mEn

) B HER H [[]
L2 ML NOH I <
21 L = H e
T H O L =0 =
10 F LT = [
T HNHMO BT
) [L = A = O
)LD O N
IO 0 @
A H DU O [
1 NETH U
2SS OB H< 0
InoZ2mb<< W
1AM OZ2H =
) HHU] = T
J A S RO N RN
OMLBEHRD @
1l dHL 2L HO
> <C O [[[y [©

]|

21 January 2024

(o1 9}

5
o E
H &
o oD
> S
O A

Lo

Prof. Dr. Sebastian Wild

CS566 (Wintersemester 2024 /25)

Philipps-Univer:

sitat Marburg

ion 2025-01-28 13:58

versi

Learning Outcomes

Unit 12: Dynamic Programming

1. Be able to apply the DP paradigm to solve new problems.

Outline

12 Dynamic Programming

12.1
12.2
12.3
12.4
12.5
12.6
12.7

Elements of Dynamic Programming
DP & Matrix Chain Multiplication
Greedy as Special Case of DP

The Bellman-Ford Algorithm

Making Change in Pre-1971 UK
Optimal Merge Trees & Optimal BSTs
Edit Distance

12.1 Elements of Dynamic Programming

Introduction

applicable to many problems

» Dynamic Programming (DP) is a powerful algorithm design pattern
for exact solutions to optimization problems

» Some commonalities with Greedy Algorithms,
but with an element of brute force added in

DP = “careful brute force” (Erik Demaine)

> often yields polynomial time, but usually not linear time algorithms

» for many problems the only way we know to build efficient algorithms

P Naming fun: The term “dynamic programming”, due to Richard Bellman from around 1953,
does not refer to computer programming; rather to a program (= plan, schedule) changing with time.
It seems to have been at least partly marketing babble devoid of technical meaning . ..

Plan of the Unit

1. Abstract steps of DP (briefly)
2. Details on a concrete example (matrix chain multiplication)

3. More examples!

The 6 Steps of Dynamic Programming

1.
2

Define subproblems (and relate to original problem)

Guess (part of solution) ~» local brute force

Set up DP recurrence (for quality of solution)

Recursive implementation with Memoization

Bottom-up table filling (topological sort of subproblem dependency graph)

Backtracing to reconstruct optimal solution

Steps 1-3 require insight / creativity / intuition;
Steps 4-6 are mostly automatic / same each time

~+ Correctness proof usually at level of DP recurrence

[ﬁ] running time too! worst case time = #subproblems - time to find single best guess

When does DP (not) help?

» No Silver Bullet
DP is the most widely applicable design technique, but can’t always be applied

1. Vitally important for DP to be correct:
Bellman'’s Optimality Criterion

For a correctly guessed fixed part of the solution,
any optimal solution to the corresponding subproblems
must yield an optimal solution to the overall problem (once combined).

When does DP (not) help?

>

No Silver Bullet
DP is the most widely applicable design technique, but can’t always be applied

Vitally important for DP to be correct:
Bellman'’s Optimality Criterion

For a correctly guessed fixed part of the solution,
any optimal solution to the corresponding subproblems
must yield an optimal solution to the overall problem (once combined).

at most polynomial in 1

Also, the total number of different subproblems should be “small”
(DP potentially still works correctly otherwise, but won't be efficient.)

12.2 DP & Matrix Chain Multiplication

The Matrix-Chain Multiplication Problem

Consider the following exemplary problem
» We have a product Mg - My - -- - - M,,—1 of n matrices to compute
> Since (matrix) multiplication is associative, it can be evaluated in different orders.

» For non-square matrices of different sizes, different order can change costs dramatically
> Assume elementary matrix multiplication algorithm:
~» Multiplying a X b-matrix with b X ¢ matrix costs a - b - ¢ integer multiplications
Y &
» Given: Row and column counts ¢[0..1) and «[0..n) with r[i + 1] = c[i] for i € [0..n — 1)
(corresponding to matrices My, . .., M, with M; € Rlixclil)

» Goal: parenthesization of the product chain with minimal cost

(Moo b)) (Mo i)

P
VAN \\

o, Moy o M, ¢

really a binary tree with 7 leaves!

