *v* spends *time interval* T(v) as *active* vertex
- **1.** *frontier* is stack \rightsquigarrow { $T(v) : v \in V$ } forms *laminar set family*: ("disjoint or contained") either $T(v) \cap T(w) = \emptyset$ or $T(v) \subseteq T(w)$ or $T(v) \supseteq T(w)$
- **2. Parenthesis Theorem:** $T(v) \supseteq T(w)$ **iff** v is ancestor of w in DFS tree
 - '⇒' during T(v), all discovered vertices become descendants of v
 - ' \Leftarrow ' T(v) covers v's entire subtree, which contains w's subtree

Properties of DFS – Unseen-Path Theorem

▶ Unseen-Path Theorem: In a DFS forest of a (di)graph *G*, *w* is a descendant of *v* iff at the time of preorderVisit(v), there is a path from v to wusing only *unseen* vertices. at the fran v was made red

Properties of DFS – Unseen-Path Theorem

- Unseen-Path Theorem: In a DFS forest of a (di)graph G, w is a descendant of w iff at the time of preorderVisit(v), there is a path from v to w using only unseen vertices.
 - '⇒' If w is a descendant of $v, T(w) \subseteq T(v)$ by the Parenthesis Theorem. Hence the path from v to w in the DFS tree consists (at time of preorderVisit(v)) of solely *unseen* vertices.

Properties of DFS – Unseen-Path Theorem

- Unseen-Path Theorem: In a DFS forest of a (di)graph G, w is a descendant of v iff at the time of preorderVisit(v), there is a path from v to w using only unseen vertices.
 - '⇒' If w is a descendant of $v, T(w) \subseteq T(v)$ by the Parenthesis Theorem. Hence the path from v to w in the DFS tree consists (at time of preorderVisit(v)) of solely *unseen* vertices.
 - '⇐' Suppose towards a contradiction that there was a *w* with an *unseen* path $p[0.\ell]$ with p[0] = v and $p[\ell] = w$, but *w* is not a descendant of *v*. W.l.o.g. let *w* be a first such vertex, i. e., $p[0], \ldots, p[\ell-1] = u$ are descendants of *v*. So $T(u) \subset T(v)$ (*).

Upon processing u, we will discover edge uw, so whether or not w is already *done* at this point, w will be marked *done* before u. Hence $\max T(w) \le \max T(u)$. With (*), we obtain $\min T(v) \le \min T(u) \le \max T(w) \le \max T(u)$, so by laminarity, $T(w) \subset T(u) \subset T(v)$ and w is a descendant of $v \not I$.

Topological Sorting & Cycle Detection

- Application: Given a set of tasks with precedence constraints of the form "a must be done before b", can we find a legal ordering for all tasks?
 - → Model as directed graph!
 - tasks are the vertices V

add an edge (a, b) when a must be done before b

Topological Sorting & Cycle Detection

Application: Given a set of tasks with precedence constraints of the form "a must be done before b", can we find a legal ordering for all tasks?

- → Model as directed graph!
- tasks are the vertices V
- add an edge (a, b) when a must be done before b

► Definition: R[0..n) is a topological (order) ranking of digraph G = (V, E) if $\forall (u, v) \in E : R[u] < R[v]$

Lemma DAG iff topo:

A directed graph *G* has a topological ranking **iff** it does not contain a directed cycle.

Topological Sorting & Cycle Detection

Application: Given a set of tasks with precedence constraints of the form "a must be done before b", can we find a legal ordering for all tasks?

- → Model as directed graph!
- tasks are the vertices V
- add an edge (a, b) when a must be done before b

▶ **Definition:** R[0..n) is a *topological (order) ranking* of digraph G = (V, E) if $\forall (u, v) \in E : R[u] < R[v]$

Lemma DAG iff topo:

A directed graph *G* has a topological ranking **iff** it does not contain a directed cycle.

Topological Sorting

- **Given:** simple digraph G = (V, E)
- ► Goal: Compute topological ranking of vertices R[0..n) or output a directed cycle in G.
- Amazingly, can do all with one pass of DFS!

DFS Edge Types

input digraph G

DFS Edge Types

input digraph G

stack over time

DFS Edge Types

 During DFS traversa 	example:	
1. tree edge: $\rightarrow u$	$v \in unseen \rightsquigarrow vw \text{ part of DFS forest.}$	(0,1), (0,2), (2,3)
2. back edges:>	$w \in active; \iff w$ points to ancestor of v .	(3,0)
3. forward edges*:	$w \in done \land w$ is descendant of v in DFS tree.	(0,3)
4. cross edges*:>	• $w \in done \land w$ is not descendant of v .	(3,0)
*only possible in	directed graphs	

27

Cycle Detection

If *G* contains a directed cycle, DFS will find a directed cycle:

- any back edge implies a cycle:
 - ▶ DFS visits an edge (v, w) where $w \in active$, w is already on the stack
 - \rightsquigarrow DFS tree contains path $w \rightsquigarrow v$ and we have edge $v \rightarrow w$.

Cycle Detection

If *G* contains a directed cycle, DFS will find a directed cycle:

- any back edge implies a cycle:
 - ▶ DFS visits an edge (v, w) where $w \in active$, w is already on the stack
 - \rightsquigarrow DFS tree contains path $w \rightsquigarrow v$ and we have edge $v \rightarrow w$.
- conversely any cycle C[0..k] once reached must have some back edge or cross edge (tree and forward edges go from smaller to larger preorder index)
 - cannot be a cross edge since cycle is strongly connected all cycle vertices must be descendants of first reached cycle vertex
 - $\rightsquigarrow \ \ cycle \ contributes \ a \ back \ edge$

DFS Postorder Implementation

10

11

12

13

14

15

17

18

19

```
procedure dfsPostorder(G):
       C[0..n] := unseen
2
       P[0..n) := \text{NONE}; r := 0
3
       parent[0..n] := NONE
4
       cycle := NONE
5
       for v := 0, ..., n - 1
6
           if C[v] == unseen
7
                dfs(G, v)
8
       return (P, cycle)
9
10
  procedure postorderVisit(v):
11
       P[v] := r; r := r + 1
12
13
14 procedure visitEdge(vw):
       if C[w] == active
15
           if cycle ≠ NONE return
16
           while v \neq w
17
                cycle.append(v)
18
                v := parent[v]
19
           cycle.append(v)
20
```

```
1 // dfs is as in CC but with parent
<sup>2</sup> procedure dfs(G, s)
      frontier := new Stack;
3
       parent[s] := NONE;
4
       C[s] := active; frontier.push((s, G.adj[s].iterator()))
5
       while ¬frontier.isEmpty()
6
           (v, i) := frontier.top()
7
           if \neg i.hasNext() // v has no unused edge
8
                C[v] := done; frontier.pop()
9
                postorderVisit(v)
           else
                w := i.next() // Advance i in adj[v]
                visitEdge(vw)
                if C[w] == unseen
                    parent[w] := v;
                    preorderVisit(w)
16
                    C[w] := active; frontier.push((w, G.adj[w].iterator()))
                end if
           end if
       end while
20
```
DFS Postorder & Topological Sort

▶ **DFS Postorder**: The DFS postorder numbers is a numbering P[0..n) of *V* such that P[v] = r iff exactly *r* vertices reached state *done* before *v* in a DFS.

