
9 Graph Algorithms
9 December 2024

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024/25)
Philipps-Universität Marburg

version 2024-12-16 09:28

Learning Outcomes

Unit 9: Graph Algorithms

1. Know basic terminology from graph theory, including types of graphs.

2. Know adjacency matrix and adjacency list representations and their performance
characteristica.

3. Know graph-traversal based algorithm, including efficient implementations.

4. Be able to proof correctness of graph-traversal-based algorithms.

5. Know algorithms for maximum flows in networks.

6. Be able to model new algorithmic problems as graph problems.

1

Outline

9 Graph Algorithms
9.1 Introduction & Definitions
9.2 Graph Representations
9.3 Graph Traversal
9.4 BFS and DFS
9.5 Advanced Uses of DFS
9.6 Network flows
9.7 The Ford-Fulkerson Method
9.8 The Edmonds-Karp Algorithm

9.1 Introduction & Definitions

Graphs in real life
▶ a graph is an abstraction of entities with their (pairwise) relationships

▶ abundant examples in real life (often called network there)
▶ social networks: e. g. persons and their friendships, . . . Five/Six? degrees of separation

▶ physical networks: cities and highways, roads networks, power grids etc., the Internet, . . .
▶ content networks: world wide web, ontologies, . . .
▶ . . .

10

2
6

12

9

9 9

9

3

10
7

7

2

3

8

5

1

1 1
5

Many More examples, e. g., in Sedgewick & Wayne’s videos:
https://www.coursera.org/learn/algorithms-part2

2

Flavors of Graphs
▶ Since graphs are used to model so many different entities and relations, they come in

several variants

Property Yes No

edges are one-way directed graph (digraph) undirected graph
≤ 1 edge between 𝑢 and 𝑣 simple graph multigraph / with parallel edges
edges can lead from 𝑣 to 𝑣 with loops (loop-free)
edges have weights (edge-) weighted graph unweighted graph

any combination of the above can make sense . . .

▶ Synonyms:
▶ vertex („Knoten“) = node = point = „Ecke”
▶ edge („Kante“) = arc = line = relation = arrow = „Pfeil“
▶ graph = network

3

Graph Theory
▶ default: unweighted, undirected, loop-free & simple graphs

▶ Graph 𝐺 = (𝑉 , 𝐸) with
▶ 𝑉 a finite of vertices
▶ 𝐸 ⊆ [𝑉]2 a set of edges, which are 2-subsets of 𝑉 : [𝑉]2 =

�
𝑒 : 𝑒 ⊆ 𝑉 ∧ |𝑒 | = 2

	

4

Graph Theory
▶ default: unweighted, undirected, loop-free & simple graphs

▶ Graph 𝐺 = (𝑉 , 𝐸) with
▶ 𝑉 a finite of vertices
▶ 𝐸 ⊆ [𝑉]2 a set of edges, which are 2-subsets of 𝑉 : [𝑉]2 =

�
𝑒 : 𝑒 ⊆ 𝑉 ∧ |𝑒 | = 2

	

Example
𝑉 = {0, 1, 2, 3, 4, 5}
𝐸 =

�{0, 1} , {1, 2} , {1, 4} , {1, 3} , {0, 2} ,
{2, 4} , {2, 3} , {3, 4} , {3, 5} , {4, 5}	.

Graphical representation

0
1 2

3 4
5

like so . . .

4

Graph Theory
▶ default: unweighted, undirected, loop-free & simple graphs

▶ Graph 𝐺 = (𝑉 , 𝐸) with
▶ 𝑉 a finite of vertices
▶ 𝐸 ⊆ [𝑉]2 a set of edges, which are 2-subsets of 𝑉 : [𝑉]2 =

�
𝑒 : 𝑒 ⊆ 𝑉 ∧ |𝑒 | = 2

	

Example
𝑉 = {0, 1, 2, 3, 4, 5}
𝐸 =

�{0, 1} , {1, 2} , {1, 4} , {1, 3} , {0, 2} ,
{2, 4} , {2, 3} , {3, 4} , {3, 5} , {4, 5}	.

Graphical representation

0
1 2

3 4
5

=
0

1

2

3

4

5

like so or so
(same graph)

4

Digraphs
▶ default digraph: unweighted, loop-free & simple

▶ Digraph (directed graph) 𝐺 = (𝑉 , 𝐸) with
▶ 𝑉 a finite of vertices
▶ 𝐸 ⊆ 𝑉2 \ �(𝑣 , 𝑣) : 𝑣 ∈ 𝑉

	
a set of (directed) edges,

𝑉2 = 𝑉 × 𝑉 =
�(𝑥 , 𝑦) : 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉

	
2-tuples / ordered pairs over 𝑉

5

Digraphs
▶ default digraph: unweighted, loop-free & simple

▶ Digraph (directed graph) 𝐺 = (𝑉 , 𝐸) with
▶ 𝑉 a finite of vertices
▶ 𝐸 ⊆ 𝑉2 \ �(𝑣 , 𝑣) : 𝑣 ∈ 𝑉

	
a set of (directed) edges,

𝑉2 = 𝑉 × 𝑉 =
�(𝑥 , 𝑦) : 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉

	
2-tuples / ordered pairs over 𝑉

Example
𝑉 = {0, 1, 2, 3, 4, 5}
𝐸 =

�(0, 2), (1, 0), (1, 4), (2, 1), (2, 4),
(3, 1), (3, 2), (4, 3), (4, 5), (5, 3)	

Graphical representation

0

1 2

3 4

5

5

Graph Terminology
Undirected Graphs
▶ 𝑉(𝐺) set of vertices, 𝐸(𝐺) set of edges
▶ write 𝑢𝑣 (or 𝑣𝑢) for edge {𝑢 , 𝑣}
▶ edges incident at vertex 𝑣: 𝐸(𝑣)
▶ 𝑢 and 𝑣 are adjacent iff {𝑢 , 𝑣} ∈ 𝐸,
▶ neighborhood 𝑁(𝑣) = {𝑤 ∈ 𝑉 : 𝑤 adjacent to 𝑣}
▶ degree 𝑑(𝑣) = |𝐸(𝑣)|

Directed Graphs (where different)

▶ 𝑢𝑣 for (𝑢 , 𝑣)

▶ iff (𝑢 , 𝑣) ∈ 𝐸 ∨ (𝑣 , 𝑢) ∈ 𝐸

▶ in-/out-neighbors 𝑁in(𝑣), 𝑁out(𝑣)
▶ in-/out-degree 𝑑in(𝑣), 𝑑out(𝑣)

6

Graph Terminology
Undirected Graphs
▶ 𝑉(𝐺) set of vertices, 𝐸(𝐺) set of edges
▶ write 𝑢𝑣 (or 𝑣𝑢) for edge {𝑢 , 𝑣}
▶ edges incident at vertex 𝑣: 𝐸(𝑣)
▶ 𝑢 and 𝑣 are adjacent iff {𝑢 , 𝑣} ∈ 𝐸,
▶ neighborhood 𝑁(𝑣) = {𝑤 ∈ 𝑉 : 𝑤 adjacent to 𝑣}
▶ degree 𝑑(𝑣) = |𝐸(𝑣)|

Directed Graphs (where different)

▶ 𝑢𝑣 for (𝑢 , 𝑣)

▶ iff (𝑢 , 𝑣) ∈ 𝐸 ∨ (𝑣 , 𝑢) ∈ 𝐸

▶ in-/out-neighbors 𝑁in(𝑣), 𝑁out(𝑣)
▶ in-/out-degree 𝑑in(𝑣), 𝑑out(𝑣)

▶ walk 𝑤 of length 𝑛: sequence of vertices 𝑤[0..𝑛] with ∀𝑖 ∈ [0..𝑛) : 𝑤[𝑖]𝑤[𝑖 + 1] ∈ 𝐸

▶ path 𝑝 is a (vertex-) simple walk: without duplicate vertices except possibly its endpoints
▶ edge-simple walk: no edge used twice
▶ cycle 𝑐 is a closed path, i. e., 𝑐[0] = 𝑐[𝑛]

6

Graph Terminology
Undirected Graphs
▶ 𝑉(𝐺) set of vertices, 𝐸(𝐺) set of edges
▶ write 𝑢𝑣 (or 𝑣𝑢) for edge {𝑢 , 𝑣}
▶ edges incident at vertex 𝑣: 𝐸(𝑣)
▶ 𝑢 and 𝑣 are adjacent iff {𝑢 , 𝑣} ∈ 𝐸,
▶ neighborhood 𝑁(𝑣) = {𝑤 ∈ 𝑉 : 𝑤 adjacent to 𝑣}
▶ degree 𝑑(𝑣) = |𝐸(𝑣)|

Directed Graphs (where different)

▶ 𝑢𝑣 for (𝑢 , 𝑣)

▶ iff (𝑢 , 𝑣) ∈ 𝐸 ∨ (𝑣 , 𝑢) ∈ 𝐸

▶ in-/out-neighbors 𝑁in(𝑣), 𝑁out(𝑣)
▶ in-/out-degree 𝑑in(𝑣), 𝑑out(𝑣)

▶ walk 𝑤 of length 𝑛: sequence of vertices 𝑤[0..𝑛] with ∀𝑖 ∈ [0..𝑛) : 𝑤[𝑖]𝑤[𝑖 + 1] ∈ 𝐸

▶ path 𝑝 is a (vertex-) simple walk: without duplicate vertices except possibly its endpoints
▶ edge-simple walk: no edge used twice
▶ cycle 𝑐 is a closed path, i. e., 𝑐[0] = 𝑐[𝑛]
▶ 𝐺 is connected

iff for all 𝑢 ≠ 𝑣 ∈ 𝑉 there is a path from 𝑢 to 𝑣

▶ 𝐺 is acyclic iff � cycle (of length 𝑛 ≥ 1) in 𝐺

▶ strongly connected for digraphs
(weakly connected = connected ignoring directions)

6

Typical graph-processing problems
▶ Path: Is there a path between 𝑠 and 𝑡?

Shortest path: What is the shortest path (distance) between 𝑠 and 𝑡?

▶ Cycle: Is there a cycle in the graph?
Euler tour: Is there a cycle that uses each edge exactly once?
Hamilton(ian) cycle: Is there a cycle that uses each vertex exactly once.

▶ Connectivity: Is there a way to connect all of the vertices?
MST: What is the best way to connect all of the vertices?
Biconnectivity: Is there a vertex whose removal disconnects the graph?

▶ Planarity: Can you draw the graph in the plane with no crossing edges?

▶ Graph isomorphism: Are two graphs the same up to renaming vertices?

Challenge: Which of these problems
can vary a lot, despite superficial similarity of problems

can be computed in (near) linear time?
in reasonable polynomial time?
are intractable?

7

Tools to work with graphs
▶ Convenient GUI to edit & draw graphs: yEd live

yworks.com/yed-live

▶ graphviz cmdline utility to draw graphs
▶ Simple text format for graphs: DOT

graph G {
0 -- 2; 2 -- 4;
1 -- 0; 2 -- 3;
1 -- 4; 3 -- 4;
1 -- 3; 3 -- 5;
2 -- 1; 4 -- 5;

}

0

2

4

1

3

5

dot -Tpdf graph.dot -Kfdp > graph.pdf

▶ graphs are typically not built into programming languages, but libraries exist
▶ e. g. part of Google Guava for Java
▶ they usually allow arbitrary objects as vertices
▶ aimed at ease of use

8

9.2 Graph Representations

Graphs in Computer Memory
▶ We defined graphs in set-theoretic terms. . .

but computers can’t directly deal with sets efficiently

⇝ need to choose a representation for graphs.
▶ which is better depends on the required operations

9

Graphs in Computer Memory
▶ We defined graphs in set-theoretic terms. . .

but computers can’t directly deal with sets efficiently

⇝ need to choose a representation for graphs.
▶ which is better depends on the required operations

Key Operations:
▶ isAdjacent(𝑢,𝑣)

Test whether 𝑢𝑣 ∈ 𝐸

▶ adj(𝑣)
Adjacency list of 𝑣 (iterate through (out-) neighbors of 𝑣)

▶ most others can be computed based on these

9

Graphs in Computer Memory
▶ We defined graphs in set-theoretic terms. . .

but computers can’t directly deal with sets efficiently

⇝ need to choose a representation for graphs.
▶ which is better depends on the required operations

Key Operations:
▶ isAdjacent(𝑢,𝑣)

Test whether 𝑢𝑣 ∈ 𝐸

▶ adj(𝑣)
Adjacency list of 𝑣 (iterate through (out-) neighbors of 𝑣)

▶ most others can be computed based on these

Conventions:
▶ (di)graph 𝐺 = (𝑉 , 𝐸) (omitted if clear from context)

▶ 𝑛 = |𝑉 | , 𝑚 = |𝐸|
▶ in implementations assume 𝑉 = [0..𝑛) (if needed, use symbol table to map complex objects to 𝑉)

9

Adjacency Matrix Representation
▶ adjacency matrix 𝐴 ∈ {0, 1}𝑛×𝑛 of 𝐺: matrix with 𝐴[𝑢 , 𝑣] = [𝑢𝑣 ∈ 𝐸]

▶ works for both directed and undirected graphs (undirected ⇝ 𝐴 = 𝐴𝑇 symmetric)
▶ can use a weight 𝑤(𝑢𝑣) or multiplicity in 𝐴[𝑢 , 𝑣] instead of 0/1
▶ can represent loops via 𝐴[𝑣 , 𝑣]

Example:
0

1 2

3 4

5

𝐴 =

©
«

0 0 1 0 0 0
1 0 0 0 1 0
0 1 0 1 1 0
0 1 0 0 0 0
0 0 0 1 0 1
0 0 0 1 0 0

ª®®®®®®®
¬

10

Adjacency Matrix Representation
▶ adjacency matrix 𝐴 ∈ {0, 1}𝑛×𝑛 of 𝐺: matrix with 𝐴[𝑢 , 𝑣] = [𝑢𝑣 ∈ 𝐸]

▶ works for both directed and undirected graphs (undirected ⇝ 𝐴 = 𝐴𝑇 symmetric)
▶ can use a weight 𝑤(𝑢𝑣) or multiplicity in 𝐴[𝑢 , 𝑣] instead of 0/1
▶ can represent loops via 𝐴[𝑣 , 𝑣]

Example:
0

1 2

3 4

5

𝐴 =

©
«

0 0 1 0 0 0
1 0 0 0 1 0
0 1 0 1 1 0
0 1 0 0 0 0
0 0 0 1 0 1
0 0 0 1 0 0

ª®®®®®®®
¬

isAdjacent in 𝑂(1) time

𝑂(𝑛2) (bits of) space wasteful for sparse graphs

adj(𝑣) iteration takes 𝑂(𝑛) (independent of 𝑑(𝑣))
10

Adjacency List Representation
▶ Store a linked list of neighbors for each vertex 𝑣:

▶ adj[0..𝑛) bag of neighbors (as linked list)
▶ undirected edge {𝑢 , 𝑣} ⇝ 𝑣 in adj[𝑢] and 𝑢 in adj[𝑣]
▶ weighted edge 𝑢𝑣 ⇝ store pair (𝑣 , 𝑤(𝑢𝑣)) in adj[𝑢]
▶ multiple edges and loops can be represented

2

0 4

4 1 3

1

5 3

3

adj[0..𝑛)
0

1

2

3

4

5

0

1 2

3 4

5

11

Adjacency List Representation
▶ Store a linked list of neighbors for each vertex 𝑣:

▶ adj[0..𝑛) bag of neighbors (as linked list)
▶ undirected edge {𝑢 , 𝑣} ⇝ 𝑣 in adj[𝑢] and 𝑢 in adj[𝑣]
▶ weighted edge 𝑢𝑣 ⇝ store pair (𝑣 , 𝑤(𝑢𝑣)) in adj[𝑢]
▶ multiple edges and loops can be represented

2

0 4

4 1 3

1

5 3

3

adj[0..𝑛)
0

1

2

3

4

5

0

1 2

3 4

5

isAdjacent(𝑢,𝑣) takes Θ(𝑑(𝑢)) time (worst case)

adj(𝑣) iteration 𝑂(1) per neighbor

Θ(𝑛 + 𝑚) (words of) space for any graph (≪ Θ(𝑛2) bits for moderate 𝑚)

⇝ de-facto standard for graph algorithms
11

Graph Types and Representations
▶ Note that adj matrix and lists for undirected graphs effectively are representation of

directed graph with directed edges both ways
▶ conceptually still important to distinguish!