Matrix-Chain Multiplication — Example

.M.:B axb

10 x 80 80 50 50 2 10

i)
"

?\

Matrix-Chain Multiplication — Example

axb bxc axc

costa-b-c

. | |
My My Mp M3
10 x 80 80 50 50x2 2x10
Parenthesization Cost (integer multiplications)

My - (M1 - (M3 - M3))
Mo - (M - Mp) - M3)
(Mg - My) - (M3 - M3)
My - (M; - My)) - M3
(Mo - Mq) - Mp) - M3

1000 + 40000 + 8000
8000 + 1600 + 8000
40000 + 1000 + 5000
8000 + 1600 + 200
40000 + 1000 + 200

49000
17 600
46 000

9800
41200

first or last operation

v
Greedy fails both ways!

Matrix-Chain Multiplication — How about Brute Force?

If Greedy doesn’t give optimal parenthesization, maybe just try all?

» parenthesizations for n matrices = binary trees with 1 leaves (evalution trees)
= binary trees with n — 1 (internal) nodes

» How many such trees are there?

Matrix-Chain Multiplication — How about Brute Force?

If Greedy doesn’t give optimal parenthesization, maybe just try all?

» parenthesizations for n matrices

» How many such trees are there?

> Let'swritem =n —1;

> Cp=1,C1=1,Cr=2,C3=5

Y P A
A
C R P
3 A
EN
>
2
e
7N

= binary trees with 1 leaves (evalution trees)
binary trees with n — 1 (internal) nodes

v

Matrix-Chain Multiplication — How about Brute Force?

If Greedy doesn’t give optimal parenthesization, maybe just try all?

» parenthesizations for n matrices = binary trees with 1 leaves (evalution trees)
binary trees with n — 1 (internal) nodes

» How many such trees are there? <
mz

AN

> Let'swritem =n —1; =
A "
>C0:],C1:1,C2:2,C3:5 Q
m
> Cp = Zcrq - Cm—r (m>1)
r=1 WMot = wvia-

C

-er o€ rbeé O € W(-W./ < va—

Matrix-Chain Multiplication — How about Brute Force?

If Greedy doesn’t give optimal parenthesization, maybe just try all?

» parenthesizations for n matrices = binary trees with 1 leaves (evalution trees)
binary trees with n — 1 (internal) nodes

» How many such trees are there?

> Let'swritem =n —1;
> Cp=1,C1=1,Cr=2,C3=5

m

> Cp = Zcrfl “Cm—r (m=>1)
r=1

generating functions / combinatorics / guess (OEIS!) & check . ..

1 (2n 1 4"
> 1 = —_— ~ —
Can show Cj, n+1(n) Y
~~ exponentially many trees (almost 4") Cpo = 6564120420, Csp = 3814986502092 304

~+ A brute-force approach is utterly hopeless

~+ Dynamic programming to the rescue!

Matrix-Chain Multiplication — Step 1: Subproblems

» Key ingredient for DP: Problem allows for recursive formulation 1. Subproblems
Need to decide: 2. Guess!
1. What are the subproblems to consider? 3. DP Recurrence
2. How can the original problem be expressed as subproblem(s)? 4. Mem01.za.t10n
5. Table Filling
6. Backtrace

Matrix-Chain Multiplication — Step 1: Subproblems

» Key ingredient for DP: Problem allows for recursive formulation 1. Subproblems
Need to decide: 2. Guess!
1. What are the subproblems to consider? 3. DP Recurrence
2. How can the original problem be expressed as subproblem(s)? 4. Mem01.za.t10n
5. Table Filling
> Often requires to solve a more general version of the problem 6. Backtrace

Matrix-Chain Multiplication — Step 1: Subproblems

» Key ingredient for DP: Problem allows for recursive formulation 1. Subproblems
Need to decide: 2. Guess!
1. What are the subproblems to consider? 3. DP Recurrence
2. How can the original problem be expressed as subproblem(s)? 4. Mem01.za.t10n
5. Table Filling
> Often requires to solve a more general version of the problem 6. Backtrace

Here:

1. Subproblems = Ranges of matrices [i..j) 0<i<j<mn
i.e., optimal parenthesization for each range M;, My1, ..., Mj1

Matrix-Chain Multiplication — Step 1: Subproblems

» Key ingredient for DP: Problem allows for recursive formulation 1. Subproblems
Need to decide: 2. Guess!
1. What are the subproblems to consider? 3. DP Recurrence
2. How can the original problem be expressed as subproblem(s)? 4. Mem01.za.t10n
5. Table Filling
> Often requires to solve a more general version of the problem 6. Backtrace

Here:

1. Subproblems = Ranges of matrices [i..j) 0<i<j<mn
i.e., optimal parenthesization for each range M;, Miy1, ..., Mj1

2. Original problem = range [0..n)

Matrix-Chain Multiplication — Step 1: Subproblems

» Key ingredient for DP: Problem allows for recursive formulation 1. Subproblems
Need to decide: 2. Guess!
1. What are the subproblems to consider? 3. DP Recurrence
2. How can the original problem be expressed as subproblem(s)? 4. Mem01.za.t10n
5. Table Filling
> Often requires to solve a more general version of the problem 6. Backtrace

Here:

1. Subproblems = Ranges of matrices [i..j) 0<i<j<mn
i.e., optimal parenthesization for each range M;, My1, ..., Mj1

2. Original problem = range [0..n)

» Intuition:

» Any subtree in binary multiplication tree covers some range [i..j)
(matrix multiplication is not commutative ~» left-right order has to stay)

> left and right factors of a multiplication don’t “see/influence” each other

Matrix-Chain Multiplication — Step 2: Guess

» Usually, any subproblem can be split into smaller subproblems
in several ways

» Which way to decompose gives best solution not known a priori

~» What do we have to correctly guess to solve the problem?

S U R WN R

. Subproblems
. Guess!

DP Recurrence
Memoization

. Table Filling
. Backtrace

10

Matrix-Chain Multiplication — Step 2: Guess

» Usually, any subproblem can be split into smaller subproblems 1. Subproblems
in several ways 2. Guess!
. 3. DP Recurrence
» Which way to decompose gives best solution not known a priori L
4. Memoization
~» What do we have to correctly guess to solve the problem? 5. Table Filling
6. Backtrace

» Here: Guess last multiplication / root of binary tree

~ index k € [i +1..) so that [i..j) computed with last multiplication
(HE o Mk—l) . (Mk M]._l)

~+ optimal parenthesization of M;, ..., My_1 and My, ..., M;_1 computed recursively
(corresponds to subproblems [i..k) and [k..}))

ko, 200 &

Matrix-Chain Multiplication + Step 3: IDP Recurrence

» With subproblems and guessed part fixed,
we try to express total value/cost of solution recursively
e

~ We ignore the actual solution and just compute its cost!

> Often good to prove correctness at level of recurrence

S G R wN N

Subproblems
Guess!

DP Recurrence
Memoization

. Table Filling
. Backtrace

11

Matrix-Chain Multiplication — Step 3: DP Recurrence

» With subproblems and guessed part fixed, 1. Subproblems
we try to express total value/cost of solution recursively 2. Guess!
)) ; ; . DP R

~ We ignore the actual solution and just compute its cost! 3 ecurrence
4. Memoization

> Often good to prove correctness at level of recurrence 5. Table Filling
6. Backtrace

%LP/Q%‘A le,. b)
» Here: Recurrence for m(i, j) = total number of integer multiplications
used in best parenthesization of [i..j)
~ Set up recurrence, including any base cases.
0 recursive cost cost of last multiplication o lf] —-i<1

mii,) = § S A |
mm{ m(i, k) +m(k,j) + r[i] - r[k] - c[j — 1] :k€[1+1..])} otherwise

best k chosen by local brute force

11

Matrix-Chain Multiplication — Correctness

Claim: Let m(i, j) for 0 < i < j < n be defined by the recurrence

o ifj—i<1
m(i,j) = min{m(i, k) + m(k,j) + r[i]-r[k] - c[j—1] : k€ [i+1..j)} otherwise

Then m(i,j) = #integer multiplications in best parenthesization of M; - - - M;_1.