DFS Postorder & Topological Sort

▶ **DFS Postorder**: The DFS postorder numbers is a numbering P[0..n) of *V* such that P[v] = r iff exactly *r* vertices reached state *done* before *v* in a DFS.

► Lemma rev postorder: Let *G* be a simple, connected <u>DAG</u> and R[0..n) a *reverse* <u>DFS postorder</u> of *G*, i. e., R[v] = n - 1 - P[v] for a DFS postorder P[0..n). Then *R* is a topological ranking of *G*.

▶ Invariant: If $v \in done$ and $(v, w) \in E$ then $w \in done$ and R[v] < R[w].

- ▶ initially true (*done* = Ø)
- upon postorderVisit(v), all outgoing edges vw lead to $w \in done$ (Parenthesis Theorem)

Topological Sorting & Cycle Detection – Summary

- Putting everything together we obtain topological sorting
 - can produce either the *ranking* or the *sequence of vertices* in topological order, whatever is more convenient

```
1procedure topologicalRanking(P):2(P[0..n), cycle) := dfsPostorder(G)3if cycle \neq NULL4return NOT_A_DAG5R[0..n) := NONE6for v := 0, \dots, n-17R[v] = n - 1 - P[v]8return R
```

```
1procedure topologicalSort(P):2(P[0..n), cycle) := dfsPostorder(G)3if c \neq NULL4return NOT_A_DAG5S[0..n) := NONE6for v := 0, \dots, n-17S[n-1-P[v]] := v8return S
```

- $\Theta(n+m)$ time
- $\Theta(n)$ extra space

Euler Cycles

Euler Walk: Walk using every edge in G = (V, E) exactly once.

Euler Cycles

Euler Walk: Walk using every edge in G = (V, E) exactly once.

Euler Cycles

Euler Walk: Walk using every edge in G = (V, E) exactly once.

Euler's Theorem:

Euler walk exists iff *G* connected and 0 or 2 vertices have odd degree.

- $' \Rightarrow '$ trivial (need to enter and exit intermediate vertices equally often)
- ' \Leftarrow ' Following algorithm *constructs* Euler walk under this assumption

Euler Cycles – Hierholzer's Algorithm

2

3

4

5

6

7

8

9

use an edge-centric DFS

- We mark edges (not vertices)
- → stack = edge-simple walk
- We remember iterator *i* globally per *v* to resume traversal

procedure eulerWalk(*G*): // Assume G = (V, E) is connected (multi)graph 10 2 $V_{\text{odd}} := \{ v \in V : d(v) \text{ odd} \}$ 3 11 if $|V_{odd}| \notin \{0, 2\}$ return NOT EULERIAN 4 12 **if** $V_{odd} = \{x, y\}$ **then** s := x **else** s := 013 5 $euler[0..m) := NONE; \ i := m - 1$ 6 14 visited[0..n, 0..n] := false // mark edges as visited7 15 for v := 0, ..., n - 18 16 // globally remember next unexplored edge 9 17 nextEdge[v] := G.adj[w].iterator())10 18 edgeDFS(s)11 19 return euler 12 20

```
procedure edgeDFS(s):
      frontier := new Stack;
     frontier.push(s)
      while ¬frontier.isEmpty()
           v := frontier.top()
           if \neg i.hasNext() // v has no unused edge
               frontier.pop()
               if ¬frontier.isEmpty()
                   // assign edge leading here largest free index
                   euler[j] := (frontier.top(), v); \quad j := j - 1
               end if
          else
               w := i.next()
               if \neg visited[v, w]
                   visited[v,w] := true
                   visited[w,v] := true
                   frontier.push(w)
               end if
          end if
      end while
```

Clicker Question

Clicker Question

- **Given:** digraph G = (V, E)
- ▶ **Goal:** component ids SCC[0..n), s.t. SCC[v] = SCC[u] iff \exists directed path from v to u

- **Given:** digraph G = (V, E)
- ▶ **Goal:** component ids SCC[0..n), s.t. SCC[v] = SCC[u] iff \exists directed path from v to u
- ► <u>Component DAG G</u>^{SCC}: contract SCCs intro single vertices $V(G^{SCC}) = \{C_1, ..., C_k\}$ with $C_1 \cup \cdots \cup C_k = V$; name by smallest vertex s.t. $i \le j$ iff min $C_i \le \min C_j$

can't have cycles (maximality of SCC)

 \rightsquigarrow component DAG has a topological order $R^{\text{SCC}}[1..k]$

- **Given:** digraph G = (V, E)
- ► **Goal:** component ids SCC[0..n), s.t. SCC[v] = SCC[u] iff \exists directed path from v to u

► Component DAG G^{SCC} : contract SCCs intro single vertices $V(G^{SCC}) = \{C_1, ..., C_k\}$ with $C_1 \cup \cdots \cup C_k = V$; name by smallest vertex s.t. $i \leq j$ iff min $C_i \leq \min C_j$

can't have cycles (maximality of SCC)

 \rightsquigarrow component DAG has a topological order $R^{\text{SCC}}[1..k]$

If we call dfs on any *v* in the **last** SCC *C*, it will discover all vertices in *C*, and only those! (any edges between components lead *into C* by topological order)

And we can iterate this backwards through any topological order to get all SCCs!