▶ multigraphs, loops, edge weights all naturally supported in adj lists
▶ good if we allow and use them
▶ but requires explicit checks to enforce simple / loopfree / bidirectional!

▶ we focus on static graphs
dynamically changing graphs much harder to handle

12

9.3 Graph Traversal

Generic Graph Traversal
▶ Plethora of graph algorithms can be expressed as a systematic exploration

visiting all nodes & edges

of a graph
▶ depth-first search, breadth-first search
▶ connected components
▶ detecting cycles
▶ topological sorting
▶ Hierholzer’s algorithm for Euler walks
▶ strong components
▶ testing bipartiteness
▶ Dĳkstra’s algorithm
▶ Prim’s algorithm
▶ Lex-BFS for perfect elimination orders of chordal graphs
▶ . . .

13

Generic Graph Traversal
▶ Plethora of graph algorithms can be expressed as a systematic exploration

visiting all nodes & edges

of a graph
▶ depth-first search, breadth-first search
▶ connected components
▶ detecting cycles
▶ topological sorting
▶ Hierholzer’s algorithm for Euler walks
▶ strong components
▶ testing bipartiteness
▶ Dĳkstra’s algorithm
▶ Prim’s algorithm
▶ Lex-BFS for perfect elimination orders of chordal graphs
▶ . . .

⇝ Formulate generic traversal algorithm
▶ first in abstract terms to argue about correctness
▶ then again for concrete instance with efficient data structures

13

Tricolor Graph Traversal
Tricolor Graph Search:
▶ maintain vertices in 3 (dynamic) sets

▶ Gray: unseen vertices
The traversal has not reached these vertices so far.

▶ Green: done vertices (a.k.a. visited vertices)
These vertices have been visited and all their edges have been explored already.

▶ Red: active vertices (a.k.a. frontier („Rand“) of traversal)
All others, i. e., vertices that have been reached and some unexplored edges remain;
initially some selected start vertices 𝑆.

▶ (implicitly) maintain status of each edge
▶ not yet used
▶ used edge

▶ Vertices “want” to turn green.
𝑆

initial state

active

done

during traversal

done

final state

Invariant:
No edges from done to unseen vertices

14

Generic Tricolor Graph Traversal – Code
1 procedure genericGraphTraversal(𝐺, 𝑆)
2 // (di)graph 𝐺 = (𝑉 , 𝐸) and start vertices 𝑆 ⊆ 𝑉
3 𝐶[0..𝑛) := unseen // Color array, all cells initialized to unseen
4 for 𝑠 ∈ 𝑆 do 𝐶[𝑠] := active end for
5 unusedEdges := 𝐸
6 while ∃𝑣 : 𝐶[𝑣] == active
7 𝑣 := nextActiveVertex() // Freedom 1: Which frontier vertex?
8 if �𝑣𝑤 ∈ unusedEdges // no more edges from 𝑣 ⇝ done with 𝑣
9 𝐶[𝑣] := done

10 else
11 𝑤 := nextUnusedEdge(𝑣) // Freedom 2: Which of its edges?
12 if 𝐶[𝑤] == unseen
13 𝐶[𝑤] := active
14 end if
15 unusedEdges.remove(𝑣𝑤)
16 end if
17 end while

0

1

2

3
4

5

Invariant:
No edges from done to unseen vertices

15

Generic Tricolor Graph Traversal – Code
1 procedure genericGraphTraversal(𝐺, 𝑆)
2 // (di)graph 𝐺 = (𝑉 , 𝐸) and start vertices 𝑆 ⊆ 𝑉
3 𝐶[0..𝑛) := unseen // Color array, all cells initialized to unseen
4 for 𝑠 ∈ 𝑆 do 𝐶[𝑠] := active end for
5 unusedEdges := 𝐸
6 while ∃𝑣 : 𝐶[𝑣] == active
7 𝑣 := nextActiveVertex() // Freedom 1: Which frontier vertex?
8 if �𝑣𝑤 ∈ unusedEdges // no more edges from 𝑣 ⇝ done with 𝑣
9 𝐶[𝑣] := done

10 else
11 𝑤 := nextUnusedEdge(𝑣) // Freedom 2: Which of its edges?
12 if 𝐶[𝑤] == unseen
13 𝐶[𝑤] := active
14 end if
15 unusedEdges.remove(𝑣𝑤)
16 end if
17 end while

0

1

2

3
4

5

Invariant:
No edges from done to unseen vertices

▶ Implementations of nextActiveVertex() and nextUnusedEdge(𝑣) depends on
(and defines!) specific traversal-based graph algorithms

15

Generic Tricolor Graph Traversal – Code
1 procedure genericGraphTraversal(𝐺, 𝑆)
2 // (di)graph 𝐺 = (𝑉 , 𝐸) and start vertices 𝑆 ⊆ 𝑉
3 𝐶[0..𝑛) := unseen // Color array, all cells initialized to unseen
4 for 𝑠 ∈ 𝑆 do 𝐶[𝑠] := active end for
5 unusedEdges := 𝐸
6 while ∃𝑣 : 𝐶[𝑣] == active
7 𝑣 := nextActiveVertex() // Freedom 1: Which frontier vertex?
8 if �𝑣𝑤 ∈ unusedEdges // no more edges from 𝑣 ⇝ done with 𝑣
9 𝐶[𝑣] := done

10 else
11 𝑤 := nextUnusedEdge(𝑣) // Freedom 2: Which of its edges?
12 if 𝐶[𝑤] == unseen
13 𝐶[𝑤] := active
14 end if
15 unusedEdges.remove(𝑣𝑤)
16 end if
17 end while

0

1

2

3
4

5

Invariant:
No edges from done to unseen vertices

▶ Implementations of nextActiveVertex() and nextUnusedEdge(𝑣) depends on
(and defines!) specific traversal-based graph algorithms

15

Generic Reachability
▶ Any choices nextActiveVertex() and nextUnusedEdge(𝑣) suffice

to find exactly the vertices reachable from 𝑆 in done

16

Generic Reachability
▶ Any choices nextActiveVertex() and nextUnusedEdge(𝑣) suffice

to find exactly the vertices reachable from 𝑆 in done

▶ Invariant:
1. No edges from done to unseen vertices
2. For every done or active vertex 𝑣, there exists a path from 𝑠 ∈ 𝑆 to 𝑣.

𝑆

initial state

active

done

during traversal

done

final state

16

Generic Reachability
▶ Any choices nextActiveVertex() and nextUnusedEdge(𝑣) suffice

to find exactly the vertices reachable from 𝑆 in done

▶ Invariant:
1. No edges from done to unseen vertices
2. For every done or active vertex 𝑣, there exists a path from 𝑠 ∈ 𝑆 to 𝑣.

𝑆

initial state

active

done

during traversal

done

final state

⇝ in final state:
▶ 𝑣 ∈ done ⇝ path from 𝑆 ⇝ reachable from 𝑆

▶ 𝑣 ∈ unseen ⇝ not reachable from done ⊇ 𝑆 ⇝ not reachable from 𝑆

16

Data Structures for Frontier
▶ We need efficient support for

▶ test ∃𝑣 : 𝐶[𝑣] = active, nextActiveVertex()
▶ test ∃𝑣𝑤 ∈ unusedEdges, nextUnusedEdge(𝑣)
▶ unusedEdges.remove(𝑣𝑤)

17

Data Structures for Frontier
▶ We need efficient support for

▶ test ∃𝑣 : 𝐶[𝑣] = active, nextActiveVertex()
▶ test ∃𝑣𝑤 ∈ unusedEdges, nextUnusedEdge(𝑣)
▶ unusedEdges.remove(𝑣𝑤)

▶ Typical solution maintains bag “frontier” of pairs (𝑣 , 𝑖)
where 𝑣 ∈ 𝑉 and 𝑖 is an iterator in adj[𝑣]
▶ unusedEdges represented implicitly: edge used iff previously returned by 𝑖

⇝ don’t need unusedEdges.remove(𝑣𝑤)

17

Data Structures for Frontier
▶ We need efficient support for

▶ test ∃𝑣 : 𝐶[𝑣] = active, nextActiveVertex()
▶ test ∃𝑣𝑤 ∈ unusedEdges, nextUnusedEdge(𝑣)
▶ unusedEdges.remove(𝑣𝑤)

▶ Typical solution maintains bag “frontier” of pairs (𝑣 , 𝑖)
where 𝑣 ∈ 𝑉 and 𝑖 is an iterator in adj[𝑣]
▶ unusedEdges represented implicitly: edge used iff previously returned by 𝑖

⇝ don’t need unusedEdges.remove(𝑣𝑤)

▶ Implement ∃𝑣 : 𝐶[𝑣] = active via frontier.isEmpty()
▶ Implement ∃𝑣𝑤 ∈ unusedEdges via 𝑖.hasNext() assuming (𝑣 , 𝑖) ∈ frontier
▶ Implement nextUnusedEdge(𝑣) via 𝑖.next() assuming (𝑣 , 𝑖) ∈ frontier

⇝ all operations apart from nextActiveVertex() in 𝑂(1) time
⇝ frontier requires 𝑂(𝑛) extra space

17

9.4 BFS and DFS

Breadth-First Search
▶ Maintain frontier in a queue (FIFO: first in, first out)

18

Breadth-First Search
▶ Maintain frontier in a queue (FIFO: first in, first out)

▶ Invariant:
1. No edges from done to unseen vertices
2. All done or active vertices are reached via a shortest

fewest edges

path from 𝑆

3. Vertices enter and leave frontier in order of increasing distance from 𝑆

𝑆

initial state

active

done

during traversal

done

final state

⇝ in final state, we reach all reachable vertices via shortest paths

18

Breadth-First Search
▶ Maintain frontier in a queue (FIFO: first in, first out)

▶ Invariant:
1. No edges from done to unseen vertices
2. All done or active vertices are reached via a shortest

fewest edges

path from 𝑆

3. Vertices enter and leave frontier in order of increasing distance from 𝑆

𝑆

initial state

active

done

during traversal

done

final state

⇝ in final state, we reach all reachable vertices via shortest paths

▶ To preserve that knowledge, we collect extra information during traversal
▶ parent[𝑣] stores predecessor on path from 𝑆 via which 𝑣 was reached
▶ distFromS[𝑣] stores the length of this path

18

Breadth-First Search – Code
1 procedure bfs(𝐺, 𝑆)
2 // (di)graph 𝐺 = (𝑉 , 𝐸) and start vertices 𝑆 ⊆ 𝑉
3 𝐶[0..𝑛) := unseen // New array initialized to all unseen
4 frontier := new Queue;
5 parent[0..𝑛) := NOT_VISITED; distFromS[0..𝑛) := ∞
6 for 𝑠 ∈ 𝑆
7 parent[𝑠] := NONE; distFromS[𝑠] := 0
8 𝐶[𝑠] := active; frontier.enqueue((𝑠, 𝐺.adj[𝑠].iterator()))
9 end for

10 while ¬frontier.isEmpty()
11 (𝑣 , 𝑖) := frontier.peek()
12 if ¬𝑖.hasNext() // 𝑣 has no unused edge
13 𝐶[𝑣] := done; frontier.dequeue()
14 else
15 𝑤 := 𝑖.next() // Advance 𝑖 in adj[𝑣]
16 if 𝐶[𝑤] == unseen
17 parent[𝑤] := 𝑣; distFromS[𝑤] := distFromS[𝑣] + 1
18 𝐶[𝑤] := active; frontier.enqueue((𝑤, 𝐺.adj[𝑤].iterator()))
19 end if
20 end if
21 end while

19

Breadth-First Search – Code
1 procedure bfs(𝐺, 𝑆)
2 // (di)graph 𝐺 = (𝑉 , 𝐸) and start vertices 𝑆 ⊆ 𝑉
3 𝐶[0..𝑛) := unseen // New array initialized to all unseen
4 frontier := new Queue;
5 parent[0..𝑛) := NOT_VISITED; distFromS[0..𝑛) := ∞
6 for 𝑠 ∈ 𝑆
7 parent[𝑠] := NONE; distFromS[𝑠] := 0
8 𝐶[𝑠] := active; frontier.enqueue((𝑠, 𝐺.adj[𝑠].iterator()))
9 end for

10 while ¬frontier.isEmpty()
11 (𝑣 , 𝑖) := frontier.peek()
12 if ¬𝑖.hasNext() // 𝑣 has no unused edge
13 𝐶[𝑣] := done; frontier.dequeue()
14 else
15 𝑤 := 𝑖.next() // Advance 𝑖 in adj[𝑣]
16 if 𝐶[𝑤] == unseen
17 parent[𝑤] := 𝑣; distFromS[𝑤] := distFromS[𝑣] + 1
18 𝐶[𝑤] := active; frontier.enqueue((𝑤, 𝐺.adj[𝑤].iterator()))
19 end if
20 end if
21 end while

▶ parent stores a
shortest-path tree/forest

▶ can retrieve shortest path to 𝑣
from some vertex 𝑠 ∈ 𝑆
(backwards) by following
parent[𝑣] iteratively

19

Breadth-First Search – Code
1 procedure bfs(𝐺, 𝑆)
2 // (di)graph 𝐺 = (𝑉 , 𝐸) and start vertices 𝑆 ⊆ 𝑉
3 𝐶[0..𝑛) := unseen // New array initialized to all unseen
4 frontier := new Queue;
5 parent[0..𝑛) := NOT_VISITED; distFromS[0..𝑛) := ∞
6 for 𝑠 ∈ 𝑆
7 parent[𝑠] := NONE; distFromS[𝑠] := 0
8 𝐶[𝑠] := active; frontier.enqueue((𝑠, 𝐺.adj[𝑠].iterator()))
9 end for

10 while ¬frontier.isEmpty()
11 (𝑣 , 𝑖) := frontier.peek()
12 if ¬𝑖.hasNext() // 𝑣 has no unused edge
13 𝐶[𝑣] := done; frontier.dequeue()
14 else
15 𝑤 := 𝑖.next() // Advance 𝑖 in adj[𝑣]
16 if 𝐶[𝑤] == unseen
17 parent[𝑤] := 𝑣; distFromS[𝑤] := distFromS[𝑣] + 1
18 𝐶[𝑤] := active; frontier.enqueue((𝑤, 𝐺.adj[𝑤].iterator()))
19 end if
20 end if
21 end while