Proof:

12

Matrix-Chain Multiplication — Correctness
Claim: Let m(i, j) for 0 < i < j < n be defined by the recurrence
. 0 ifj—i<1
m(i,j) = o N . : , .
rmn{m(z, k)y+m(k,j)+r[i]-r[k] -c[j-1] : ke[i+1 ..])} otherwise
Then m(i,j) = #integer multiplications in best parenthesization of M; - - - M;_1.
Proof: By induction over j — i

» IB: When j —i < 1 we have an empty product (j = i) or a single matrix (j = i + 1)
In both cases, no multiplications are needed and m(7, j) = 0. /

12

Matrix-Chain Multiplication — Correctness

Claim: Let m(i, j) for 0 < i < j < n be defined by the recurrence
. 0 ifj—i<1
m(i,j) = o N : , . .
rmn{m(z, k)y+m(k,j)+r[i]-r[k] -c[j-1] : ke[i+1 ..])} otherwise
Then m(i,j) = #integer multiplications in best parenthesization of M; - - - M;_1.
Proof: By induction over j — i

» IB: When j —i < 1 we have an empty product (j = i) or a single matrix (j = i + 1)
In both cases, no multiplications are needed and m(7, j) = 0.

» IS: Given j — i > 2 matrices and an optimal evalution tree T for them.

> T’s root must be a last product of left and right subterms (M; - - - My_1) - (M - -- Mj—1) for
some i < k < j, with cost r[i]r[k]c[j —1].

12

Matrix-Chain Multiplication — Correctness

Claim: Let m(i, j) for 0 < i < j < n be defined by the recurrence

. ifj—i<1
m(i,j) = : . . : : . : .
rmn{m(z, k)y+m(k,j)+r[i]-r[k] -c[j-1] : ke[i+1..])} otherwise

Then m(i,j) = #integer multiplications in best parenthesization of M; - - - M;_1.

Proof: By induction over j — i
» IB: When j —i < 1 we have an empty product (j = i) or a single matrix (j = i + 1)
In both cases, no multiplications are needed and m(7, j) = 0. Te
» IS: Given j — i > 2 matrices and an optimal evalution tree T for them.

> T’s root must be a last product of left and right subterms (M; - - - My_1) - (M - -- Mj—1) for
some i < k < j, with cost r[i]r[k]c[j —1].

» Moreover, left and right subtree Ty and T; of the root must be optimal evaluation trees for
subproblems [i..k) and [k..j); (otherwise can improve T

12

Matrix-Chain Multiplication — Correctness
Claim: Let m(i, j) for 0 < i < j < n be defined by the recurrence
. ifj—i<1
m(i,j) = : . N ,) , .
rmn{m(z, k)y+m(k,j)+r[i]-r[k] -c[j-1] : ke[i+1..])} otherwise

Then m(i, j) = #integer multiplications in best parenthesization of M; - - - M; 1.

Proof: By induction over j — i
» IB: When j —i < 1 we have an empty product (j = i) or a single matrix (j = i + 1)
In both cases, no multiplications are needed and m(7, j) = 0.
» IS: Given j — i > 2 matrices and an optimal evalution tree T for them.

> T’s root must be a last product of left and right subterms (M; - - - My_1) - (M - -- Mj—1) for
some i < k < j, with cost r[i]r[k]c[j —1].

» Moreover, left and right subtree Ty and T; of the root must be optimal evaluation trees for
subproblems [i..k) and [k..j); (otherwise can improve T

~» By IH, the cost of T; and T; are given by m (i, k) and m(k, j)

3

~ m(i,j) = costof T

12

m(lr]) =

ifj—i<1
min{m(i, k) + m(k,j) + r[i] - r[k] - c[j 1] : ke [i+1..j)} otherwise

\N\(O«L'\

k=3
e
NG /
w (1) wn (02) (g (2 4) w (6.4 w(34)
k’/ \ewd ’L=(

7\

7
DY (2,4 @@D

/\

w8 w(3.4)

Matrix-Chain Multiplication — Step 4: Memoization

»> Write recursive function to compute recurrence
» But memoize all results! (symbol table: subproblem — optimal cost)

~- First action of function: check if subproblem known

» If so, return cached optimal cost

» Otherwise, compute optimal cost and remember it!

S U R WN R

. Subproblems
. Guess!

DP Recurrence
Memoization

. Table Filling
. Backtrace

13

Matrix-Chain Multiplication — Step 4: Memoization

»> Write recursive function to compute recurrence
> But memoize all results!