- **Given:** digraph G = (V, E)
- ► **Goal:** component ids SCC[0..n), s.t. SCC[v] = SCC[u] iff \exists directed path from v to u

► Component DAG G^{SCC} : contract SCCs intro single vertices $V(G^{SCC}) = \{C_1, ..., C_k\}$ with $C_1 \cup \cdots \cup C_k = V$; name by smallest vertex s.t. $i \le j$ iff min $C_i \le \min C_i$

can't have cycles (maximality of SCC)

 \rightsquigarrow component DAG has a topological order $R^{\text{SCC}}[1..k]$

-<u>`</u>Ċ҉-

If we call dfs on any v in the **last** SCC *C*, it will discover all vertices in *C*, and only those! (any edges between components lead *into C* by topological order) And we can iterate this backwards through any topological order to get all SCCs!

Can we efficiently find the topological order of *G*^{SCC}? *Without knowing the components to start with*??

Amazingly, yes.

Component Graph DFS

- ▶ Suppose we run dfsTraversal on *G*.
 - \rightsquigarrow We can extend time intervals to SCCs: $T(C_i) := \bigcup_{v \in C_i} T(v)$
 - \rightarrow *T*(*C*_{*i*}) = *T*(*v*_{*i*}) for *v*_{*i*} ∈ *C*_{*i*} the first vertex to be explored in a DFS on *G* (by Unseen Path & Parenthesis Thms)

Component Graph DFS

- ▶ Suppose we run dfsTraversal on *G*.
 - \rightsquigarrow We can extend time intervals to SCCs: $T(C_i) := \bigcup_{v \in C_i} T(v)$
 - → $T(C_i) = T(v_i)$ for $v_i \in C_i$ the first vertex to be explored in a DFS on *G* (by Unseen Path & Parenthesis Thms)
- \rightarrow DFS on *G* produces same $T(C_i)$ (up to time scaling) as DFS on G^{SCC} !
- → reverse DFS postorder on *G* gives same relative order to $v_1, ..., v_k$ as reverse DFS postorder on G^{SCC} gives as relative order to $C_1, ..., C_k$

Component Graph DFS

- ▶ Suppose we run dfsTraversal on *G*.
 - \rightsquigarrow We can extend time intervals to SCCs: $T(C_i) := \bigcup_{v \in C_i} T(v)$
 - → $T(C_i) = T(v_i)$ for $v_i \in C_i$ the first vertex to be explored in a DFS on *G* (by Unseen Path & Parenthesis Thms)
- \rightarrow DFS on *G* produces same $T(C_i)$ (up to time scaling) as DFS on G^{SCC} !
- → reverse DFS postorder on *G* gives same relative order to $v_1, ..., v_k$ as reverse DFS postorder on *G*^{SCC} gives as relative order to $C_1, ..., C_k$

We need **reverse** topological order on G^{SCC} , e.g., *reversed* reverse DFS postorder

- ▶ If we had the actual reverse DFS postorder on *G*^{SCC}, could just reverse again!
- ▶ But we only have reverse DFS postorder *S*[0..*n*) on *G*!
- **?** Reversing here would change v_i , i. e., which vertices of an SCC we see first

▶ **Recall:** Want reverse(topologicalRanking(G^{SCC}))

Recall: Want reverse(topologicalRanking(G^{SCC}))

▶ Transpose/Reverse Graph of G = (V, E): $G^T = (V, E^T)$ where $E^T = \{wv : vw \in E\}$

Note: A adj matrix of $G \rightsquigarrow A^T$ adj matrix of G^T

► For any DAG, we obtain a reverse topological order from reversing all edges: topologicalSort(G^T)
If we reverse iteration order in dfsTraversal, we get reverse(topologicalSort(G)) = topologicalSort(G^T)

- Recall: Want reverse(topologicalRanking(G^{SCC}))
- ► Transpose/Reverse Graph of G = (V, E): $G^T = (V, E^T)$ where $E^T = \{wv : vw \in E\}$

Note: A adj matrix of $G \rightsquigarrow A^T$ adj matrix of G^T

► For any DAG, we obtain a reverse topological order from reversing all edges: topologicalSort(G^T)
If we reverse iteration order in dfsTraversal, we get reverse(topologicalSort(G)) = topologicalSort(G^T)

• Observation:
$$(G^T)^{\text{SCC}} = (G^{\text{SCC}})^T$$

- strong components not affected by edge reversals
- Want: $reverse(topologicalRanking(G^{SCC}))$ (any ranking works, need not be reverse DFS postorder)

- Recall: Want reverse(topologicalRanking(G^{SCC}))
- ► Transpose/Reverse Graph of G = (V, E): $G^T = (V, E^T)$ where $E^T = \{wv : vw \in E\}$
 - Note: A adj matrix of $G \rightsquigarrow A^T$ adj matrix of G^T
- ► For any DAG, we obtain a reverse topological order from reversing all edges: topologicalSort(G^T)
 If we reverse iteration order in dfsTraversal, we get reverse(topologicalSort(G)) = topologicalSort(G^T)

• Observation:
$$(G^T)^{\text{SCC}} = (G^{\text{SCC}})^T$$

- strong components not affected by edge reversals
- Want: $reverse(topologicalRanking(G^{SCC}))$ (any ranking works, need not be reverse DFS postorder)
- \rightsquigarrow Get it from: topologicalRanking $((G^{SCC})^T)$ = topologicalRanking $((G^T)^{SCC})$

- Recall: Want reverse(topologicalRanking(G^{SCC}))
- ► Transpose/Reverse Graph of G = (V, E): $G^T = (V, E^T)$ where $E^T = \{wv : vw \in E\}$
 - Note: A adj matrix of $G \rightsquigarrow A^T$ adj matrix of G^T
- ► For any DAG, we obtain a reverse topological order from reversing all edges: topologicalSort(G^T)
 If we reverse iteration order in dfsTraversal, we get reverse(topologicalSort(G)) = topologicalSort(G^T)

• Observation:
$$(G^T)^{\text{SCC}} = (G^{\text{SCC}})^T$$

- strong components not affected by edge reversals
- Want: $reverse(topologicalRanking(G^{SCC}))$ (any ranking works, need not be reverse DFS postorder)
- \rightsquigarrow Get it from: topologicalRanking $((G^{SCC})^T)$ = topologicalRanking $((G^T)^{SCC})$
- \rightsquigarrow Get that as induced ranking on v_1, \ldots, v_k from reverse dfsPostorder(G^T)