▶ parent stores a
shortest-path tree/forest

▶ can retrieve shortest path to 𝑣
from some vertex 𝑠 ∈ 𝑆
(backwards) by following
parent[𝑣] iteratively

▶ running time Θ(𝑛 + 𝑚)
▶ extra space Θ(𝑛)

19

Depth-First Search
▶ Maintain frontier in a stack (LIFO: last in, first out)

▶ only consider 𝑆 = {𝑠}
▶ usual mode of operation: call dfs(𝑣) for all unseen 𝑣, for 𝑣 = 0, . . . , 𝑛 − 1

20

Depth-First Search
▶ Maintain frontier in a stack (LIFO: last in, first out)

▶ only consider 𝑆 = {𝑠}
▶ usual mode of operation: call dfs(𝑣) for all unseen 𝑣, for 𝑣 = 0, . . . , 𝑛 − 1

▶ Invariant:
1. No edges from done to unseen vertices
2. All done or active vertices are reached via a path from 𝑠

3. The active vertices form a single path from 𝑠

𝑠

initial state

done

active𝑠

during traversal

done

final state

0

1 2

3

4

20

Depth-First Search – Code
1 procedure dfsTraversal(𝐺)
2 𝐶[0..𝑛) := unseen
3 for 𝑣 := 0, . . . , 𝑛 − 1
4 if 𝐶[𝑣] == unseen
5 dfs(𝐺, 𝑣)
6

7 procedure dfs(𝐺, 𝑠)
8 frontier := new Stack;
9 𝐶[𝑠] := active; frontier.push((𝑠, 𝐺.adj[𝑠].iterator()))

10 while ¬frontier.isEmpty()
11 (𝑣 , 𝑖) := frontier.top()
12 if ¬𝑖.hasNext() // 𝑣 has no unused edge
13 𝐶[𝑣] := done; frontier.pop(); postorderVisit(𝑣)
14 else
15 𝑤 := 𝑖.next(); visitEdge(𝑣𝑤)
16 if 𝐶[𝑤] == unseen
17 preorderVisit(𝑤)
18 𝐶[𝑤] := active; frontier.push((𝑤, 𝐺.adj[𝑤].iterator()))
19 end if
20 end if
21 end while

▶ define hooks to implement
further operations
▶ preorder: visit 𝑣 when

made active (start of 𝑇(𝑣))
▶ postorder: visit 𝑣 when

marked done (end of 𝑇(𝑣))
▶ visitEdge: do something for

every edge

▶ if needed, can store DFS
forest via parent array

21

Depth-First Search – Code
1 procedure dfsTraversal(𝐺)
2 𝐶[0..𝑛) := unseen
3 for 𝑣 := 0, . . . , 𝑛 − 1
4 if 𝐶[𝑣] == unseen
5 dfs(𝐺, 𝑣)
6

7 procedure dfs(𝐺, 𝑠)
8 frontier := new Stack;
9 𝐶[𝑠] := active; frontier.push((𝑠, 𝐺.adj[𝑠].iterator()))

10 while ¬frontier.isEmpty()
11 (𝑣 , 𝑖) := frontier.top()
12 if ¬𝑖.hasNext() // 𝑣 has no unused edge
13 𝐶[𝑣] := done; frontier.pop(); postorderVisit(𝑣)
14 else
15 𝑤 := 𝑖.next(); visitEdge(𝑣𝑤)
16 if 𝐶[𝑤] == unseen
17 preorderVisit(𝑤)
18 𝐶[𝑤] := active; frontier.push((𝑤, 𝐺.adj[𝑤].iterator()))
19 end if
20 end if
21 end while

▶ define hooks to implement
further operations
▶ preorder: visit 𝑣 when

made active (start of 𝑇(𝑣))
▶ postorder: visit 𝑣 when

marked done (end of 𝑇(𝑣))
▶ visitEdge: do something for

every edge

▶ if needed, can store DFS
forest via parent array

▶ running time Θ(𝑛 + 𝑚)
▶ extra space Θ(𝑛)

21

Simple DFS Application: Connected Components
▶ In an undirected graph, find all connected components.

▶ Given: simple undirected 𝐺 = (𝑉 , 𝐸)
▶ Goal: assign component ids CC[0..𝑛), s.t. CC[𝑣] = CC[𝑢] iff ∃ path from 𝑣 to 𝑢

22

Simple DFS Application: Connected Components
▶ In an undirected graph, find all connected components.

▶ Given: simple undirected 𝐺 = (𝑉 , 𝐸)
▶ Goal: assign component ids CC[0..𝑛), s.t. CC[𝑣] = CC[𝑢] iff ∃ path from 𝑣 to 𝑢

1 procedure connectedComponents(𝐺):
2 // undirected graph 𝐺 = (𝑉 , 𝐸) with 𝑉 = [0..𝑛)
3 𝐶[0..𝑛) := unseen
4 CC[0..𝑛) := NONE
5 id := 0
6 for 𝑣 := 0, . . . , 𝑛 − 1
7 if 𝐶[𝑣] == unseen
8 dfs(𝐺, 𝑣)
9 id := id + 1

10 return CC
11

12 procedure preorderVisit(𝑣):
13 CC[𝑣] := id

1 // same as before
2 procedure dfs(𝐺, 𝑠)
3 frontier := new Stack;
4 𝐶[𝑠] := active; frontier.push((𝑠, 𝐺.adj[𝑠].iterator()))
5 while ¬frontier.isEmpty()
6 (𝑣 , 𝑖) := frontier.top()
7 if ¬𝑖.hasNext() // 𝑣 has no unused edge
8 𝐶[𝑣] := done; frontier.pop()
9 postorderVisit(𝑣)

10 else
11 𝑤 := 𝑖.next(); visitEdge(𝑣𝑤)
12 if 𝐶[𝑤] == unseen
13 preorderVisit(𝑤)
14 𝐶[𝑤] := active
15 frontier.push((𝑤, 𝐺.adj[𝑤].iterator()))
16 end if
17 end if
18 end while

22

Dĳkstra’s Algorithm & Prim’s Algorithm
▶ On edge-weighted graphs, we can use tricolor traversal with a priority queue as frontier

▶ Dĳkstra’s Algorithm for shortest paths from 𝑠 in digraphs with weakly positive edge
weights
▶ priority of vertex 𝑣 = length of shortest path known so far from 𝑠 to 𝑣

▶ Prim’s Algorithm for finding a minimum spanning tree
▶ priority of vertex 𝑣 = weight of cheapest edge connecting 𝑣 to current tree

⇝ Detailed discussion in Unit 11

23

9.5 Advanced Uses of DFS

Properties of DFS
▶ Recall DFS Invariant 3:

The active vertices form a single path from 𝑠

𝑠

initial state

done

active𝑠

during traversal

done

final state

input graph 𝐺

0

1 2

3

4

DFS forest stack over time

24

Properties of DFS
▶ Recall DFS Invariant 3:

The active vertices form a single path from 𝑠

𝑠

initial state

done

active𝑠

during traversal

done

final state

input graph 𝐺

0

1 2

3

4

DFS forest

0

1 2

3

4

stack over time

time

0
1 2

3

4

24

Properties of DFS
▶ Recall DFS Invariant 3:

The active vertices form a single path from 𝑠

𝑠

initial state

done

active𝑠

during traversal

done

final state

input graph 𝐺

0

1 2

3

4

DFS forest

0

1 2

3

4

stack over time

time

0
1 2

3

4

⇝ Each vertex 𝑣 spends time interval 𝑇(𝑣) as active vertex

24

Properties of DFS
▶ Recall DFS Invariant 3:

The active vertices form a single path from 𝑠

𝑠

initial state

done

active𝑠

during traversal

done

final state

input graph 𝐺

0

1 2

3

4

DFS forest

0

1 2

3

4

stack over time

time

0
1 2

3

4

⇝ Each vertex 𝑣 spends time interval 𝑇(𝑣) as active vertex
1. frontier is stack ⇝ {𝑇(𝑣) : 𝑣 ∈ 𝑉} forms laminar set family: (“disjoint or contained”)

either 𝑇(𝑣) ∩ 𝑇(𝑤) = ∅ or 𝑇(𝑣) ⊆ 𝑇(𝑤) or 𝑇(𝑣) ⊇ 𝑇(𝑤)

24

Properties of DFS
▶ Recall DFS Invariant 3:

The active vertices form a single path from 𝑠

𝑠

initial state

done

active𝑠

during traversal

done

final state

input graph 𝐺

0

1 2

3

4

DFS forest

0

1 2

3

4

stack over time

time

0
1 2

3

4

⇝ Each vertex 𝑣 spends time interval 𝑇(𝑣) as active vertex
1. frontier is stack ⇝ {𝑇(𝑣) : 𝑣 ∈ 𝑉} forms laminar set family: (“disjoint or contained”)

either 𝑇(𝑣) ∩ 𝑇(𝑤) = ∅ or 𝑇(𝑣) ⊆ 𝑇(𝑤) or 𝑇(𝑣) ⊇ 𝑇(𝑤)
2. Parenthesis Theorem: 𝑇(𝑣) ⊇ 𝑇(𝑤) iff 𝑣 is ancestor of 𝑤 in DFS tree

‘⇒’ during 𝑇(𝑣), all discovered vertices become descendants of 𝑣

‘⇐’ 𝑇(𝑣) covers 𝑣’s entire subtree, which contains 𝑤’s subtree
24

Properties of DFS – Unseen-Path Theorem
▶ Unseen-Path Theorem: In a DFS forest of a (di)graph 𝐺, 𝑤 is a descendant of 𝑣 iff

at the time of preorderVisit(𝑣), there is a path from 𝑣 to 𝑤
using only unseen vertices.

25

Properties of DFS – Unseen-Path Theorem
▶ Unseen-Path Theorem: In a DFS forest of a (di)graph 𝐺, 𝑤 is a descendant of 𝑣 iff

at the time of preorderVisit(𝑣), there is a path from 𝑣 to 𝑤
using only unseen vertices.

‘⇒’ If 𝑤 is a descendant of 𝑣, 𝑇(𝑤) ⊆ 𝑇(𝑣) by the Parenthesis Theorem.
Hence the path from 𝑣 to 𝑤 in the DFS tree consists (at time of preorderVisit(𝑣)) of solely
unseen vertices.

25

Properties of DFS – Unseen-Path Theorem
▶ Unseen-Path Theorem: In a DFS forest of a (di)graph 𝐺, 𝑤 is a descendant of 𝑣 iff

at the time of preorderVisit(𝑣), there is a path from 𝑣 to 𝑤
using only unseen vertices.

‘⇒’ If 𝑤 is a descendant of 𝑣, 𝑇(𝑤) ⊆ 𝑇(𝑣) by the Parenthesis Theorem.
Hence the path from 𝑣 to 𝑤 in the DFS tree consists (at time of preorderVisit(𝑣)) of solely
unseen vertices.

‘⇐′ Suppose towards a contradiction that there was a 𝑤 with an unseen path 𝑝[0..ℓ] with
𝑝[0] = 𝑣 and 𝑝[ℓ] = 𝑤, but 𝑤 is not a descendant of 𝑣. W.l.o.g. let 𝑤 be a first such vertex, i. e.,
𝑝[0], . . . , 𝑝[ℓ − 1] = 𝑢 are descendants of 𝑣.
So 𝑇(𝑢) ⊂ 𝑇(𝑣) (∗).
Upon processing 𝑢, we will discover edge 𝑢𝑤, so whether or not 𝑤 is already done at this
point, 𝑤 will be marked done before 𝑢. Hence max 𝑇(𝑤) ≤ max 𝑇(𝑢).
With (∗), we obtain min 𝑇(𝑣) ≤ min 𝑇(𝑢) ≤ max 𝑇(𝑤) ≤ max 𝑇(𝑢), so by laminarity,
𝑇(𝑤) ⊂ 𝑇(𝑢) ⊂ 𝑇(𝑣) and 𝑤 is a descendant of 𝑣 �.

25

Topological Sorting & Cycle Detection
▶ Application: Given a set of tasks with precedence constraints of the form

“𝑎 must be done before 𝑏”, can we find a legal ordering for all tasks?

⇝ Model as directed graph!
▶ tasks are the vertices 𝑉
▶ add an edge (𝑎 , 𝑏) when 𝑎 must be done before 𝑏

26

Topological Sorting & Cycle Detection
▶ Application: Given a set of tasks with precedence constraints of the form

“𝑎 must be done before 𝑏”, can we find a legal ordering for all tasks?

⇝ Model as directed graph!
▶ tasks are the vertices 𝑉
▶ add an edge (𝑎 , 𝑏) when 𝑎 must be done before 𝑏

▶ Definition: 𝑅[0..𝑛) is a topological (order) ranking of digraph 𝐺 = (𝑉 , 𝐸) if
∀(𝑢 , 𝑣) ∈ 𝐸 : 𝑅[𝑢] < 𝑅[𝑣]

▶ Lemma DAG iff topo:
A directed graph 𝐺 has a topological ranking iff it does not contain a directed cycle.

26

Topological Sorting & Cycle Detection
▶ Application: Given a set of tasks with precedence constraints of the form

“𝑎 must be done before 𝑏”, can we find a legal ordering for all tasks?

⇝ Model as directed graph!
▶ tasks are the vertices 𝑉
▶ add an edge (𝑎 , 𝑏) when 𝑎 must be done before 𝑏

▶ Definition: 𝑅[0..𝑛) is a topological (order) ranking of digraph 𝐺 = (𝑉 , 𝐸) if
∀(𝑢 , 𝑣) ∈ 𝐸 : 𝑅[𝑢] < 𝑅[𝑣]

▶ Lemma DAG iff topo:
A directed graph 𝐺 has a topological ranking iff it does not contain a directed cycle.

▶ Topological Sorting
▶ Given: simple digraph 𝐺 = (𝑉 , 𝐸)
▶ Goal: Compute topological ranking of vertices 𝑅[0..𝑛)

or output a directed cycle in 𝐺.

▶ Amazingly, can do all with one pass of DFS!
26

DFS Edge Types
input digraph 𝐺

0

1 2

3

4

27

DFS Edge Types
input digraph 𝐺

0

1 2

3

4

DFS forest

0

1 2

3

4

stack over time

time

0
1 2

3

4

27

DFS Edge Types
input digraph 𝐺

0

1 2

3

4

DFS forest

0

1 2

3

4

stack over time

time

0
1 2

3

4

▶ During DFS traversal, an edge 𝑣𝑤 has one of these 4 types: example:
1. tree edge: 𝑤 ∈ unseen ⇝ 𝑣𝑤 part of DFS forest. (0, 1), (0, 2), (2, 3)
2. back edges: 𝑤 ∈ active; ⇝ 𝑤 points to ancestor of 𝑣. (3, 0)
3. forward edges*: 𝑤 ∈ done ∧ 𝑤 is descendant of 𝑣 in DFS tree. (0, 3)
4. cross edges*: 𝑤 ∈ done ∧ 𝑤 is not descendant of 𝑣. (3, 0)

*only possible in directed graphs

27

Cycle Detection
If 𝐺 contains a directed cycle, DFS will find a directed cycle:
▶ any back edge implies a cycle:

▶ DFS visits an edge (𝑣 , 𝑤) where 𝑤 ∈ active, 𝑤 is already on the stack
⇝ DFS tree contains path 𝑤 ⇝ 𝑣 and we have edge 𝑣 → 𝑤.