~- First action of function: check if subproblem known

» If so, return cached optimal cost

» Otherwise, compute optimal cost and remember it!

!‘M’LMM ve coerrence
f

(symbol table: subproblem — optimal cost)

1
2
3
4
5]
6
7
8
9

procedure totalMults(r[i..j), c[i..j)):
ifj-i<1

else

return 0 m(i,j) =

best := +o0
fork :=i+1,...,j-1
my = gaehedTotalMults(r[z k), cli..
my = cgeheﬂTotalMults(r[k), clk.]))
m = my + my +r[i] - r[k] - c[j - 1]
best := min{best, m}
end for
return best

. Subproblems
. Guess!

DP Recurrence
Memoization
. Table Filling

. Backtrace

S U R WN R

0 ifj-i<1
min{m(i,k) +m(k,j)+r[i]-r[k]-c[j-1] :ke[i+1 ,.j)} otherwise

13 procedure cachedTotalMults(r[i..f), c[i..f)):
14 //m|0..n)[0..n) initialized to NULL at start
15 if m[i][j] == NULL

16 m[i][j] := totalMults(r[i..j), c[i..]))
17 return m(i, j]

13

Matrix-Chain Multiplication — Example Memoization

—- =

My M M, Ms
10 x 80 80 x 50 50x2 2x10

n=4
r[0..n) = [10, 80, 50, 2]
¢[0..n) = [80,50,2,10]

l. J 0 1 2 8 4
0 0 0
m[i][j] 1 — 0 0
2 — — 0 0
3 — — — 0 0
4 — — — — 0

Matrix-Chain Multiplication — Example Memoization

b [}
- . N - = m(0.2) ~ 106050 =40 PETREN
(600 i
w (Ori) = v izo-?o.z ¢ wa (13 (S EARR((O‘zi
Mo My My M /\, & "so"c IS ’<u N
L_/%\m/“ 2y +</au(aa(£\ (0(47 le=13
n=4 RO (Leeaoek (0N - (
o e . - (L roeabald 5.0
r[0..n) = [10, 80, 50, 2] le=r) X)
0..1) = [80,50, 2,10 Ms
M) = | | (teoccbor (00 {tractog 3)
. " \
] 0 2 2 /{'{a 4 ((.2) (2\-?)
! [§§
M
0 0 40000 | (96005 [C9800H|" ¢
m[i][}] 1 — 0 8000 9600 _
2 - 0 0 1000 - ((MJ'(MMMW
3 — — = | 0 ()
4 — — — \Q\

14

Matrix-Chain Multiplication — Runtime Analyses

1
2
]
4
]
6
7
8
9

procedure totalMults(r[i..j), c[i..])):
ifj—i<1
return 0
else
best := +o0
fork :=i+1,..., j—1
m; := cachedTotalMults(r[i..k), c[i..k))
m; := cachedTotalMults(r[k..j), c[k..j))
m = my + my +r[i] - r[k]-c[j —1]
best := min{best, m}
end for
return best

13 procedure cachedTotalMults(r[i..j), c[i..j)):

14
15
16
17

//m|0..n)[0..n) initialized to NULL at start
if m[i][j] == NULL

m[i][j] := totalMults(r[i..j), c[i..f))
return (i, j]

O

~ total running time /) (1>)

» With memoization, compute each
subproblem at most once

» nonrecursive cost (totalMults):
O(j —i) = O(n)

» Number of subproblems [i..j) for
0<i<j<n
n n

> 1= 35 e

0<i<j<n i=0 j=i

15

Matrix-Chain Multiplication — Step 5: Table Filling

> Recurrence induces a DAG on subproblems (who calls whom) 1. Subproblems

» Memoized recurrence traverses this DAG (DFS!) 2. Guess!

» We can slightly improve performance by systematically 3. DP Recurrence

computing subproblems following a fixed topological order 4. Memoization
m (L) < ° 5. Table Filling
e 6. Backtrace
wa (1, &)
7 .

o (D4 (20

)

v (6, 1)

Matrix-Chain Multiplication — Step 5: Table Filling

» Recurrence induces a DAG on subproblems (who calls whom)

» Memoized recurrence traverses this DAG (DFS!)

» We can slightly improve performance by systematically
computing subproblems following a fixed topological order

> Topological order here: by increasing length ¢ = j — i, then by i

S U R WN R

. Subproblems
. Guess!