Kosaraju-Sharir's Algorithm – Code

```
procedure strongComponents(G):
       // directed graph G = (V, E) with V = [0..n)
2
       G^T = (V, \{wv : vw \in E\})
3
       P[0..n) := dfsPostorder(G^T) // postorder numbers
4
       for v \in V do S[P[v]] := v end for // postorder sequence
5
       // Rest like connectedComponents (with permuted vertices)
6
       C[0..n) := unseen
7
       SCC[0..n) := NONE
8
       id := 0
9
       for j := n - 1, \ldots, 0 // reverse postorder seq
10
           v := S[i]
11
           if C[v] == unseen
12
                dfs(G, v)
13
                id := id + 1
14
       return SCC
15
16
  procedure preorderVisit(v):
17
       SCC[v] := id
18
```

Kosaraju-Sharir's Algorithm - Code

```
procedure strongComponents(G):
       // directed graph G = (V, E) with V = [0..n)
2
       G^T = (V, \{wv : vw \in E\})
3
       P[0..n) := dfsPostorder(G^T) // postorder numbers
4
       for v \in V do S[P[v]] := v end for // postorder sequence
5
       // Rest like connectedComponents (with permuted vertices)
6
       C[0..n) := unseen
7
       SCC[0..n) := NONE
8
       id := 0
9
       for j := n - 1, \ldots, 0 // reverse postorder seq
10
           v := S[i]
11
           if C[v] == unseen
12
                dfs(G, v)
13
                id := id + 1
14
       return SCC
15
16
   procedure preorderVisit(v):
17
       SCC[v] := id
18
```

correctness follows from our discussion

Kosaraju-Sharir's Algorithm – Code

```
procedure strongComponents(G):
       // directed graph G = (V, E) with V = [0..n)
2
       G^T = (V, \{wv : vw \in E\})
3
       P[0..n) := dfsPostorder(G^T) // postorder numbers
4
       for v \in V do S[P[v]] := v end for // postorder sequence
5
       // Rest like connectedComponents (with permuted vertices)
6
       C[0..n) := unseen
7
       SCC[0..n) := NONE
8
       id := 0
9
       for j := n - 1, \ldots, 0 // reverse postorder seq
10
           v := S[i]
11
           if C[v] == unseen
12
                dfs(G, v)
13
                id := id + 1
14
       return SCC
15
16
   procedure preorderVisit(v):
17
       SCC[v] := id
18
```

- correctness follows from our discussion
- ordering of SCCs follows reverse topological sort of G^{SCC}
 - some implementations reverse G for 2nd DFS, not 1st
 - → output in (forward) topological order
 - but derivation more natural this way?

Kosaraju-Sharir's Algorithm – Code

```
procedure strongComponents(G):
       // directed graph G = (V, E) with V = [0..n)
2
       G^T = (V, \{wv : vw \in E\})
3
       P[0..n) := dfsPostorder(G^T) // postorder numbers
4
       for v \in V do S[P[v]] := v end for // postorder sequence
5
       // Rest like connectedComponents (with permuted vertices)
6
       C[0..n) := unseen
7
       SCC[0..n) := NONE
8
       id := 0
9
       for j := n - 1, \ldots, 0 // reverse postorder seq
10
           v := S[i]
11
           if C[v] == unseen
12
                dfs(G, v)
13
                id := id + 1
14
       return SCC
15
16
   procedure preorderVisit(v):
17
       SCC[v] := id
18
```

- correctness follows from our discussion
- ordering of SCCs follows reverse topological sort of G^{SCC}
 - some implementations reverse G for 2nd DFS, not 1st
 - → output in (forward) topological order
 - but derivation more natural this way?
- as all our traversals: $\Theta(n + m)$ time, $\Theta(n)$ extra space

9.6 Network flows

Clicker Question

→ sli.do/cs566

- Water can flow through the pipes up to a flow <u>capacity limit</u> (up to c(e) liters per second, say).
- There's infinite water pressing into the source s and infinite drain capacity at the sink / target t
- At all other junctions, inflow = outflow (no leakage)
- \rightsquigarrow How much water can flow through the network?

- Water can flow through the pipes up to a flow capacity limit (up to c(e) liters per second, say).
- There's infinite water pressing into the source s and infinite drain capacity at the sink / target t
- At all other junctions, inflow = outflow (no leakage)
- \rightsquigarrow How much water can flow through the network?

- Water can flow through the pipes up to a flow capacity limit (up to c(e) liters per second, say).
- There's infinite water pressing into the source s and infinite drain capacity at the sink / target t
- At all other junctions, inflow = outflow (no leakage)
- \rightsquigarrow How much water can flow through the network?

- Water can flow through the pipes up to a flow capacity limit (up to c(e) liters per second, say).
- There's infinite water pressing into the source s and infinite drain capacity at the sink / target t
- At all other junctions, inflow = outflow (no leakage)
- $\rightsquigarrow\,$ How much water can flow through the network?

- Water can flow through the pipes up to a flow capacity limit (up to c(e) liters per second, say).
- There's infinite water pressing into the source s and infinite drain capacity at the sink / target t
- At all other junctions, inflow = outflow (no leakage)
- \rightsquigarrow How much water can flow through the network?

Informally, imagine a network of water pipes.

- Water can flow through the pipes up to a flow capacity limit (up to c(e) liters per second, say).
- There's infinite water pressing into the source s and infinite drain capacity at the sink / target t
- At all other junctions, inflow = outflow (no leakage)
- $\rightsquigarrow\,$ How much water can flow through the network?

In this example:

- not more than 5+2+3 = 10 units of flow out of $\{0, 2\}$ possible
- \rightsquigarrow not more than 10 units out of *s* possible

Informally, imagine a network of water pipes.

- Water can flow through the pipes up to a flow capacity limit (up to c(e) liters per second, say).
- There's infinite water pressing into the source s and infinite drain capacity at the sink / target t
- At all other junctions, inflow = outflow (no leakage)
- $\rightsquigarrow\,$ How much water can flow through the network?