28

Cycle Detection
If 𝐺 contains a directed cycle, DFS will find a directed cycle:
▶ any back edge implies a cycle:

▶ DFS visits an edge (𝑣 , 𝑤) where 𝑤 ∈ active, 𝑤 is already on the stack
⇝ DFS tree contains path 𝑤 ⇝ 𝑣 and we have edge 𝑣 → 𝑤.

▶ conversely any cycle 𝐶[0..𝑘] once reached must have some back edge or cross edge
(tree and forward edges go from smaller to larger preorder index)
▶ cannot be a cross edge since cycle is strongly connected

all cycle vertices must be descendants of first reached cycle vertex
⇝ cycle contributes a back edge

28

DFS Postorder Implementation

1 procedure dfsPostorder(𝐺):
2 𝐶[0..𝑛) := unseen
3 𝑃[0..𝑛) := NONE; 𝑟 := 0
4 parent[0..𝑛) := NONE
5 cycle := NONE
6 for 𝑣 := 0, . . . , 𝑛 − 1
7 if 𝐶[𝑣] == unseen
8 dfs(𝐺, 𝑣)
9 return (𝑃 , cycle)

10

11 procedure postorderVisit(𝑣):
12 𝑃[𝑣] := 𝑟; 𝑟 := 𝑟 + 1
13

14 procedure visitEdge(𝑣𝑤):
15 if 𝐶[𝑤] == active
16 if cycle ≠ NONE return
17 while 𝑣 ≠ 𝑤
18 cycle.append(𝑣)
19 𝑣 := parent[𝑣]
20 cycle.append(𝑣)

1 // dfs is as in CC but with parent
2 procedure dfs(𝐺, 𝑠)
3 frontier := new Stack;
4 parent[𝑠] := NONE;
5 𝐶[𝑠] := active; frontier.push((𝑠, 𝐺.adj[𝑠].iterator()))
6 while ¬frontier.isEmpty()
7 (𝑣 , 𝑖) := frontier.top()
8 if ¬𝑖.hasNext() // 𝑣 has no unused edge
9 𝐶[𝑣] := done; frontier.pop()

10 postorderVisit(𝑣)
11 else
12 𝑤 := 𝑖.next() // Advance 𝑖 in adj[𝑣]
13 visitEdge(𝑣𝑤)
14 if 𝐶[𝑤] == unseen
15 parent[𝑤] := 𝑣;
16 preorderVisit(𝑤)
17 𝐶[𝑤] := active; frontier.push((𝑤, 𝐺.adj[𝑤].iterator()))
18 end if
19 end if
20 end while

29

DFS Postorder & Topological Sort
▶ DFS Postorder: The DFS postorder numbers is a numbering 𝑃[0..𝑛) of 𝑉 such that

𝑃[𝑣] = 𝑟 iff exactly 𝑟 vertices reached state done before 𝑣 in a DFS.

30

DFS Postorder & Topological Sort
▶ DFS Postorder: The DFS postorder numbers is a numbering 𝑃[0..𝑛) of 𝑉 such that

𝑃[𝑣] = 𝑟 iff exactly 𝑟 vertices reached state done before 𝑣 in a DFS.

▶ Lemma rev postorder:
Let 𝐺 be a simple, connected DAG

directed acyclic graph

and 𝑅[0..𝑛) a reverse DFS postorder of 𝐺, i. e.,
𝑅[𝑣] = 𝑛 − 1 − 𝑃[𝑣] for a DFS postorder 𝑃[0..𝑛). Then 𝑅 is a topological ranking of 𝐺.

▶ Invariant: If 𝑣 ∈ done and (𝑣 , 𝑤) ∈ 𝐸 then 𝑤 ∈ done and 𝑅[𝑣] < 𝑅[𝑤].
▶ initially true (done = ∅)
▶ upon postorderVisit(𝑣), all outgoing edges 𝑣𝑤 lead to 𝑤 ∈ done (Parenthesis Theorem)

30

Topological Sorting & Cycle Detection – Summary
▶ Putting everything together we obtain topological sorting

▶ can produce either the ranking or the sequence of vertices in topological order,
whatever is more convenient

1 procedure topologicalRanking(𝑃):
2 (𝑃[0..𝑛), cycle) := dfsPostorder(𝐺)
3 if cycle ≠ NULL
4 return NOT_A_DAG
5 𝑅[0..𝑛) := NONE
6 for 𝑣 := 0, . . . , 𝑛 − 1
7 𝑅[𝑣] = 𝑛 − 1 − 𝑃[𝑣]
8 return 𝑅

1 procedure topologicalSort(𝑃):
2 (𝑃[0..𝑛), cycle) := dfsPostorder(𝐺)
3 if 𝑐 ≠ NULL
4 return NOT_A_DAG
5 𝑆[0..𝑛) := NONE
6 for 𝑣 := 0, . . . , 𝑛 − 1
7 𝑆[𝑛 − 1 − 𝑃[𝑣]] := 𝑣
8 return 𝑆

▶ Θ(𝑛 + 𝑚) time

▶ Θ(𝑛) extra space

31

Euler Cycles
Euler Walk: Walk using every edge in 𝐺 = (𝑉 , 𝐸) exactly once.

32

Euler Cycles
Euler Walk: Walk using every edge in 𝐺 = (𝑉 , 𝐸) exactly once.

𝑎

𝑏

𝑐

𝑑

32

Euler Cycles
Euler Walk: Walk using every edge in 𝐺 = (𝑉 , 𝐸) exactly once.

𝑎

𝑏

𝑐

𝑑

Euler’s Theorem:
Euler walk exists iff 𝐺 connected and 0 or 2 vertices have odd degree.

‘⇒’ trivial (need to enter and exit intermediate vertices equally often)
‘⇐’ Following algorithm constructs Euler walk under this assumption

32

Euler Cycles – Hierholzer’s Algorithm

▶ use an edge-centric DFS
▶ We mark edges (not vertices)
⇝ stack = edge-simple walk
▶ We remember iterator 𝑖 globally

per 𝑣 to resume traversal

1 procedure eulerWalk(𝐺):
2 // Assume 𝐺 = (𝑉 , 𝐸) is connected (multi)graph
3 𝑉odd := {𝑣 ∈ 𝑉 : 𝑑(𝑣) odd}
4 if |𝑉odd| ∉ {0, 2} return NOT_EULERIAN
5 if 𝑉odd = {𝑥 , 𝑦} then 𝑠 := 𝑥 else 𝑠 := 0
6 euler[0..𝑚) := NONE; 𝑗 := 𝑚 − 1
7 visited[0..𝑛 , 0..𝑛) := false // mark edges as visited
8 for 𝑣 := 0, . . . , 𝑛 − 1
9 // globally remember next unexplored edge

10 nextEdge[𝑣] := 𝐺.adj[𝑤].iterator())
11 edgeDFS(𝑠)
12 return euler

1 procedure edgeDFS(𝑠):
2 frontier := new Stack;
3 frontier.push(𝑠)
4 while ¬frontier.isEmpty()
5 𝑣 := frontier.top()
6 if ¬𝑖.hasNext() // 𝑣 has no unused edge
7 frontier.pop()
8 if ¬frontier.isEmpty()
9 // assign edge leading here largest free index

10 euler[𝑗] := (frontier.top(), 𝑣); 𝑗 := 𝑗 − 1
11 end if
12 else
13 𝑤 := 𝑖.next()
14 if ¬visited[𝑣 , 𝑤]
15 visited[𝑣 , 𝑤] := true
16 visited[𝑤 , 𝑣] := true
17 frontier.push(𝑤)
18 end if
19 end if
20 end while

33

Clicker Question

� → sli.do/cs566

Mark all correct statements about a dfsTraversal (Slide 21) of a DAG 𝐺:

A Listing vertices in the order they are marked done is a topological
sorting of 𝐺.

B Listing vertices in the reverse order they are marked done is a
topological sorting of 𝐺.

C If 𝑣 is marked done before vertex 𝑤, there is a path 𝑣 ⇝ 𝑤.

D If 𝑣 is marked done before vertex 𝑤, there is a path 𝑤 ⇝ 𝑣.

E If 𝑣 is marked done before vertex 𝑤, there cannot be a path 𝑣 ⇝ 𝑤.

F If 𝑣 is marked done before vertex 𝑤, there cannot be a path 𝑤 ⇝ 𝑣.

Clicker Question

� → sli.do/cs566

Mark all correct statements about a dfsTraversal (Slide 21) of a DAG 𝐺:

A Listing vertices in the order they are marked done is a topological
sorting of 𝐺.

B Listing vertices in the reverse order they are marked done is a
topological sorting of 𝐺.✓

C If 𝑣 is marked done before vertex 𝑤, there is a path 𝑣 ⇝ 𝑤.

D If 𝑣 is marked done before vertex 𝑤, there is a path 𝑤 ⇝ 𝑣.

E If 𝑣 is marked done before vertex 𝑤, there cannot be a path 𝑣 ⇝ 𝑤.

F If 𝑣 is marked done before vertex 𝑤, there cannot be a path 𝑤 ⇝ 𝑣.✓

Strong Components
▶ Given: digraph 𝐺 = (𝑉 , 𝐸)
▶ Goal: component ids SCC[0..𝑛), s.t. SCC[𝑣] = SCC[𝑢] iff ∃ directed path from 𝑣 to 𝑢

34

Strong Components
▶ Given: digraph 𝐺 = (𝑉 , 𝐸)
▶ Goal: component ids SCC[0..𝑛), s.t. SCC[𝑣] = SCC[𝑢] iff ∃ directed path from 𝑣 to 𝑢

▶ Component DAG 𝐺SCC: contract SCCs
strongly connected component

intro single vertices
𝑉(𝐺SCC) = {𝐶1 , . . . , 𝐶𝑘} with 𝐶1 ¤∪ · · · ¤∪ 𝐶𝑘 = 𝑉 ;
name by smallest vertex s.t. 𝑖 ≤ 𝑗 iff min 𝐶𝑖 ≤ min 𝐶𝑗

▶ can’t have cycles (� maximality of SCC)
⇝ component DAG has a topological order 𝑅SCC[1..𝑘]

34

Strong Components
▶ Given: digraph 𝐺 = (𝑉 , 𝐸)
▶ Goal: component ids SCC[0..𝑛), s.t. SCC[𝑣] = SCC[𝑢] iff ∃ directed path from 𝑣 to 𝑢

▶ Component DAG 𝐺SCC: contract SCCs
strongly connected component

intro single vertices
𝑉(𝐺SCC) = {𝐶1 , . . . , 𝐶𝑘} with 𝐶1 ¤∪ · · · ¤∪ 𝐶𝑘 = 𝑉 ;
name by smallest vertex s.t. 𝑖 ≤ 𝑗 iff min 𝐶𝑖 ≤ min 𝐶𝑗

▶ can’t have cycles (� maximality of SCC)
⇝ component DAG has a topological order 𝑅SCC[1..𝑘]

If we call dfs on any 𝑣 in the last SCC 𝐶, it will discover all vertices in 𝐶, and only those!
(any edges between components lead into 𝐶 by topological order)
And we can iterate this backwards through any topological order to get all SCCs!

34

Strong Components
▶ Given: digraph 𝐺 = (𝑉 , 𝐸)
▶ Goal: component ids SCC[0..𝑛), s.t. SCC[𝑣] = SCC[𝑢] iff ∃ directed path from 𝑣 to 𝑢

▶ Component DAG 𝐺SCC: contract SCCs
strongly connected component

intro single vertices
𝑉(𝐺SCC) = {𝐶1 , . . . , 𝐶𝑘} with 𝐶1 ¤∪ · · · ¤∪ 𝐶𝑘 = 𝑉 ;
name by smallest vertex s.t. 𝑖 ≤ 𝑗 iff min 𝐶𝑖 ≤ min 𝐶𝑗

▶ can’t have cycles (� maximality of SCC)
⇝ component DAG has a topological order 𝑅SCC[1..𝑘]

If we call dfs on any 𝑣 in the last SCC 𝐶, it will discover all vertices in 𝐶, and only those!
(any edges between components lead into 𝐶 by topological order)
And we can iterate this backwards through any topological order to get all SCCs!

Can we efficiently find the topological order of 𝐺SCC?
Without knowing the components to start with??

Amazingly, yes.
34

Component Graph DFS
▶ Suppose we run dfsTraversal on 𝐺.

⇝ We can extend time intervals to SCCs: 𝑇(𝐶𝑖) :=
Ð

𝑣∈𝐶𝑖
𝑇(𝑣)

⇝ 𝑇(𝐶𝑖) = 𝑇(𝑣𝑖) for 𝑣𝑖 ∈ 𝐶𝑖 the first vertex to be explored in a DFS on 𝐺
(by Unseen Path & Parenthesis Thms)

35

Component Graph DFS
▶ Suppose we run dfsTraversal on 𝐺.

⇝ We can extend time intervals to SCCs: 𝑇(𝐶𝑖) :=
Ð

𝑣∈𝐶𝑖
𝑇(𝑣)

⇝ 𝑇(𝐶𝑖) = 𝑇(𝑣𝑖) for 𝑣𝑖 ∈ 𝐶𝑖 the first vertex to be explored in a DFS on 𝐺
(by Unseen Path & Parenthesis Thms)

⇝ DFS on 𝐺 produces same 𝑇(𝐶𝑖) (up to time scaling) as DFS on 𝐺SCC!

⇝ reverse DFS postorder on 𝐺 gives same relative order to 𝑣1 , . . . , 𝑣𝑘 as
reverse DFS postorder on 𝐺SCC gives as relative order to 𝐶1 , . . . , 𝐶𝑘

35

Component Graph DFS
▶ Suppose we run dfsTraversal on 𝐺.

⇝ We can extend time intervals to SCCs: 𝑇(𝐶𝑖) :=
Ð

𝑣∈𝐶𝑖
𝑇(𝑣)

⇝ 𝑇(𝐶𝑖) = 𝑇(𝑣𝑖) for 𝑣𝑖 ∈ 𝐶𝑖 the first vertex to be explored in a DFS on 𝐺
(by Unseen Path & Parenthesis Thms)

⇝ DFS on 𝐺 produces same 𝑇(𝐶𝑖) (up to time scaling) as DFS on 𝐺SCC!