DP Recurrence
Memoization

. Table Filling
. Backtrace

w0 > w(ld) > w (03 5 (L) > wlle2) > wldi2) 5 .

16

Matrix-Chain Multiplication — Step 5: Table Filling

» Recurrence induces a DAG on subproblems (who calls whom) 1. Subproblems
» Memoized recurrence traverses this DAG (DFS!) 2. Guess!
» We can slightly improve performance by systematically 3. DP Recurrence
computing subproblems following a fixed topological order 4. Memoization
5. Table Filling
. . . . , 6. Backtrace
> Topological order here: by increasing length ¢ = j — i, then by i

1
2
3
4
5
6
7
8
9

10

procedure totalMultsBottomUp(r[0..1), c[0..1)):
m[0..n)[0..n) := 0 // initialize to 0 w LGN < W(é()‘ﬁ
for?{=2,3,..., n // iterate over subproblems . . .
fori=0,1...,n—"{//... intopological order
Ji=i e
millj] = +oo
fork :=i+1,..., j—1
g == mlil[k]+ m{k][j] + i) - rlk] - c[j ~ 1]
ml[i][j] := min{nz[i][j],q}

return m[0..1)[0..1n)

16

Matrix-Chain Multiplication — Step 5: Table Filling

» Recurrence induces a DAG on subproblems (who calls whom)

> Topological order here: by increasing length ¢ = j — i, then by i

» Memoized recurrence traverses this DAG (DFS!)

» We can slightly improve performance by systematically

computing subproblems following a fixed topological order

1
2
3
4
5
6
7
8
9

10

procedure totalMultsBottomUp(r[0..1), c[0..1)):
m[0..n)[0..n) := 0 // initialize to 0
for{ =2,3,...,n //iterate over subproblems . ..
fori=0,1...,n—"{//... intopological order
Ji=i e
millj] = +oo
fork :=i+1,...,j-1
g == mlil[k]+ m{k][j] + i) - rlk] - c[j ~ 1]
ml[i][j] := min{nz[i][j],q}

return m[0..1)[0..1n)

S Sk =

Subproblems
Guess!

DP Recurrence
Memoization
Table Filling
Backtrace

> Same ©-class as memoized

recursive function

» In practice usually
substantially faster

> lower overhead
» predictable memory

accesses

16

Matrix-Chain Multiplication — Step 6: Backtracing

> So far, only determine the cost of an optimal solution
> But we also want the solution itself

» By retracing our steps, we can determine/construct one!

» Here: output a parenthesized term recursively

S U R WN R

. Subproblems
. Guess!

DP Recurrence
Memoization

. Table Filling
. Backtrace

17

Matrix-Chain Multiplication — Step 6: Backtracing

> So far, only determine the cost of an optimal solution
1. Subproblems
» But we also want the solution itself 2. Guess!
» By retracing our steps, we can determine/construct one! 3. DP Recurrence
4. Memoization
» Here: output a parenthesized term recursively 5. Table Filling
6. Backtrace
procedure matrixChainMult(r[0..n), c[0..1)):
m[0..n)[0..n) := totalMultsBottomUp(r[0..1), c[0..1))
return traceback([0..12)) » follow recurrence a second time

1
2
B
4
5
6
7
8
9

procedure traceback([i..j)):
ifj—i==1
return M;
else
fork =i+1,...,j-1
q = mli][k] + m[k][j] + r[i] - r[k] - c[j = 1]
i mlil[j] == q
return (traceback([i..k))) - (traceback([k..j)))
end for
end if

17

Matrix-Chain Multiplication — Step 6: Backtracing

> So far, only determine the cost of an optimal solution

» By retracing our steps, we can determine/construct one!

» But we also want the solution itself

» Here: output a parenthesized term recursively

1
2
B
4
5
6
7
8
9

procedure matrixChainMult(r[0..n), c[0..1)):
m[0..n)[0..n) := totalMultsBottomUp(r[0..1), c[0..1))
return traceback([0..17))

procedure traceback([i..j)):

ifj—i==1

return M;

else

fork =i+1,...,j-1
q := m[i][k] + m[k][j] + r[i] - r[k] - c[j = 1]
if m[i][j]==q

end for
end if

return (traceback([i..k))) - (traceback([k..j)))

S U R WN R

. Subproblems
. Guess!