In this example:

- not more than 5+2+3 = 10 units of flow out of $\{0, 2\}$ possible
- \rightsquigarrow not more than 10 units out of *s* possible
- \rightsquigarrow shown flow is maximal

Remainder of this unit: general version of above (+ efficient algorithms)

Networks and Flows – Definitions

► *s*-*t*-(*flow*) *network*:

for notational convenience only

- ▶ simple, directed, connected graph G = (V, E), no antiparallel edges ($vw \in E \rightarrow wv \notin E$)
- edge capacities $c : E \to \mathbb{R}_{\geq 0}$
- distinguished vertices: *source* $s \in V$, target/*sink* $t \in V$

Networks and Flows – Definitions

 \blacktriangleright s-t-(flow) network:

for notational convenience only

- ▶ simple, directed, connected graph G = (V, E), no antiparallel edges ($vw \in E \rightsquigarrow wv \notin E$)
- edge capacities $c: E \to \mathbb{R}_{\geq 0}$
- distinguished vertices: *source* $s \in V$, target/*sink* $t \in V$
- (network) flow (in G): $f: E \to \mathbb{R}_{>0}$

▶ flow *f* is *feasible* if it satisfies notational convenience: set f(vw) = c(vw) = 0 for $vw \notin E$

- capacity constraints: $\forall v, w \in V : 0 \le f(vw) \le c(vw)$
- flow conservation: $\forall v \in V \setminus \{s, t\}$: $\sum_{w \in V} f(w, v) = \sum_{w \in V} f(v, w)$

Networks and Flows – Definitions

► *s*-*t*-(*flow*) *network*:

for notational convenience only

- ▶ simple, directed, connected graph G = (V, E), no antiparallel edges ($vw \in E \rightarrow wv \notin E$)
- edge capacities $c : E \to \mathbb{R}_{\geq 0}$
- distinguished vertices: *source* $s \in V$, target/*sink* $t \in V$
- (network) flow (in G): $f: E \to \mathbb{R}_{\geq 0}$
- flow f is *feasible* if it satisfies

notational convenience: set f(vw) = c(vw) = 0 for $vw \notin E$

- capacity constraints: $\forall v, w \in V : 0 \le f(vw) \le c(vw)$
- ► flow conservation: $\forall v \in V \setminus \{s, t\}$: $\sum_{w \in V} f(w, v) = \sum_{w \in V} f(v, w)$
- value |f| of flow f: $|f| = \sum_{v \in V} f(s, v) \sum_{v \in V} f(v, s)$

Max-Flow Problem

Maximum-Flow Problem:

- ► **Given:** *s*-*t*-flow network
- **Coal:** Find feasible flow f^* with maximum $|f^*|$ among all feasible flows

Max-Flow Problem

Maximum-Flow Problem:

- **Given:** *s*-*t*-flow network
- ▶ **Goal:** Find feasible flow *f*^{*} with maximum |*f*^{*}| among all feasible flows

\triangleright N vs \mathbb{R}

as we will see

- ▶ We focus on integral capacities here 🤟 can restrict ourselves to integral flows
- but: ideally want algorithms that work with arbitrary real numbers, too

Multiple Sources & Sinks, Antiparallel Edges

- Some of the restrictions can be generalized easily.
- ▶ We forbid **loops** and **antiparallel** edges.

- The presented algorithms actually work fine with both!
- but proofs are cleaner to write without them
- also: can always remove loops and (anti)parallel edges by adding a new vertex in the middle of the edge
- \rightsquigarrow same maximum |f|

Multiple Sources & Sinks, Antiparallel Edges

- Some of the restrictions can be generalized easily.
- We forbid **loops** and **antiparallel** edges.
 - The presented algorithms actually work fine with both!
 - but proofs are cleaner to write without them
 - also: can always remove loops and (anti)parallel edges by adding a new vertex in the middle of the edge
 - \rightsquigarrow same maximum |f|
- We only allow a **single source** and a **single sink**
 - ▶ can add a **"supersource"** and **"supersink"** with capacity-∞ edges to all sources resp. sinks
 - $\Rightarrow \text{ same maximum } |f|$

Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network flows are reductions of other problems

- Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network flows are reductions of other problems
- **1.** Disjoint Paths
 - **Given:** Unweighted (di)graph G = (V, E), vertices $s, t \in V$
 - ▶ **Goal:** How many edge-disjoint paths are there from *s* to *t*?

- Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network flows are reductions of other problems
- **1.** Disjoint Paths
 - **Given:** Unweighted (di)graph G = (V, E), vertices $s, t \in V$
 - ▶ **Goal:** How many edge-disjoint paths are there from *s* to *t*?

2. Assignment Problem, Maximum Bipartite Matching

- **Given:** workers $W = \{w_1, \dots, w_k\}$ tasks $T = \{t_1, \dots, t_\ell\}$, qualified-for relation $Q \subseteq W \times T$
- ▶ **Goal:** Assignment $a : W \to T \cup \{\bot\}$ of workers to tasks such that
 - workers are qualified: $\forall w \in W : a(w) \neq \bot \implies (w, a(w)) \in Q$
 - |a(W)|, the number of tasks assigned, is maximized

- Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network flows are reductions of other problems
- **1.** Disjoint Paths
 - **Given:** Unweighted (di)graph G = (V, E), vertices $s, t \in V$
 - ▶ **Goal:** How many edge-disjoint paths are there from *s* to *t*?

2. Assignment Problem, Maximum Bipartite Matching

- **Given:** workers $W = \{w_1, \dots, w_k\}$ tasks $T = \{t_1, \dots, t_\ell\}$, qualified-for relation $Q \subseteq W \times T$
- ▶ **Goal:** Assignment $a : W \to T \cup \{\bot\}$ of workers to tasks such that
 - workers are qualified: $\forall w \in W : a(w) \neq \bot \implies (w, a(w)) \in Q$
 - |a(W)|, the number of tasks assigned, is maximized
- Both problems can be solved by (in both cases, 1. and 3. are very efficient)
 - 1. constructing a specific flow network from their input data
 - 2. computing a maximum flow in that network
 - 3. "reading off" a solution for the original problem from the max flow

9.7 The Ford-Fulkerson Method

Simple Idea: Iteratively find a path from *s* to *t* that we can push more flow over.

1. Push 3 units of flow over $s \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow t$

Simple Idea: Iteratively find a path from *s* to *t* that we can push more flow over.

- **1.** Push 3 units of flow over $s \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow t$
- **2.** Push 3 units of flow over $s \rightarrow 1 \rightarrow 4 \rightarrow t$

▶ **Simple Idea:** Iteratively find a path from *s* to *t* that we can push more flow over.

- **1.** Push 3 units of flow over $s \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow t$
- **2.** Push 3 units of flow over $s \rightarrow 1 \rightarrow 4 \rightarrow t$
- 3. Push 2 units of flow over $s \rightarrow 2 \rightarrow 4 \rightarrow t$

▶ **Simple Idea:** Iteratively find a path from *s* to *t* that we can push more flow over.