⇝ reverse DFS postorder on 𝐺 gives same relative order to 𝑣1 , . . . , 𝑣𝑘 as
reverse DFS postorder on 𝐺SCC gives as relative order to 𝐶1 , . . . , 𝐶𝑘

We need reverse topological order on 𝐺SCC, e. g., reversed reverse DFS postorder
▶ If we had the actual reverse DFS postorder on 𝐺SCC, could just reverse again!
▶ But we only have reverse DFS postorder 𝑆[0..𝑛) on 𝐺!
� Reversing here would change 𝑣𝑖 , i. e., which vertices of an SCC we see first

35

Kosaraju-Sharir’s Algorithm
▶ Recall: Want reverse

�
topologicalRanking(𝐺SCC)�

36

Kosaraju-Sharir’s Algorithm
▶ Recall: Want reverse

�
topologicalRanking(𝐺SCC)�

▶ Transpose/Reverse Graph of 𝑮 = (𝑽 , 𝑬): 𝐺𝑇 = (𝑉 , 𝐸𝑇) where 𝐸𝑇 = {𝑤𝑣 : 𝑣𝑤 ∈ 𝐸}
Note: 𝐴 adj matrix of 𝐺 ⇝ 𝐴𝑇 adj matrix of 𝐺𝑇

▶ For any DAG, we obtain a
If we reverse iteration order in dfsTraversal, we get reverse(topologicalSort(𝐺)) = topologicalSort(𝐺𝑇)

reverse topological order from reversing all edges:
topologicalSort(𝐺𝑇)

36

Kosaraju-Sharir’s Algorithm
▶ Recall: Want reverse

�
topologicalRanking(𝐺SCC)�

▶ Transpose/Reverse Graph of 𝑮 = (𝑽 , 𝑬): 𝐺𝑇 = (𝑉 , 𝐸𝑇) where 𝐸𝑇 = {𝑤𝑣 : 𝑣𝑤 ∈ 𝐸}
Note: 𝐴 adj matrix of 𝐺 ⇝ 𝐴𝑇 adj matrix of 𝐺𝑇

▶ For any DAG, we obtain a
If we reverse iteration order in dfsTraversal, we get reverse(topologicalSort(𝐺)) = topologicalSort(𝐺𝑇)

reverse topological order from reversing all edges:
topologicalSort(𝐺𝑇)

▶ Observation:
�
𝐺𝑇

�SCC =
�
𝐺SCC�𝑇

▶ strong components not affected by edge reversals

▶ Want: reverse
�
topologicalRanking(𝐺SCC)� (any ranking works, need not be reverse DFS postorder)

36

Kosaraju-Sharir’s Algorithm
▶ Recall: Want reverse

�
topologicalRanking(𝐺SCC)�

▶ Transpose/Reverse Graph of 𝑮 = (𝑽 , 𝑬): 𝐺𝑇 = (𝑉 , 𝐸𝑇) where 𝐸𝑇 = {𝑤𝑣 : 𝑣𝑤 ∈ 𝐸}
Note: 𝐴 adj matrix of 𝐺 ⇝ 𝐴𝑇 adj matrix of 𝐺𝑇

▶ For any DAG, we obtain a
If we reverse iteration order in dfsTraversal, we get reverse(topologicalSort(𝐺)) = topologicalSort(𝐺𝑇)

reverse topological order from reversing all edges:
topologicalSort(𝐺𝑇)

▶ Observation:
�
𝐺𝑇

�SCC =
�
𝐺SCC�𝑇

▶ strong components not affected by edge reversals

▶ Want: reverse
�
topologicalRanking(𝐺SCC)� (any ranking works, need not be reverse DFS postorder)

⇝ Get it from: topologicalRanking
�(𝐺SCC)𝑇 � = topologicalRanking

�(𝐺𝑇)SCC�

36

Kosaraju-Sharir’s Algorithm
▶ Recall: Want reverse

�
topologicalRanking(𝐺SCC)�

▶ Transpose/Reverse Graph of 𝑮 = (𝑽 , 𝑬): 𝐺𝑇 = (𝑉 , 𝐸𝑇) where 𝐸𝑇 = {𝑤𝑣 : 𝑣𝑤 ∈ 𝐸}
Note: 𝐴 adj matrix of 𝐺 ⇝ 𝐴𝑇 adj matrix of 𝐺𝑇

▶ For any DAG, we obtain a
If we reverse iteration order in dfsTraversal, we get reverse(topologicalSort(𝐺)) = topologicalSort(𝐺𝑇)

reverse topological order from reversing all edges:
topologicalSort(𝐺𝑇)

▶ Observation:
�
𝐺𝑇

�SCC =
�
𝐺SCC�𝑇

▶ strong components not affected by edge reversals

▶ Want: reverse
�
topologicalRanking(𝐺SCC)� (any ranking works, need not be reverse DFS postorder)

⇝ Get it from: topologicalRanking
�(𝐺SCC)𝑇 � = topologicalRanking

�(𝐺𝑇)SCC�
⇝ Get that as induced ranking on 𝑣1 , . . . , 𝑣𝑘 from reverse dfsPostorder(𝐺𝑇)

36

Kosaraju-Sharir’s Algorithm – Code

1 procedure strongComponents(𝐺):
2 // directed graph 𝐺 = (𝑉 , 𝐸) with 𝑉 = [0..𝑛)
3 𝐺𝑇 = (𝑉 , {𝑤𝑣 : 𝑣𝑤 ∈ 𝐸})
4 𝑃[0..𝑛) := dfsPostorder(𝐺𝑇) // postorder numbers
5 for 𝑣 ∈ 𝑉 do 𝑆[𝑃[𝑣]] := 𝑣 end for // postorder sequence
6 // Rest like connectedComponents (with permuted vertices)
7 𝐶[0..𝑛) := unseen
8 SCC[0..𝑛) := NONE
9 id := 0

10 for 𝑗 := 𝑛 − 1, . . . , 0 // reverse postorder seq
11 𝑣 := 𝑆[𝑗]
12 if 𝐶[𝑣] == unseen
13 dfs(𝐺, 𝑣)
14 id := id + 1
15 return SCC
16

17 procedure preorderVisit(𝑣):
18 SCC[𝑣] := id

37

Kosaraju-Sharir’s Algorithm – Code

1 procedure strongComponents(𝐺):
2 // directed graph 𝐺 = (𝑉 , 𝐸) with 𝑉 = [0..𝑛)
3 𝐺𝑇 = (𝑉 , {𝑤𝑣 : 𝑣𝑤 ∈ 𝐸})
4 𝑃[0..𝑛) := dfsPostorder(𝐺𝑇) // postorder numbers
5 for 𝑣 ∈ 𝑉 do 𝑆[𝑃[𝑣]] := 𝑣 end for // postorder sequence
6 // Rest like connectedComponents (with permuted vertices)
7 𝐶[0..𝑛) := unseen
8 SCC[0..𝑛) := NONE
9 id := 0

10 for 𝑗 := 𝑛 − 1, . . . , 0 // reverse postorder seq
11 𝑣 := 𝑆[𝑗]
12 if 𝐶[𝑣] == unseen
13 dfs(𝐺, 𝑣)
14 id := id + 1
15 return SCC
16

17 procedure preorderVisit(𝑣):
18 SCC[𝑣] := id

▶ correctness follows from our
discussion

37

Kosaraju-Sharir’s Algorithm – Code

1 procedure strongComponents(𝐺):
2 // directed graph 𝐺 = (𝑉 , 𝐸) with 𝑉 = [0..𝑛)
3 𝐺𝑇 = (𝑉 , {𝑤𝑣 : 𝑣𝑤 ∈ 𝐸})
4 𝑃[0..𝑛) := dfsPostorder(𝐺𝑇) // postorder numbers
5 for 𝑣 ∈ 𝑉 do 𝑆[𝑃[𝑣]] := 𝑣 end for // postorder sequence
6 // Rest like connectedComponents (with permuted vertices)
7 𝐶[0..𝑛) := unseen
8 SCC[0..𝑛) := NONE
9 id := 0

10 for 𝑗 := 𝑛 − 1, . . . , 0 // reverse postorder seq
11 𝑣 := 𝑆[𝑗]
12 if 𝐶[𝑣] == unseen
13 dfs(𝐺, 𝑣)
14 id := id + 1
15 return SCC
16

17 procedure preorderVisit(𝑣):
18 SCC[𝑣] := id

▶ correctness follows from our
discussion

▶ ordering of SCCs follows
reverse topological sort of 𝐺SCC

▶ some implementations reverse
𝐺 for 2nd DFS, not 1st

⇝ output in (forward)
topological order

▶ but derivation more natural
this way?

37

Kosaraju-Sharir’s Algorithm – Code

1 procedure strongComponents(𝐺):
2 // directed graph 𝐺 = (𝑉 , 𝐸) with 𝑉 = [0..𝑛)
3 𝐺𝑇 = (𝑉 , {𝑤𝑣 : 𝑣𝑤 ∈ 𝐸})
4 𝑃[0..𝑛) := dfsPostorder(𝐺𝑇) // postorder numbers
5 for 𝑣 ∈ 𝑉 do 𝑆[𝑃[𝑣]] := 𝑣 end for // postorder sequence
6 // Rest like connectedComponents (with permuted vertices)
7 𝐶[0..𝑛) := unseen
8 SCC[0..𝑛) := NONE
9 id := 0

10 for 𝑗 := 𝑛 − 1, . . . , 0 // reverse postorder seq
11 𝑣 := 𝑆[𝑗]
12 if 𝐶[𝑣] == unseen
13 dfs(𝐺, 𝑣)
14 id := id + 1
15 return SCC
16

17 procedure preorderVisit(𝑣):
18 SCC[𝑣] := id

▶ correctness follows from our
discussion

▶ ordering of SCCs follows
reverse topological sort of 𝐺SCC

▶ some implementations reverse
𝐺 for 2nd DFS, not 1st

⇝ output in (forward)
topological order

▶ but derivation more natural
this way?

▶ as all our traversals:
Θ(𝑛 + 𝑚) time,
Θ(𝑛) extra space

37

9.6 Network flows

Clicker Question

� → sli.do/cs566

Prior knowledge from linear optimization; check all apply.

A I’ve seen LPs in lectures before.

B I could model an application problem as (I)LP.

C I know algorithms for solving LPs.

D I know what weak and strong duality in LPs are.

E I could dualize an LP given to me.

F I know about the complexity of LPs and ILPs.

G LPs for me only mean music on vinyl.

Networks and Flows – Informal

→

0/5
→

0/7

→
0/7

→

0/2
→

0/2

→

0/
3

→
0/8

→

0/1
0

→

0/2

source 𝑠

target 𝑡

0

1 2

3 4

5

Informally, imagine a network of water pipes.

▶ Water can flow through the pipes up to a flow capacity limit
(up to 𝑐(𝑒) liters per second, say).

▶ There’s infinite water pressing into the source 𝑠 and
infinite drain capacity at the sink / target 𝑡

▶ At all other junctions, inflow = outflow (no leakage)

⇝ How much water can flow through the network?

38

Networks and Flows – Informal

→

0/5
→

0/7

→
0/7

→

0/2
→

0/2

→

0/
3

→
0/8

→

0/1
0

→

0/2

source 𝑠

target 𝑡

0

1 2

3 4

5

Informally, imagine a network of water pipes.

▶ Water can flow through the pipes up to a flow capacity limit
(up to 𝑐(𝑒) liters per second, say).

▶ There’s infinite water pressing into the source 𝑠 and
infinite drain capacity at the sink / target 𝑡

▶ At all other junctions, inflow = outflow (no leakage)

⇝ How much water can flow through the network?

38

Networks and Flows – Informal

→

5/5
→

5/7

→
0/7

→

0/2
→

0/2

→

0/
3

→
0/8

→

0/1
0

→

0/2

source 𝑠

target 𝑡

0

1 2

3 4

5

Informally, imagine a network of water pipes.

▶ Water can flow through the pipes up to a flow capacity limit
(up to 𝑐(𝑒) liters per second, say).

▶ There’s infinite water pressing into the source 𝑠 and
infinite drain capacity at the sink / target 𝑡

▶ At all other junctions, inflow = outflow (no leakage)

⇝ How much water can flow through the network?

38

Networks and Flows – Informal

→

5/5
→

5/7

→
5/7

→

0/2
→

2/2

→

3/
3

→
0/8

→

0/1
0

→

0/2

source 𝑠

target 𝑡

0

1 2

3 4

5

Informally, imagine a network of water pipes.

▶ Water can flow through the pipes up to a flow capacity limit
(up to 𝑐(𝑒) liters per second, say).

▶ There’s infinite water pressing into the source 𝑠 and
infinite drain capacity at the sink / target 𝑡

▶ At all other junctions, inflow = outflow (no leakage)

⇝ How much water can flow through the network?

38

Networks and Flows – Informal

→

5/5
→

5/7

→
5/7

→

0/2
→

2/2

→

3/
3

→
7/8

→

3/1
0

→

0/2

source 𝑠

target 𝑡

0

1 2

3 4

5

Informally, imagine a network of water pipes.

▶ Water can flow through the pipes up to a flow capacity limit
(up to 𝑐(𝑒) liters per second, say).

▶ There’s infinite water pressing into the source 𝑠 and
infinite drain capacity at the sink / target 𝑡

▶ At all other junctions, inflow = outflow (no leakage)

⇝ How much water can flow through the network?

38

Networks and Flows – Informal

→

5/5
→

5/7

→
5/7

→

0/2
→

2/2

→

3/
3

→
7/8

→

3/1
0

→

0/2

source 𝑠

target 𝑡

0

1 2

3 4

5

Informally, imagine a network of water pipes.

▶ Water can flow through the pipes up to a flow capacity limit
(up to 𝑐(𝑒) liters per second, say).

▶ There’s infinite water pressing into the source 𝑠 and
infinite drain capacity at the sink / target 𝑡

▶ At all other junctions, inflow = outflow (no leakage)

⇝ How much water can flow through the network?

In this example:
▶ not more than 5+ 2+ 3 = 10 units of flow out of {0, 2} possible
⇝ not more than 10 units out of 𝑠 possible

38

Networks and Flows – Informal

→

5/5
→

5/7

→
5/7

→

0/2
→

2/2

→

3/
3

→
7/8

→

3/1
0

→

0/2

source 𝑠

target 𝑡

0

1 2

3 4

5

Informally, imagine a network of water pipes.

▶ Water can flow through the pipes up to a flow capacity limit
(up to 𝑐(𝑒) liters per second, say).

▶ There’s infinite water pressing into the source 𝑠 and
infinite drain capacity at the sink / target 𝑡

▶ At all other junctions, inflow = outflow (no leakage)

⇝ How much water can flow through the network?