- **1.** Push 3 units of flow over $s \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow t$
- **2.** Push 3 units of flow over $s \rightarrow 1 \rightarrow 4 \rightarrow t$
- 3. Push 2 units of flow over $s \rightarrow 2 \rightarrow 4 \rightarrow t$
- \rightsquigarrow Every *s*-*t* path now has a saturated edge.

▶ **Simple Idea:** Iteratively find a path from *s* to *t* that we can push more flow over.

- **1.** Push 3 units of flow over $s \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow t$
- 2. Push 3 units of flow over $s \rightarrow 1 \rightarrow 4 \rightarrow t$
- 3. Push 2 units of flow over $s \rightarrow 2 \rightarrow 4 \rightarrow t$
- \rightsquigarrow Every *s*-*t* path now has a saturated edge.

But: resulting flow is not optimal!

► Goal: Allow undoing flow (without backtracking)

- Goal: Allow undoing flow (without backtracking)
- *Residual network* G_f : given network G = (V, E) and feasible flow f

- ► Goal: Allow undoing flow (without backtracking)
- *Residual network* G_f : given network G = (V, E) and feasible flow f

► residual flow f': feasible flow in G_f (f + f')(vw) = f(vw) + f'(vw) - f'(wv) (f + f')(vw) = f(vw) + f'(vw) - f'(wv)(f + f')(vw) = f(vw) + f'(vw) - f'(wv)

- ► Goal: Allow undoing flow (without backtracking)
- *Residual network* G_f : given network G = (V, E) and feasible flow f

- ► residual flow f': feasible flow in G_f (f + f')(vw) = f(vw) + f'(vw) - f'(wv) (f + f')(vw) = f(vw) + f'(vw) - f'(wv)(f + f')(vw) = f(vw) + f'(vw) - f'(wv)
- augmenting path p: s-t-path G_f particularly simple f'!

- ► Goal: Allow undoing flow (without backtracking)
- *Residual network* G_f : given network G = (V, E) and feasible flow f

- ► residual flow f': feasible flow in G_f (f + f')(vw) = f(vw) + f'(vw) - f'(wv) (f + f')(vw) = f(vw) + f'(vw) - f'(wv)(f + f')(vw) = f(vw) + f'(vw) - f'(wv)
- ► *augmenting path p*: *s*-*t*-**path** *G*^{*f*} particularly simple *f*'!

- **Goal:** Certificate for maximum flows
- ► s-t-cut (S,T): partition $S \cup T = V, s \in S$, $t \in T$ drsjoint curve
 - *net flow* across cut: $f(S,T) = \sum_{v \in S} \sum_{w \in T} (f(vw) - f(wv))$
 - ► *capacity* of cut:

$$c(S,T) = \sum_{v \in S} \sum_{w \in T} f(vw)$$

- **Goal:** Certificate for maximum flows
- ► *s*-*t*-*cut* (*S*,*T*): partition $S \cup T = V$, $s \in S$, $t \in T$
 - *net flow* across cut: $f(S,T) = \sum_{v \in S} \sum_{w \in T} (f(vw) - f(wv))$
 - ► *capacity* of cut:

$$c(S,T) = \sum_{v \in S} \sum_{w \in T} f(vw)$$

- **Goal:** Certificate for maximum flows
- ► *s*-*t*-*cut* (*S*,*T*): partition $S \cup T = V$, $s \in S$, . $t \in T$
 - *net flow* across cut: $f(S,T) = \sum_{v \in S} \sum_{w \in T} (f(vw) - f(wv))$
 - capacity of cut: $c(S,T) = \sum_{v \in S} \sum_{w \in T} f(vw)$
- Lemma: For any cut (S, T), we have f(S, T) = |f|. (flow conservation!)

- **Goal:** Certificate for maximum flows
- ► *s*-*t*-*cut* (*S*,*T*): partition $S \cup T = V$, $s \in S$, $t \in T$
 - *net flow* across cut: $f(S,T) = \sum_{v \in S} \sum_{w \in T} (f(vw) - f(wv))$
 - capacity of cut: $c(S,T) = \sum_{v \in S} \sum_{w \in T} f(vw)$
- **Lemma:** For any cut (S, T), we have f(S, T) = |f|. (flow conservation!)

• **Corollary:**
$$|f| \le c(S,T)$$
 for any *s*-*t*-cut (S,T)

• c(S,T) = 5 + 3 + 3 = 11

The Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem:

Let *f* be a feasible flow in *s*-*t*-network G = (V, E). Then the following conditions are equivalent:

- **1.** |f| = c(S, T) for some cut (S, T) of *G*.
- **2.** f is a maximum flow in G
- **3.** The residual network G_f has no augmenting path.

Proofs "(1) = 5(2)" Corollarly implies: every other flow f'
$$|f'| \leq c(S,T) = |f|$$

"(2) = >(3)" contreposition if Gf has p from s to $f = 5$ can increase $|f|$
= 5 $|f|$ and maximal
"(3) = 5(21)" $S = \{v : s \rightarrow v\}$ $T = V \setminus S$ \Rightarrow (S,T) is a cut
edges across (S,T) are solvated forward edges
 $s = \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{5} + \frac$

Generic Ford-Fulkerson Method

procedure genericFordFulkerson(G = (V, E), s, t, c): *// G is a flow network with source* $s \in V$ *, sink* $t \in V$ *and capacities* $c : E \to \mathbb{R}_{>0}$ 2 for $vw \in E$ do f(vw) := 0 end for 3 **while** \exists path *p* from *s* to *t* **in** *G*_{*f*} // *Freedom:* Which augmenting path? 4 $\Delta := \min\{c_f(e) : e \in p\} // bottleneck capacity$ 5 for $e \in p$ 6 if $e \in E$ // forward edge 7 $f(e) := f(e) + \Delta$ 8 else // backward edge 9 $f(e) := f(e) - \Delta$ 10 return f 11

- ▶ Returned flow is a maximum flow *f*^{*} (Max-Flow Min-Cut Theorem)
- If $c : E \to \mathbb{N}_0$, also $f : E \to \mathbb{N}_0$: For all $v, w \in V$ holds:
 - initially $f(vw) = 0 \in \mathbb{N}_0$
 - $c_f(vw)$ is difference of $c(vw) \in \mathbb{N}_0$ and $f(vw) \in \mathbb{N}_0$
 - Δ equal to some $c_f(v'w') \in \mathbb{N}_{\geq 1}$ (E_f contains only non-zero capacity edges!)
 - \rightsquigarrow new flow $f(vw) \pm \Delta \in \mathbb{N}_0$
- → For integral capacities, always terminate after $\leq |f^*|$ iterations

• Unfortunately, we might also take $|f^*|$ iterations!

• Unfortunately, we might also take $|f^*|$ iterations!

• Unfortunately, we might also take $|f^*|$ iterations!

• Unfortunately, we might also take $|f^*|$ iterations!

• Unfortunately, we might also take $|f^*|$ iterations!

• Unfortunately, we might also take $|f^*|$ iterations!

• Unfortunately, we might also take $|f^*|$ iterations!

• Unfortunately, we might also take $|f^*|$ iterations!

• Unfortunately, we might also take $|f^*|$ iterations!

Bad Example

• Unfortunately, we might also take $|f^*|$ iterations!

• (2 iterations with smarter augmenting paths would have sufficed here)

Bad Example

• Unfortunately, we might also take $|f^*|$ iterations!

• (2 iterations with smarter augmenting paths would have sufficed here)

- ▶ for irrational flows, might not even terminate
- example network with irrational initial flow
- $w = \varphi 1 = (\sqrt{5} 1)/2 \approx 0.618 \quad \rightsquigarrow \quad 1 w = w^2 \approx 0.382$

- ▶ for irrational flows, might not even terminate
- example network with irrational initial flow
- $w = \varphi 1 = (\sqrt{5} 1)/2 \approx 0.618 \quad \rightsquigarrow \quad 1 w = w^2 \approx 0.382$

- ▶ for irrational flows, might not even terminate
- example network with irrational initial flow
- $w = \varphi 1 = (\sqrt{5} 1)/2 \approx 0.618 \quad \rightsquigarrow \quad 1 w = w^2 \approx 0.382$

- ▶ for irrational flows, might not even terminate
- example network with irrational initial flow
- $w = \varphi 1 = (\sqrt{5} 1)/2 \approx 0.618 \quad \rightsquigarrow \quad 1 w = w^2 \approx 0.382$

- ▶ for irrational flows, might not even terminate
- example network with irrational initial flow
- $w = \varphi 1 = (\sqrt{5} 1)/2 \approx 0.618 \quad \rightsquigarrow \quad 1 w = w^2 \approx 0.382$

- ▶ for irrational flows, might not even terminate
- example network with irrational initial flow
- $w = \varphi 1 = (\sqrt{5} 1)/2 \approx 0.618 \quad \rightsquigarrow \quad 1 w = w^2 \approx 0.382$

- ▶ for irrational flows, might not even terminate
- example network with irrational initial flow
- $w = \varphi 1 = (\sqrt{5} 1)/2 \approx 0.618 \quad \rightsquigarrow \quad 1 w = w^2 \approx 0.382$

- ▶ for irrational flows, might not even terminate
- example network with irrational initial flow
- $w = \varphi 1 = (\sqrt{5} 1)/2 \approx 0.618 \quad \rightsquigarrow \quad 1 w = w^2 \approx 0.382$

- ▶ for irrational flows, might not even terminate
- example network with irrational initial flow
- $w = \varphi 1 = (\sqrt{5} 1)/2 \approx 0.618 \quad \rightsquigarrow \quad 1 w = w^2 \approx 0.382$

- ► for irrational flows, might not even terminate
- example network with irrational initial flow
- $w = \varphi 1 = (\sqrt{5} 1)/2 \approx 0.618 \quad \rightsquigarrow \quad 1 w = w^2 \approx 0.382$

- ▶ after 2 paths, situation in 1-2-3-4 restored (rotated), but flows multiplied by *w*
- \rightsquigarrow augmenting paths have capacities $w, w, w^2, w^2, w^3, w^3 \dots$
- \rightsquigarrow never terminate, never exceed $|f| \ge 5$

9.8 The Edmonds-Karp Algorithm

Edmonds-Karp

- ▶ It turns out, many ways to choose augmenting paths systematically work fine
- Edmonds & Karp: take a shortest path (in #edges)

```
Deva inplementation
_____ Sedgemick & Warm
```

```
1 procedure EdmondsKarp(G = (V, E), s, t, c):
       // G is a flow network with source s \in V, sink t \in V and capacities c : E \to \mathbb{R}_{\geq 0}
2
       for vw \in E do f(vw) := 0 end for
                                                              JTF
3
       while true
4
           bfs(Gf, {s}) Zs-t path in Gg
5
            if distFrom[t] == \infty return f
6
            else p := pathTo(t)
7
            \Delta := \min\{c_f(e) : e \in p\} // bottleneck capacity
8
            for e \in p
9
                if e \in E // forward edge
10
                                                                 ŦŦ
                     f(e) := f(e) + \Delta
11
                else // backward edge
12
                     f(e) := f(e) - \Delta
13
       end while
14
```

▶ **Theorem:** The Edmonds-Karp algorithm terminates after O(nm) iterations with a maximum flow. The total running time is in $O(nm^2)$.

Theorem: The Edmonds-Karp algorithm terminates after *O*(*nm*) iterations with a maximum flow. The total running time is in $O(nm^2)$.

▶ Proof Plan:

every augmenting path has a *critical* edge vw contributing the bottleneck capacity

▶ we will show: S(v)

(1) distances of vertices from s in G_f weakly increase over time (2) before vw can be a *critical* edge *again*, v's distance increases by at least 2

- \rightarrow each edge vw is critical for at most n/2 augmenting paths (v's distance $\in [1..n-2]$)
- $\rightarrow O(nm)$ augmenting paths

• each iteration runs one BFS, which costs O(n + m) = O(m) times since G is connected.

▶ **Theorem:** The Edmonds-Karp algorithm terminates after O(nm) iterations with a maximum flow. The total running time is in $O(nm^2)$.

▶ Proof Plan:

every augmenting path has a *critical* edge vw contributing the bottleneck capacity

we will show:

(1) distances of vertices from s in G_f weakly increase over time

(2) before vw can be a critical edge again, v's distance increases by at least 2

- → each edge vw is critical for at most n/2 augmenting paths (v's distance $\in [1..n 2]$)
- $\rightsquigarrow O(nm)$ augmenting paths

• each iteration runs one BFS, which costs O(n + m) = O(m) times since G is connected.