In this example:
▶ not more than 5+ 2+ 3 = 10 units of flow out of {0, 2} possible
⇝ not more than 10 units out of 𝑠 possible
⇝ shown flow is maximal

Remainder of this unit: general version of above (+ efficient algorithms)

38

Networks and Flows – Definitions
▶ 𝑠-𝑡-(flow) network:

▶ simple, directed, connected graph 𝐺 = (𝑉 , 𝐸), no

for notational convenience only

antiparallel edges (𝑣𝑤 ∈ 𝐸 ⇝ 𝑤𝑣 ∉ 𝐸)
▶ edge capacities 𝑐 : 𝐸 → ℝ≥0
▶ distinguished vertices: source 𝑠 ∈ 𝑉 , target/sink 𝑡 ∈ 𝑉

𝑠

1

2

3

4

𝑡
11/16

8/13

12/12

11/14

1/4

4/9 7/7

15/20

4/4
=

𝑓 (𝑒)/𝑐(𝑒)

→ 11/16

→
8/13

→ 12/12

→ 11/14

→

1/4 →

4/9 →

7/7

→
15/20

→
4/4

𝑠

1

2

3

4

𝑡

39

Networks and Flows – Definitions
▶ 𝑠-𝑡-(flow) network:

▶ simple, directed, connected graph 𝐺 = (𝑉 , 𝐸), no

for notational convenience only

antiparallel edges (𝑣𝑤 ∈ 𝐸 ⇝ 𝑤𝑣 ∉ 𝐸)
▶ edge capacities 𝑐 : 𝐸 → ℝ≥0
▶ distinguished vertices: source 𝑠 ∈ 𝑉 , target/sink 𝑡 ∈ 𝑉

▶ (network) flow (in 𝐺): 𝑓 : 𝐸 → ℝ≥0
▶ flow 𝑓 is feasible if it satisfies notational convenience: set 𝑓 (𝑣𝑤) = 𝑐(𝑣𝑤) = 0 for 𝑣𝑤 ∉ 𝐸

▶ capacity constraints: ∀𝑣 , 𝑤 ∈ 𝑉 : 0 ≤ 𝑓 (𝑣𝑤) ≤ 𝑐(𝑣𝑤)
▶ flow conservation: ∀𝑣 ∈ 𝑉 \ {𝑠 , 𝑡} :

Í
𝑤∈𝑉 𝑓 (𝑤 , 𝑣) = Í

𝑤∈𝑉 𝑓 (𝑣 , 𝑤)

𝑠

1

2

3

4

𝑡
11/16

8/13

12/12

11/14

1/4

4/9 7/7

15/20

4/4
=

𝑓 (𝑒)/𝑐(𝑒)

→ 11/16

→
8/13

→ 12/12

→ 11/14

→

1/4 →

4/9 →

7/7

→
15/20

→
4/4

𝑠

1

2

3

4

𝑡

39

Networks and Flows – Definitions
▶ 𝑠-𝑡-(flow) network:

▶ simple, directed, connected graph 𝐺 = (𝑉 , 𝐸), no

for notational convenience only

antiparallel edges (𝑣𝑤 ∈ 𝐸 ⇝ 𝑤𝑣 ∉ 𝐸)
▶ edge capacities 𝑐 : 𝐸 → ℝ≥0
▶ distinguished vertices: source 𝑠 ∈ 𝑉 , target/sink 𝑡 ∈ 𝑉

▶ (network) flow (in 𝐺): 𝑓 : 𝐸 → ℝ≥0
▶ flow 𝑓 is feasible if it satisfies notational convenience: set 𝑓 (𝑣𝑤) = 𝑐(𝑣𝑤) = 0 for 𝑣𝑤 ∉ 𝐸

▶ capacity constraints: ∀𝑣 , 𝑤 ∈ 𝑉 : 0 ≤ 𝑓 (𝑣𝑤) ≤ 𝑐(𝑣𝑤)
▶ flow conservation: ∀𝑣 ∈ 𝑉 \ {𝑠 , 𝑡} :

Í
𝑤∈𝑉 𝑓 (𝑤 , 𝑣) = Í

𝑤∈𝑉 𝑓 (𝑣 , 𝑤)
▶ value | 𝑓 | of flow 𝑓 : | 𝑓 | = Í

𝑣∈𝑉 𝑓 (𝑠 , 𝑣) −Í
𝑣∈𝑉 𝑓 (𝑣 , 𝑠)

𝑠

1

2

3

4

𝑡
11/16

8/13

12/12

11/14

1/4

4/9 7/7

15/20

4/4
=

𝑓 (𝑒)/𝑐(𝑒)

→ 11/16

→
8/13

→ 12/12

→ 11/14

→

1/4 →

4/9 →

7/7

→
15/20

→
4/4

𝑠

1

2

3

4

𝑡

39

Max-Flow Problem

𝑠

1

2

3

4

𝑡
11/16

8/13

12/12

11/14

1/4

4/9 7/7

15/20

4/4
=

𝑓 (𝑒)/𝑐(𝑒)

→ 11/16

→
8/13

→ 12/12

→ 11/14

→

1/4 →

4/9 →

7/7

→
15/20

→
4/4

𝑠

1

2

3

4

𝑡

▶ Maximum-Flow Problem:
▶ Given: 𝑠-𝑡-flow network
▶ Goal: Find feasible flow 𝑓 ∗ with maximum | 𝑓 ∗| among all feasible flows

40

Max-Flow Problem

𝑠

1

2

3

4

𝑡
11/16

8/13

12/12

11/14

1/4

4/9 7/7

15/20

4/4
=

𝑓 (𝑒)/𝑐(𝑒)

→ 11/16

→
8/13

→ 12/12

→ 11/14

→

1/4 →

4/9 →

7/7

→
15/20

→
4/4

𝑠

1

2

3

4

𝑡

▶ Maximum-Flow Problem:
▶ Given: 𝑠-𝑡-flow network
▶ Goal: Find feasible flow 𝑓 ∗ with maximum | 𝑓 ∗| among all feasible flows

▶ ℕ vs ℝ
▶ We focus on integral capacities here ⇝

as we will see

can restrict ourselves to integral flows
▶ but: ideally want algorithms that work with arbitrary real numbers, too

40

Multiple Sources & Sinks, Antiparallel Edges
▶ Some of the restrictions can be generalized easily.

▶ We forbid loops and antiparallel edges.
▶ The presented algorithms actually work fine with both!
▶ but proofs are cleaner to write without them
▶ also: can always remove loops and (anti)parallel edges by adding a new vertex in the

middle of the edge
⇝ same maximum | 𝑓 |

41

Multiple Sources & Sinks, Antiparallel Edges
▶ Some of the restrictions can be generalized easily.

▶ We forbid loops and antiparallel edges.
▶ The presented algorithms actually work fine with both!
▶ but proofs are cleaner to write without them
▶ also: can always remove loops and (anti)parallel edges by adding a new vertex in the

middle of the edge
⇝ same maximum | 𝑓 |

▶ We only allow a single source and a single sink
▶ can add a “supersource” and “supersink” with capacity-∞ edges to all sources resp. sinks
⇝ same maximum | 𝑓 |

41

Reductions
▶ Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network

flows are reductions of other problems

42

Reductions
▶ Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network

flows are reductions of other problems

1. Disjoint Paths
▶ Given: Unweighted (di)graph 𝐺 = (𝑉 , 𝐸), vertices 𝑠 , 𝑡 ∈ 𝑉

▶ Goal: How many edge-disjoint paths are there from 𝑠 to 𝑡?

42

Reductions
▶ Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network

flows are reductions of other problems

1. Disjoint Paths
▶ Given: Unweighted (di)graph 𝐺 = (𝑉 , 𝐸), vertices 𝑠 , 𝑡 ∈ 𝑉

▶ Goal: How many edge-disjoint paths are there from 𝑠 to 𝑡?

2. Assignment Problem, Maximum Bipartite Matching
▶ Given: workers 𝑊 = {𝑤1 , . . . , 𝑤𝑘} tasks 𝑇 = {𝑡1 , . . . , 𝑡ℓ }, qualified-for relation 𝑄 ⊆ 𝑊 × 𝑇
▶ Goal: Assignment 𝑎 : 𝑊 → 𝑇 ∪ {⊥} of workers to tasks such that

▶ workers are qualified: ∀𝑤 ∈ 𝑊 : 𝑎(𝑤) ≠ ⊥ =⇒ (𝑤 , 𝑎(𝑤)) ∈ 𝑄
▶ |𝑎(𝑊)| , the number of tasks assigned, is maximized

42

Reductions
▶ Apart from directly modeling (data, traffic, etc.) flow, a key reason to study network

flows are reductions of other problems

1. Disjoint Paths
▶ Given: Unweighted (di)graph 𝐺 = (𝑉 , 𝐸), vertices 𝑠 , 𝑡 ∈ 𝑉

▶ Goal: How many edge-disjoint paths are there from 𝑠 to 𝑡?

2. Assignment Problem, Maximum Bipartite Matching
▶ Given: workers 𝑊 = {𝑤1 , . . . , 𝑤𝑘} tasks 𝑇 = {𝑡1 , . . . , 𝑡ℓ }, qualified-for relation 𝑄 ⊆ 𝑊 × 𝑇
▶ Goal: Assignment 𝑎 : 𝑊 → 𝑇 ∪ {⊥} of workers to tasks such that

▶ workers are qualified: ∀𝑤 ∈ 𝑊 : 𝑎(𝑤) ≠ ⊥ =⇒ (𝑤 , 𝑎(𝑤)) ∈ 𝑄
▶ |𝑎(𝑊)| , the number of tasks assigned, is maximized

▶ Both problems can be solved by (in both cases, 1. and 3. are very efficient)

1. constructing a specific flow network from their input data
2. computing a maximum flow in that network
3. “reading off” a solution for the orignal problem from the max flow

42

9.7 The Ford-Fulkerson Method

Push Push Push!
▶ Simple Idea: Iteratively find a path from 𝑠 to 𝑡 that we can push more flow over.

Example:

→
0/7

→
0/5

→ 0/3

→ 0/4

→

0/7 →

0/3 →

0/4

→
0/6

→
0/5

𝑠

1

2

3

4

𝑡

1. Push 3 units of flow over
𝑠 → 2 → 1 → 3 → 𝑡

Problem: Cannot undo mistakes.
Here: shouldn’t have put so
much flow on (1, 2) . . .

43

Push Push Push!
▶ Simple Idea: Iteratively find a path from 𝑠 to 𝑡 that we can push more flow over.

Example:

→
0/7

→
3/5

→ 3/3

→ 0/4

→

3/7 →

0/3 →

0/4

→
3/6

→
0/5

𝑠

1

2

3

4

𝑡

1. Push 3 units of flow over
𝑠 → 2 → 1 → 3 → 𝑡

2. Push 3 units of flow over
𝑠 → 1 → 4 → 𝑡

Problem: Cannot undo mistakes.
Here: shouldn’t have put so
much flow on (1, 2) . . .

43

Push Push Push!
▶ Simple Idea: Iteratively find a path from 𝑠 to 𝑡 that we can push more flow over.

Example:

→
3/7

→
3/5

→ 3/3

→ 0/4

→

3/7 →

3/3 →

0/4

→
3/6

→
3/5

𝑠

1

2

3

4

𝑡

1. Push 3 units of flow over
𝑠 → 2 → 1 → 3 → 𝑡

2. Push 3 units of flow over
𝑠 → 1 → 4 → 𝑡

3. Push 2 units of flow over
𝑠 → 2 → 4 → 𝑡

Problem: Cannot undo mistakes.
Here: shouldn’t have put so
much flow on (1, 2) . . .

43

Push Push Push!
▶ Simple Idea: Iteratively find a path from 𝑠 to 𝑡 that we can push more flow over.

Example:

→
3/7

→
5/5

→ 3/3

→ 2/4

→

3/7 →

3/3 →

0/4

→
3/6

→
5/5

𝑠

1

2

3

4

𝑡

1. Push 3 units of flow over
𝑠 → 2 → 1 → 3 → 𝑡

2. Push 3 units of flow over
𝑠 → 1 → 4 → 𝑡

3. Push 2 units of flow over
𝑠 → 2 → 4 → 𝑡

⇝ Every 𝑠-𝑡 path now has a saturated edge.

Problem: Cannot undo mistakes.
Here: shouldn’t have put so
much flow on (1, 2) . . .

43

Push Push Push!?
▶ Simple Idea: Iteratively find a path from 𝑠 to 𝑡 that we can push more flow over.

Example:

→
3/7

→
5/5

→ 3/3

→ 2/4

→

3/7 →

3/3 →

0/4

→
3/6

→
5/5

→
6/7

→
4/5

→ 3/3

→ 4/4

→

0/7 →

3/3 →

2/4

→
5/6

→
5/5

𝑠

1

2

3

4

𝑡

𝑠

1

2

3

4

𝑡

1. Push 3 units of flow over
𝑠 → 2 → 1 → 3 → 𝑡

2. Push 3 units of flow over
𝑠 → 1 → 4 → 𝑡

3. Push 2 units of flow over
𝑠 → 2 → 4 → 𝑡

⇝ Every 𝑠-𝑡 path now has a saturated edge.

But: resulting flow is not optimal!

Problem: Cannot undo mistakes.
Here: shouldn’t have put so
much flow on (1, 2) . . .

43

Residual Networks
▶ Goal: Allow undoing flow (without backtracking)

44

Residual Networks
▶ Goal: Allow undoing flow (without backtracking)

▶ Residual network 𝐺 𝑓 : given network 𝐺 = (𝑉 , 𝐸) and feasible flow 𝑓

▶ 𝐺 𝑓 = (𝑉 , 𝐸 𝑓) with capacities 𝑐 𝑓 (𝑣𝑤) =

𝑐(𝑣𝑤) − 𝑓 (𝑣𝑤) 𝑣𝑤 ∈ 𝐸 // add flow
𝑓 (𝑤𝑣) 𝑤𝑣 ∈ 𝐸 // revert flow
0 else𝐸 𝑓 = {𝑣𝑤 : 𝑐 𝑓 (𝑣𝑤) > 0}

→
3/7

→
5/5

→ 3/3

→ 2/4

→

3/7 →

3/3 →

0/4

→
3/6

→
5/5

𝑠

1

2

3

4

𝑡

4 3

5

3

2
2

4
3

3 4
3
3

5

𝑠

1

2

3

4

𝑡

44

Residual Networks
▶ Goal: Allow undoing flow (without backtracking)

▶ Residual network 𝐺 𝑓 : given network 𝐺 = (𝑉 , 𝐸) and feasible flow 𝑓

▶ 𝐺 𝑓 = (𝑉 , 𝐸 𝑓) with capacities 𝑐 𝑓 (𝑣𝑤) =

𝑐(𝑣𝑤) − 𝑓 (𝑣𝑤) 𝑣𝑤 ∈ 𝐸 // add flow
𝑓 (𝑤𝑣) 𝑤𝑣 ∈ 𝐸 // revert flow
0 else𝐸 𝑓 = {𝑣𝑤 : 𝑐 𝑓 (𝑣𝑤) > 0}

→
3/7

→
5/5

→ 3/3

→ 2/4

→

3/7 →

3/3 →

0/4

→
3/6

→
5/5

𝑠

1

2

3

4

𝑡

4 3

5

3

2
2

4
3

3 4
3
3

5

𝑠

1

2

3

4

𝑡

▶ residual flow 𝑓 ′: feasible flow in 𝐺 𝑓

⇝ for any 𝑓 and residual flow 𝑓 ′ in 𝐺 𝑓 , flow

(𝑓 + 𝑓 ′)(𝑣𝑤) = 𝑓 (𝑣𝑤) + 𝑓 ′(𝑣𝑤) − 𝑓 ′(𝑤𝑣)

𝑓 + 𝑓 ′ is a feasible flow in 𝐺

44

Residual Networks
▶ Goal: Allow undoing flow (without backtracking)

▶ Residual network 𝐺 𝑓 : given network 𝐺 = (𝑉 , 𝐸) and feasible flow 𝑓

▶ 𝐺 𝑓 = (𝑉 , 𝐸 𝑓) with capacities 𝑐 𝑓 (𝑣𝑤) =

𝑐(𝑣𝑤) − 𝑓 (𝑣𝑤) 𝑣𝑤 ∈ 𝐸 // add flow
𝑓 (𝑤𝑣) 𝑤𝑣 ∈ 𝐸 // revert flow
0 else𝐸 𝑓 = {𝑣𝑤 : 𝑐 𝑓 (𝑣𝑤) > 0}

→
3/7

→
5/5

→ 3/3

→ 2/4

→

3/7 →

3/3 →

0/4

→
3/6

→
5/5

𝑠

1

2

3

4

𝑡

4 3

5

3

2
2

4
3

3 4
3
3

5

𝑠

1

2

3

4

𝑡

▶ residual flow 𝑓 ′: feasible flow in 𝐺 𝑓

⇝ for any 𝑓 and residual flow 𝑓 ′ in 𝐺 𝑓 , flow

(𝑓 + 𝑓 ′)(𝑣𝑤) = 𝑓 (𝑣𝑤) + 𝑓 ′(𝑣𝑤) − 𝑓 ′(𝑤𝑣)

𝑓 + 𝑓 ′ is a feasible flow in 𝐺

▶ augmenting path 𝑝: 𝑠-𝑡-path 𝐺 𝑓 particularly simple 𝑓 ′!