Notation:

- Write f_0, f_1, \ldots for values of f during iterations of while loop
- \rightsquigarrow *G*_{*f*_{*i*} residual network after *i*th augmentation}
- Write $\delta_i(v)$ for shortest-path distance from s to v in G_{f_i}

(4) **EK Monotonicity Lemma:** For all *i* and $v \in V$, we have $\delta_{i+1}(v) \ge \delta_i(v)$.

- f_i : flow after *i*th augmentation
- $\delta_i(v)$ distance from *s* to *v* in G_{f_i}

EK Monotonicity Lemma: For all *i* and $v \in V$, we have $\delta_{i+1}(v) \ge \delta_i(v)$.

Proof:

- by induction over k, the value of $\delta_i(v)$
- IB: k = 0: only v = s possible; $\delta_{i+1}(s) = 0 \ge 0 = \delta_i(s) \checkmark$
- ▶ IH: Assume the claim is true for all shortest paths up to length *k*

▶ *f_i*: flow after *i*th augmentation

• $\delta_i(v)$ distance from s to v in G_{f_i}

EK Monotonicity Lemma: For all *i* and $v \in V$, we have $\delta_{i+1}(v) \ge \delta_i(v)$.

Proof:

- by induction over k, the value of $\delta_i(v)$
- IB: k = 0: only v = s possible; $\delta_{i+1}(s) = 0 \ge 0 = \delta_i(s) \checkmark$
- ▶ IH: Assume the claim is true for all shortest paths up to length *k*
- IS: Suppose $\delta_{i+1}(v) = k + 1$.
 - \rightarrow \exists shortest path p[0..k + 1] in $G_{f_{i+1}}$ with p[0] = s and p[k + 1] = v.
 - \rightsquigarrow For w = p[k], p[0..k] is a shortest path from *s* to $w \rightsquigarrow k = \delta_{i+1}(w) \ge \delta_i(w)$

- ▶ *f_i*: flow after *i*th augmentation
- δ_i(v) distance from s to v in G_{fi}

EK Monotonicity Lemma: For all *i* and $v \in V$, we have $\delta_{i+1}(v) \ge \delta_i(v)$.

Proof:

- by induction over k, the value of $\delta_i(v)$
- IB: k = 0: only v = s possible; $\delta_{i+1}(s) = 0 \ge 0 = \delta_i(s) \checkmark$
- ▶ IH: Assume the claim is true for all shortest paths up to length *k*

• IS: Suppose
$$\delta_{i+1}(v) = k + 1$$
.

 $\rightarrow \exists$ shortest path p[0..k+1] in $G_{f_{i+1}}$ with p[0] = s and p[k+1] = v.

 \rightsquigarrow For w = p[k], p[0..k] is a shortest path from s to $w \rightsquigarrow k = \delta_{i+1}(w) \ge \delta_i(w)$

- Case 1: $wv \in E_{f_i} \iff \delta_i(v) \le \delta_i(w) + 1$
- Case 2: $wv \notin E_{f_i} \rightsquigarrow$ reverse edge vw in *i*th augmenting path, a shortest *s*-*t*-path $\rightsquigarrow \delta_i(v) = \delta_i(w) 1 \le \delta_i(w) + 1$

• in both cases: $\delta_{i+1}(v) = \delta_{i+1}(w) + 1 \ge \delta_i(w) + 1 \ge \delta_i(v)$

- ▶ *f_i*: flow after *i*th augmentation
- δ_i(v) distance from s to v in G_{fi}

(2) Critical Distance Lemma: When critical edge vw becomes a critical again, $\delta(v)$ has increase by at least 2.

• Critical Distance Lemma: When critical edge vw becomes a critical again, $\delta(v)$ has increase by at least 2.

Proof:

- Suppose vw is critical in *i*th iteration \rightsquigarrow lies on shortest path
- $\rightsquigarrow \delta_i(w) = \delta(v)(v) + 1$ in G_{free} we not present
- before vw reappears in G_f, need to have had wv in augmenting path; say this first happens in iteration j > i → δ_i(v) = δ_i(w) + 1

• Critical Distance Lemma: When critical edge vw becomes a critical again, $\delta(v)$ has increase by at least 2.

Proof:

Suppose vw is critical in *i*th iteration \rightarrow lies on shortest path

 $\rightsquigarrow \delta_i(w) = \delta(i)(v) + 1$

- before vw reappears in G_f, need to have had wv in augmenting path; say this first happens in iteration j > i → δ_j(v) = δ_j(w) + 1
- ► by EK Monotonicity Lemma: $\delta_j(v) = \delta_j(w) + 1 \ge \delta_i(w) + 1 = \delta_i(v) + 2$

This concludes the proof of the theorem.

Maximum Flow – Discussion

- 🖒 Edmonds-Karp is a robust choice
- easy to implement (see Sedgewick Wayne for an elegant Java version!)
 - \bigcirc worst-case time $O(n^5)$ for dense graphs quickly prohibitive
 - but: worst-case results typically overly pessimistic
 - other choices of augmenting flows possible
 - ▶ in practice: push-relabel methods often faster

Maximum Flow – Discussion

- 🖒 Edmonds-Karp is a robust choice
- easy to implement (see Sedgewick Wayne for an elegant Java version!)
- worst-case time $O(n^5)$ for dense graphs quickly prohibitive
 - but: worst-case results typically overly pessimistic
 - other choices of augmenting flows possible
 - ▶ in practice: push-relabel methods often faster
- 2022 theory breakthrough: almost linear(!) O(m^{1+o(1)}) time max flow algorithm Chen, Kyng, Liu, Peng, Gutenberg & Sachdeva, FOCS 2022

Maximum Flow – Discussion

Edmonds-Karp is a robust choice

easy to implement (see Sedgewick Wayne for an elegant Java version!)

- worst-case time $O(n^5)$ for dense graphs quickly prohibitive
 - but: worst-case results typically overly pessimistic
 - other choices of augmenting flows possible
 - in practice: push-relabel methods often faster
- 2022 theory breakthrough: almost linear(!) O(m^{1+o(1)}) time max flow algorithm Chen, Kyng, Liu, Peng, Gutenberg & Sachdeva, FOCS 2022
- max-flow min-cut theorem is a special case of LP duality
- can also solve generalization of min-cost flows
 - each edge vw has a cost a(vw)
 - cost of a flow $f: \sum a(vw) \cdot f(vw)$
 - demand *d* at sink becomes part of constraints: $|f| \ge d$