44

Residual Networks
▶ Goal: Allow undoing flow (without backtracking)

▶ Residual network 𝐺 𝑓 : given network 𝐺 = (𝑉 , 𝐸) and feasible flow 𝑓

▶ 𝐺 𝑓 = (𝑉 , 𝐸 𝑓) with capacities 𝑐 𝑓 (𝑣𝑤) =

𝑐(𝑣𝑤) − 𝑓 (𝑣𝑤) 𝑣𝑤 ∈ 𝐸 // add flow
𝑓 (𝑤𝑣) 𝑤𝑣 ∈ 𝐸 // revert flow
0 else𝐸 𝑓 = {𝑣𝑤 : 𝑐 𝑓 (𝑣𝑤) > 0}

→
5/7

→
5/5

→ 3/3

→ 4/4

→

1/7 →

3/3 →

2/4

→
5/6

→
5/5

𝑠

1

2

3

4

𝑡

2 5

5

3

4
6

1

3 2
2

1
5

5

𝑠

1

2

3

4

𝑡

▶ residual flow 𝑓 ′: feasible flow in 𝐺 𝑓

⇝ for any 𝑓 and residual flow 𝑓 ′ in 𝐺 𝑓 , flow

(𝑓 + 𝑓 ′)(𝑣𝑤) = 𝑓 (𝑣𝑤) + 𝑓 ′(𝑣𝑤) − 𝑓 ′(𝑤𝑣)

𝑓 + 𝑓 ′ is a feasible flow in 𝐺

▶ augmenting path 𝑝: 𝑠-𝑡-path 𝐺 𝑓 particularly simple 𝑓 ′!

44

Cuts
▶ Goal: Certificate for maximum flows

▶ 𝑠-𝑡-cut (𝑆,𝑇): partition 𝑆 ¤∪ 𝑇 = 𝑉 , 𝑠 ∈ 𝑆,
𝑡 ∈ 𝑇

▶ net flow across cut:
𝑓 (𝑆,𝑇) =

Õ
𝑣∈𝑆

Õ
𝑤∈𝑇

�
𝑓 (𝑣𝑤) − 𝑓 (𝑤𝑣)�

▶ capacity of cut:
𝑐(𝑆,𝑇) =

Õ
𝑣∈𝑆

Õ
𝑤∈𝑇

𝑓 (𝑣𝑤)

→
5/7

→
5/5

→ 3/3

→ 4/4

→

1/7 →

3/3 →

2/4

→
5/6

→
5/5

𝑆

𝑇

𝑠

1

2

3

4

𝑡

45

Cuts
▶ Goal: Certificate for maximum flows

▶ 𝑠-𝑡-cut (𝑆,𝑇): partition 𝑆 ¤∪ 𝑇 = 𝑉 , 𝑠 ∈ 𝑆,
𝑡 ∈ 𝑇

▶ net flow across cut:
𝑓 (𝑆,𝑇) =

Õ
𝑣∈𝑆

Õ
𝑤∈𝑇

�
𝑓 (𝑣𝑤) − 𝑓 (𝑤𝑣)�

▶ capacity of cut:
𝑐(𝑆,𝑇) =

Õ
𝑣∈𝑆

Õ
𝑤∈𝑇

𝑓 (𝑣𝑤)

→
5/7

→
5/5

→ 3/3

→ 4/4

→

1/7 →

3/3 →

2/4

→
5/6

→
5/5

𝑆

𝑇

𝑠

1

2

3

4

𝑡

▶ 𝑓 (𝑆,𝑇) = 5 + 3 + 3 − 1 = 10

▶ 𝑐(𝑆,𝑇) = 5 + 3 + 3 = 11

45

Cuts
▶ Goal: Certificate for maximum flows

▶ 𝑠-𝑡-cut (𝑆,𝑇): partition 𝑆 ¤∪ 𝑇 = 𝑉 , 𝑠 ∈ 𝑆,
𝑡 ∈ 𝑇

▶ net flow across cut:
𝑓 (𝑆,𝑇) =

Õ
𝑣∈𝑆

Õ
𝑤∈𝑇

�
𝑓 (𝑣𝑤) − 𝑓 (𝑤𝑣)�

▶ capacity of cut:
𝑐(𝑆,𝑇) =

Õ
𝑣∈𝑆

Õ
𝑤∈𝑇

𝑓 (𝑣𝑤)

→
5/7

→
5/5

→ 3/3

→ 4/4

→

1/7 →

3/3 →

2/4

→
5/6

→
5/5

𝑆

𝑇

𝑠

1

2

3

4

𝑡

▶ 𝑓 (𝑆,𝑇) = 5 + 3 + 3 − 1 = 10

▶ 𝑐(𝑆,𝑇) = 5 + 3 + 3 = 11
▶ Lemma: For any cut (𝑆,𝑇), we have 𝑓 (𝑆,𝑇) = | 𝑓 | .

(flow conservation!)

45

Cuts
▶ Goal: Certificate for maximum flows

▶ 𝑠-𝑡-cut (𝑆,𝑇): partition 𝑆 ¤∪ 𝑇 = 𝑉 , 𝑠 ∈ 𝑆,
𝑡 ∈ 𝑇

▶ net flow across cut:
𝑓 (𝑆,𝑇) =

Õ
𝑣∈𝑆

Õ
𝑤∈𝑇

�
𝑓 (𝑣𝑤) − 𝑓 (𝑤𝑣)�

▶ capacity of cut:
𝑐(𝑆,𝑇) =

Õ
𝑣∈𝑆

Õ
𝑤∈𝑇

𝑓 (𝑣𝑤)

→
5/7

→
5/5

→ 3/3

→ 4/4

→

1/7 →

3/3 →

2/4

→
5/6

→
5/5

𝑆

𝑇

𝑠

1

2

3

4

𝑡

▶ 𝑓 (𝑆,𝑇) = 5 + 3 + 3 − 1 = 10

▶ 𝑐(𝑆,𝑇) = 5 + 3 + 3 = 11
▶ Lemma: For any cut (𝑆,𝑇), we have 𝑓 (𝑆,𝑇) = | 𝑓 | .

(flow conservation!)

▶ Corollary: | 𝑓 | ≤ 𝑐(𝑆,𝑇) for any 𝑠-𝑡-cut (𝑆,𝑇)

45

The Max-Flow Min-Cut Theorem
▶ Max-Flow Min-Cut Theorem:

Let 𝑓 be a feasible flow in 𝑠-𝑡-network 𝐺 = (𝑉 , 𝐸). Then the following conditions are
equivalent:

1. | 𝑓 | = 𝑐(𝑆,𝑇) for some cut (𝑆,𝑇) of 𝐺.
2. 𝑓 is a maximum flow in 𝐺

3. The residual network 𝐺 𝑓 has no augmenting path.

46

Generic Ford-Fulkerson Method
1 procedure genericFordFulkerson(𝐺 = (𝑉 , 𝐸), 𝑠, 𝑡, 𝑐):
2 // 𝐺 is a flow network with source 𝑠 ∈ 𝑉 , sink 𝑡 ∈ 𝑉 and capacities 𝑐 : 𝐸 → ℝ≥0
3 for 𝑣𝑤 ∈ 𝐸 do 𝑓 (𝑣𝑤) := 0 end for
4 while ∃ path 𝑝 from 𝑠 to 𝑡 in 𝐺 𝑓 // Freedom: Which augmenting path?
5 Δ := min{𝑐 𝑓 (𝑒) : 𝑒 ∈ 𝑝} // bottleneck capacity
6 for 𝑒 ∈ 𝑝
7 if 𝑒 ∈ 𝐸 // forward edge
8 𝑓 (𝑒) := 𝑓 (𝑒) + Δ
9 else // backward edge

10 𝑓 (𝑒) := 𝑓 (𝑒) − Δ
11 return 𝑓

▶ Returned flow is a maximum flow 𝑓 ∗ (Max-Flow Min-Cut Theorem)

▶ If 𝑐 : 𝐸 → ℕ0, also 𝑓 : 𝐸 → ℕ0: For all 𝑣 , 𝑤 ∈ 𝑉 holds:
▶ initially 𝑓 (𝑣𝑤) = 0 ∈ ℕ0
▶ 𝑐 𝑓 (𝑣𝑤) is difference of 𝑐(𝑣𝑤) ∈ ℕ0 and 𝑓 (𝑣𝑤) ∈ ℕ0
▶ Δ equal to some 𝑐 𝑓 (𝑣′𝑤′) ∈ ℕ≥1 (𝐸𝑓 contains only non-zero capacity edges!)

⇝ new flow 𝑓 (𝑣𝑤) ± Δ ∈ ℕ0

⇝ For integral capacities, always terminate after ≤ | 𝑓 ∗| iterations
47

Bad Example
▶ Unfortunately, we might also take | 𝑓 ∗| iterations!

𝑠

1

2

𝑡
0/1000

0/1000

0/
1

0/1000

0/1000

𝐺 𝐺 𝑓

𝑠

1

2

𝑡
1000

1000

1

1000

1000

▶ (2 iterations with smarter augmenting paths would have sufficed here)

48

Bad Example
▶ Unfortunately, we might also take | 𝑓 ∗| iterations!

𝑠

1

2

𝑡
0/1000

0/1000

0/
1

0/1000

0/1000

𝐺 𝐺 𝑓

𝑠

1

2

𝑡
1000

1000

1

1000

1000

▶ (2 iterations with smarter augmenting paths would have sufficed here)

48

Bad Example
▶ Unfortunately, we might also take | 𝑓 ∗| iterations!

𝑠

1

2

𝑡
1/1000

0/1000

1/
1

0/1000

1/1000

𝐺 𝐺 𝑓

𝑠

1

2

𝑡
999

1

1000

1

1000

999
1

▶ (2 iterations with smarter augmenting paths would have sufficed here)

48

Bad Example
▶ Unfortunately, we might also take | 𝑓 ∗| iterations!

𝑠

1

2

𝑡
1/1000

0/1000

1/
1

0/1000

1/1000

𝐺 𝐺 𝑓

𝑠

1

2

𝑡
999

1

1000

1

1000

999
1

▶ (2 iterations with smarter augmenting paths would have sufficed here)

48

Bad Example
▶ Unfortunately, we might also take | 𝑓 ∗| iterations!

𝑠

1

2

𝑡
1/1000

1/1000

0/
1

1/1000

1/1000

𝐺 𝐺 𝑓

𝑠

1

2

𝑡
999

1

999
1

1

999
1

999
1

▶ (2 iterations with smarter augmenting paths would have sufficed here)

48

Bad Example
▶ Unfortunately, we might also take | 𝑓 ∗| iterations!

𝑠

1

2

𝑡
1/1000

1/1000

0/
1

1/1000

1/1000

𝐺 𝐺 𝑓

𝑠

1

2

𝑡
999

1

999
1

1

999
1

999
1

▶ (2 iterations with smarter augmenting paths would have sufficed here)

48

Bad Example
▶ Unfortunately, we might also take | 𝑓 ∗| iterations!

𝑠

1

2

𝑡
2/1000

1/1000

1/
1

1/1000

2/1000

𝐺 𝐺 𝑓

𝑠

1

2

𝑡
998

2

999
1

1

999
1

998
2

▶ (2 iterations with smarter augmenting paths would have sufficed here)

48

Bad Example
▶ Unfortunately, we might also take | 𝑓 ∗| iterations!

𝑠

1

2

𝑡
2/1000

1/1000

1/
1

1/1000

2/1000

𝐺 𝐺 𝑓

𝑠

1

2

𝑡
998

2

999
1

1

999
1

998
2

▶ (2 iterations with smarter augmenting paths would have sufficed here)

48

Bad Example
▶ Unfortunately, we might also take | 𝑓 ∗| iterations!

𝑠

1

2

𝑡
2/1000

2/1000

0/
1

2/1000

2/1000

𝐺 𝐺 𝑓

𝑠

1

2

𝑡
998

2

998
2

1

998
2

998
2

▶ (2 iterations with smarter augmenting paths would have sufficed here)

48

Bad Example
▶ Unfortunately, we might also take | 𝑓 ∗| iterations!

𝑠

1

2

𝑡
2/1000

2/1000

0/
1

2/1000

2/1000

𝐺 𝐺 𝑓

𝑠

1

2

𝑡
998

2

998
2

1

998
2

998
2

▶ (2 iterations with smarter augmenting paths would have sufficed here)

48

Bad Example
▶ Unfortunately, we might also take | 𝑓 ∗| iterations!

𝑠

1

2

𝑡
3/1000

2/1000

1/
1

2/1000

3/1000

𝐺 𝐺 𝑓

𝑠

1

2

𝑡
997

3

998
2

1

998
2

997
3

▶ (2 iterations with smarter augmenting paths would have sufficed here)

48

A Very Bad Example
▶ for irrational flows, might not even terminate

▶ example network with irrational initial flow

▶ 𝑤 = 𝜑 − 1 = (√5 − 1)/2 ≈ 0.618 ⇝ 1 − 𝑤 = 𝑤2 ≈ 0.382

𝑠

1

2

3

4

𝑡

0/10

1/10

𝑤/10

0/10 0/1
1/1

𝑤/1 0/1
𝑤/10

0/10

0/10

1/10

49

A Very Bad Example
▶ for irrational flows, might not even terminate

▶ example network with irrational initial flow

▶ 𝑤 = 𝜑 − 1 = (√5 − 1)/2 ≈ 0.618 ⇝ 1 − 𝑤 = 𝑤2 ≈ 0.382

𝑠

1

2

3

4

𝑡

0/10

1/10

𝑤/10

0/10 0/1
1/1

𝑤/1 0/1
𝑤/10

0/10

0/10

1/10

49

A Very Bad Example
▶ for irrational flows, might not even terminate

▶ example network with irrational initial flow

▶ 𝑤 = 𝜑 − 1 = (√5 − 1)/2 ≈ 0.618 ⇝ 1 − 𝑤 = 𝑤2 ≈ 0.382

𝑠

1

2

3

4

𝑡

0/10

1/10

𝑤/10

𝑤/10 𝑤/1
𝑤 2/1

0/1 0/1
𝑤/10

0/10

𝑤/10

1/10

49

A Very Bad Example
▶ for irrational flows, might not even terminate

▶ example network with irrational initial flow

▶ 𝑤 = 𝜑 − 1 = (√5 − 1)/2 ≈ 0.618 ⇝ 1 − 𝑤 = 𝑤2 ≈ 0.382

𝑠

1

2

3

4

𝑡

0/10

1/10

𝑤/10

𝑤/10 𝑤/1
𝑤 2/1

0/1 0/1
𝑤/10

0/10

𝑤/10

1/10

49

A Very Bad Example
▶ for irrational flows, might not even terminate

▶ example network with irrational initial flow

▶ 𝑤 = 𝜑 − 1 = (√5 − 1)/2 ≈ 0.618 ⇝ 1 − 𝑤 = 𝑤2 ≈ 0.382

𝑠

1

2

3

4

𝑡

0/10

1/10

2𝑤/10

𝑤/10 0/1
𝑤 2/1

𝑤/1 0/1
𝑤/10

𝑤/10

𝑤/10

1/10

49

A Very Bad Example
▶ for irrational flows, might not even terminate

▶ example network with irrational initial flow

▶ 𝑤 = 𝜑 − 1 = (√5 − 1)/2 ≈ 0.618 ⇝ 1 − 𝑤 = 𝑤2 ≈ 0.382

𝑠

1

2

3

4

𝑡

0/10

1/10

2𝑤/10

𝑤/10 0/1
𝑤 2/1

𝑤/1 0/1
𝑤/10

𝑤/10

𝑤/10

1/10

49

A Very Bad Example
▶ for irrational flows, might not even terminate

▶ example network with irrational initial flow

▶ 𝑤 = 𝜑 − 1 = (√5 − 1)/2 ≈ 0.618 ⇝ 1 − 𝑤 = 𝑤2 ≈ 0.382

𝑠

1

2

3

4

𝑡

𝑤 2/10

1/10

2𝑤/10

𝑤/10 0/1
0/1

𝑤 3/1 𝑤
2 /1

𝑤/10

1/10

𝑤/10

1/10

49

A Very Bad Example
▶ for irrational flows, might not even terminate

▶ example network with irrational initial flow

▶ 𝑤 = 𝜑 − 1 = (√5 − 1)/2 ≈ 0.618 ⇝ 1 − 𝑤 = 𝑤2 ≈ 0.382

𝑠

1

2

3

4

𝑡

𝑤 2/10

1/10

2𝑤/10

𝑤/10 0/1
0/1

𝑤 3/1 𝑤
2 /1

𝑤/10

1/10

𝑤/10

1/10

49

A Very Bad Example
▶ for irrational flows, might not even terminate

▶ example network with irrational initial flow

▶ 𝑤 = 𝜑 − 1 = (√5 − 1)/2 ≈ 0.618 ⇝ 1 − 𝑤 = 𝑤2 ≈ 0.382

𝑠

1

2

3

4

𝑡

𝑤 2/10

1 + 𝑤2/10

2𝑤/10

𝑤/10 0/1
𝑤 2/1

𝑤 3/1 0/1
𝑤/10

1/10

1/10

1/10

49

A Very Bad Example
▶ for irrational flows, might not even terminate

▶ example network with irrational initial flow

▶ 𝑤 = 𝜑 − 1 = (√5 − 1)/2 ≈ 0.618 ⇝ 1 − 𝑤 = 𝑤2 ≈ 0.382

𝑠

1

2

3

4

𝑡

𝑤 2/10

1 + 𝑤2/10

2𝑤/10

𝑤/10 0/1
𝑤 2/1

𝑤 3/1 0/1
𝑤/10

1/10

1/10

1/10

▶ after 2 paths, situation in 1-2-3-4 restored (rotated), but flows multiplied by 𝑤

⇝ augmenting paths have capacities 𝑤, 𝑤, 𝑤2, 𝑤2, 𝑤3, 𝑤3 . . .

⇝ never terminate, never exceed | 𝑓 | ≥ 5
49

9.8 The Edmonds-Karp Algorithm

Edmonds-Karp
▶ It turns out, many ways to choose augmenting paths systematically work fine

▶ Edmonds & Karp: take a shortest path (in #edges)

1 procedure EdmondsKarp(𝐺 = (𝑉 , 𝐸), 𝑠, 𝑡, 𝑐):
2 // 𝐺 is a flow network with source 𝑠 ∈ 𝑉 , sink 𝑡 ∈ 𝑉 and capacities 𝑐 : 𝐸 → ℝ≥0
3 for 𝑣𝑤 ∈ 𝐸 do 𝑓 (𝑣𝑤) := 0 end for
4 while true
5 bfs(𝐺 𝑓 , {𝑠})
6 if distFrom[𝑡] == ∞ return 𝑓
7 else 𝑝 := pathTo(𝑡)
8 Δ := min{𝑐 𝑓 (𝑒) : 𝑒 ∈ 𝑝} // bottleneck capacity
9 for 𝑒 ∈ 𝑝

10 if 𝑒 ∈ 𝐸 // forward edge
11 𝑓 (𝑒) := 𝑓 (𝑒) + Δ
12 else // backward edge
13 𝑓 (𝑒) := 𝑓 (𝑒) − Δ
14 end while

50

Edmonds-Karp – Analysis
▶ Theorem: The Edmonds-Karp algorithm terminates after 𝑂(𝑛𝑚) iterations

with a maximum flow. The total running time is in 𝑂(𝑛𝑚2).

51

Edmonds-Karp – Analysis
▶ Theorem: The Edmonds-Karp algorithm terminates after 𝑂(𝑛𝑚) iterations

with a maximum flow. The total running time is in 𝑂(𝑛𝑚2).

▶ Proof Plan:
▶ every augmenting path has a critical edge 𝑣𝑤 contributing the bottleneck capacity
▶ we will show:

(1) distances of vertices from 𝑠 in 𝐺 𝑓 weakly increase over time
(2) before 𝑣𝑤 can be a critical edge again, 𝑣’s distance increases by at least 2

⇝ each edge 𝑣𝑤 is critical for at most 𝑛/2 augmenting paths (𝑣’s distance ∈ [1..𝑛 − 2])
⇝ 𝑂(𝑛𝑚) augmenting paths
▶ each iteration runs one BFS, which costs 𝑂(𝑛 + 𝑚) = 𝑂(𝑚) times since 𝐺 is connected.

51

Edmonds-Karp – Analysis
▶ Theorem: The Edmonds-Karp algorithm terminates after 𝑂(𝑛𝑚) iterations

with a maximum flow. The total running time is in 𝑂(𝑛𝑚2).

▶ Proof Plan:
▶ every augmenting path has a critical edge 𝑣𝑤 contributing the bottleneck capacity
▶ we will show:

(1) distances of vertices from 𝑠 in 𝐺 𝑓 weakly increase over time
(2) before 𝑣𝑤 can be a critical edge again, 𝑣’s distance increases by at least 2

⇝ each edge 𝑣𝑤 is critical for at most 𝑛/2 augmenting paths (𝑣’s distance ∈ [1..𝑛 − 2])
⇝ 𝑂(𝑛𝑚) augmenting paths
▶ each iteration runs one BFS, which costs 𝑂(𝑛 + 𝑚) = 𝑂(𝑚) times since 𝐺 is connected.

▶ Notation:
▶ Write 𝑓0 , 𝑓1 , . . . for values of 𝑓 during iterations of while loop
⇝ 𝐺 𝑓𝑖 residual network after 𝑖th augmentation
▶ Write 𝛿𝑖(𝑣) for shortest-path distance from 𝑠 to 𝑣 in 𝐺 𝑓𝑖

51

Edmonds-Karp – Analysis [2]
▶ EK Monotonicity Lemma: For all 𝑖 and 𝑣 ∈ 𝑉 , we have 𝛿𝑖+1(𝑣) ≥ 𝛿𝑖(𝑣).

▶ 𝑓𝑖 : flow after 𝑖th augmentation

▶ 𝛿𝑖(𝑣) distance from 𝑠 to 𝑣 in 𝐺 𝑓𝑖

52

Edmonds-Karp – Analysis [2]
▶ EK Monotonicity Lemma: For all 𝑖 and 𝑣 ∈ 𝑉 , we have 𝛿𝑖+1(𝑣) ≥ 𝛿𝑖(𝑣).

▶ 𝑓𝑖 : flow after 𝑖th augmentation

▶ 𝛿𝑖(𝑣) distance from 𝑠 to 𝑣 in 𝐺 𝑓𝑖
Proof:

▶ by induction over 𝑘, the value of 𝛿𝑖(𝑣)
▶ IB: 𝑘 = 0: only 𝑣 = 𝑠 possible; 𝛿𝑖+1(𝑠) = 0 ≥ 0 = 𝛿𝑖(𝑠) ✓
▶ IH: Assume the claim is true for all shortest paths up to length 𝑘

52

Edmonds-Karp – Analysis [2]
▶ EK Monotonicity Lemma: For all 𝑖 and 𝑣 ∈ 𝑉 , we have 𝛿𝑖+1(𝑣) ≥ 𝛿𝑖(𝑣).

▶ 𝑓𝑖 : flow after 𝑖th augmentation

▶ 𝛿𝑖(𝑣) distance from 𝑠 to 𝑣 in 𝐺 𝑓𝑖
Proof:

▶ by induction over 𝑘, the value of 𝛿𝑖(𝑣)
▶ IB: 𝑘 = 0: only 𝑣 = 𝑠 possible; 𝛿𝑖+1(𝑠) = 0 ≥ 0 = 𝛿𝑖(𝑠) ✓
▶ IH: Assume the claim is true for all shortest paths up to length 𝑘

▶ IS: Suppose 𝛿𝑖+1(𝑣) = 𝑘 + 1.
⇝ ∃ shortest path 𝑝[0..𝑘 + 1] in 𝐺 𝑓𝑖+1 with 𝑝[0] = 𝑠 and 𝑝[𝑘 + 1] = 𝑣.
⇝ For 𝑤 = 𝑝[𝑘], 𝑝[0..𝑘] is a shortest path from 𝑠 to 𝑤 ⇝ 𝑘 = 𝛿𝑖+1(𝑤) ≥

IH
𝛿𝑖(𝑤)

52

Edmonds-Karp – Analysis [2]
▶ EK Monotonicity Lemma: For all 𝑖 and 𝑣 ∈ 𝑉 , we have 𝛿𝑖+1(𝑣) ≥ 𝛿𝑖(𝑣).

▶ 𝑓𝑖 : flow after 𝑖th augmentation

▶ 𝛿𝑖(𝑣) distance from 𝑠 to 𝑣 in 𝐺 𝑓𝑖
Proof:

▶ by induction over 𝑘, the value of 𝛿𝑖(𝑣)
▶ IB: 𝑘 = 0: only 𝑣 = 𝑠 possible; 𝛿𝑖+1(𝑠) = 0 ≥ 0 = 𝛿𝑖(𝑠) ✓
▶ IH: Assume the claim is true for all shortest paths up to length 𝑘

▶ IS: Suppose 𝛿𝑖+1(𝑣) = 𝑘 + 1.
⇝ ∃ shortest path 𝑝[0..𝑘 + 1] in 𝐺 𝑓𝑖+1 with 𝑝[0] = 𝑠 and 𝑝[𝑘 + 1] = 𝑣.
⇝ For 𝑤 = 𝑝[𝑘], 𝑝[0..𝑘] is a shortest path from 𝑠 to 𝑤 ⇝ 𝑘 = 𝛿𝑖+1(𝑤) ≥

IH
𝛿𝑖(𝑤)

▶ Case 1: 𝑤𝑣 ∈ 𝐸 𝑓𝑖 ⇝ 𝛿𝑖(𝑣) ≤ 𝛿𝑖(𝑤) + 1
▶ Case 2: 𝑤𝑣 ∉ 𝐸 𝑓𝑖 ⇝ reverse edge 𝑣𝑤 in 𝑖th augmenting path, a shortest 𝑠-𝑡-path

⇝ 𝛿𝑖(𝑣) = 𝛿𝑖(𝑤) − 1 ≤ 𝛿𝑖(𝑤) + 1
▶ in both cases: 𝛿𝑖+1(𝑣) = 𝛿𝑖+1(𝑤) + 1 ≥ 𝛿𝑖(𝑤) + 1 ≥ 𝛿𝑖(𝑣)

52

Edmonds-Karp – Analysis [3]
▶ Critical Distance Lemma: When critical edge 𝑣𝑤 becomes a critical again, 𝛿(𝑣) has

increase by at least 2.

53

Edmonds-Karp – Analysis [3]
▶ Critical Distance Lemma: When critical edge 𝑣𝑤 becomes a critical again, 𝛿(𝑣) has

increase by at least 2.

Proof:

▶ Suppose 𝑣𝑤 is critical in 𝑖th iteration ⇝ lies on shortest path

⇝ 𝛿𝑖(𝑤) = 𝛿(𝑖)(𝑣) + 1

▶ before 𝑣𝑤 reappears in 𝐺 𝑓 , need to have had 𝑤𝑣 in augmenting path;
say this first happens in iteration 𝑗 > 𝑖 ⇝ 𝛿 𝑗(𝑣) = 𝛿 𝑗(𝑤) + 1

53

Edmonds-Karp – Analysis [3]
▶ Critical Distance Lemma: When critical edge 𝑣𝑤 becomes a critical again, 𝛿(𝑣) has

increase by at least 2.

Proof:

▶ Suppose 𝑣𝑤 is critical in 𝑖th iteration ⇝ lies on shortest path

⇝ 𝛿𝑖(𝑤) = 𝛿(𝑖)(𝑣) + 1

▶ before 𝑣𝑤 reappears in 𝐺 𝑓 , need to have had 𝑤𝑣 in augmenting path;
say this first happens in iteration 𝑗 > 𝑖 ⇝ 𝛿 𝑗(𝑣) = 𝛿 𝑗(𝑤) + 1

▶ by EK Monotonicity Lemma:
𝛿 𝑗(𝑣) = 𝛿 𝑗(𝑤) + 1 ≥ 𝛿𝑖(𝑤) + 1 = 𝛿𝑖(𝑣) + 2

This concludes the proof of the theorem.

53

Maximum Flow – Discussion
Edmonds-Karp is a robust choice

easy to implement (see Sedgewick Wayne for an elegant Java version!)

worst-case time 𝑂(𝑛5) for dense graphs quickly prohibitive
▶ but: worst-case results typically overly pessimistic
▶ other choices of augmenting flows possible
▶ in practice: push-relabel methods often faster

54

Maximum Flow – Discussion
Edmonds-Karp is a robust choice

easy to implement (see Sedgewick Wayne for an elegant Java version!)

worst-case time 𝑂(𝑛5) for dense graphs quickly prohibitive
▶ but: worst-case results typically overly pessimistic
▶ other choices of augmenting flows possible
▶ in practice: push-relabel methods often faster

▶ 2022 theory breakthrough: almost linear(!) 𝑂(𝑚1+𝑜(1)) time max flow algorithm
Chen, Kyng, Liu, Peng, Gutenberg & Sachdeva, FOCS 2022

54

Maximum Flow – Discussion
Edmonds-Karp is a robust choice

easy to implement (see Sedgewick Wayne for an elegant Java version!)

worst-case time 𝑂(𝑛5) for dense graphs quickly prohibitive
▶ but: worst-case results typically overly pessimistic
▶ other choices of augmenting flows possible
▶ in practice: push-relabel methods often faster

▶ 2022 theory breakthrough: almost linear(!) 𝑂(𝑚1+𝑜(1)) time max flow algorithm
Chen, Kyng, Liu, Peng, Gutenberg & Sachdeva, FOCS 2022

▶ max-flow min-cut theorem is a special case of LP duality

▶ can also solve generalization of min-cost flows
▶ each edge 𝑣𝑤 has a cost 𝑎(𝑣𝑤)
▶ cost of a flow 𝑓 :

Í
𝑎(𝑣𝑤) · 𝑓 (𝑣𝑤)

▶ demand 𝑑 at sink becomes part of constraints: | 𝑓 | ≥ 𝑑

54