DP Recurrence
Memoization

. Table Filling
. Backtrace

» follow recurrence a second time

» always have for running time:

backtracing = O(computing M)

computing optimal cost and
computing optimal solution have

same complexity

» speedup possible by

remembering correct guess k for

each subproblem

17

Summary: The 6 Steps of Dynamic Programming

1. Subproblems
1. Define subproblems and how original problem is solved o

3. DP Recurrence
2. What part of solution to guess? 4. Memoization

5. Table Filling
3. Set up DP recurrence for quality/cost of solution 6. Backtrace

~+ Prove correctness here: induction over subproblems following recurrence

~+ Analyze running time complexity here: #subproblems - non-recursive time

=
— (Basically) cookie-cutter approach from here on —

4. Recursive implementation with Memoization: mutually recursive functions with cache
or

5. Bottom-up table filling: define topological order of subproblem dependency graph

6. Backtracing to reconstruct optimal solution: Recursively retrace cost recurrence

12.3 Greedy as Special Case of DP

Dynamic Greedy

» Every Greedy Algorithm can also be seen as a DP algorithm without guessing

~+ For new problem:s, it can help to first follow the DP roadmap and
then check if we can select the “correct” guess without local brute force

19

Dynamic Greedy

» Every Greedy Algorithm can also be seen as a DP algorithm without guessing

~+ For new problem:s, it can help to first follow the DP roadmap and
then check if we can select the “correct” guess without local brute force

» If so, we then recurse on a single branch of subproblems

~ Greedy Algorithm doesn’t need memoization or bottom-up table filling,
but can do direct recursion instead

19

Recall Unit 11

The Activity selection problem

> Activity Selection: scheduling for single machine, jobs with fixed start and end times
pick a subset of jobs without conflicts
Formally:

> Given: Activities A = {a, ..., a,_1}, each with a start time s; and finish time f;
(0<s; < fi <o)

v

Goal: Subset C [0..n) of tasks such thati,j e [Ai#] = [s;, fi) N [Sj,fj) =0
and |I| is maximal among all such subsets

\{

We further assume that jobs are sorted by finish time, i.e., fy < fi < -+ < f,;, 4
(if not, easy to sort them in O(n log 1) time)

—21— -a7— 09—
= —a— Faed 410
——r—%T—-"

31

20

DP Algorithm for Activity Selection

1. Subproblems: A;;={a;€ A:s; > fi A fo < s}
(after a; finishes and before a; begins)
Original problem: A_;, with dummy tasks f_1 = —c0, 5, = +00

L/Qe—*\

Q. 0 Can vz ap . Qy

e of cjeT

SR N R

. Subproblems
. Guess!

DP Recurrence

. Memoization
. Table Filling
. Backtrace

21

DP Algorithm for Activity Selection

1. Subproblems: A;;={a;€ A:s; > fi A fo < s}
(after a; finishes and before a; begins)
Original problem: A_;, with dummy tasks f_1 = —c0, 5, = +00

2. Guess: Task k € I

SR N R

. Subproblems
. Guess!

DP Recurrence

. Memoization
. Table Filling
. Backtrace

21

DP Algorithm for Activity Selection

. Subproblems

1
2. Guess!
1. Subproblems: A;;={aj€ A:s;> fi A fr < s;} 3. DP Recurrence
(after a; finishes and before a; begins) 4. Memoization
. . o 5. Table Filling
Original problem: A_;, with dummy tasks f_1 = —c0, 5, = +00 6. Backtrace

2. Guess: Task k € I

3. DP Recurrence: Denote c(i, j) = [I"(A; ;)| = maximum #independent tasks in A; ;

Q) 0, if A,‘,]' =0;
~ C 1, =
J max{c(i, k) +c(k,j)+1:ar € A;;j} otherwise.

4.-6. Omitted (could be done following the standard scheme)

L

.~
—
-~

21

DP Algorithm for Activity Selection

. Subproblems

1
2. Guess!
1. Subproblems: A;;={aj€ A:s;> fi A fr < s;} 3. DP Recurrence
(after a; finishes and before a; begins) 4. Memoization
. . o 5. Table Filling
Original problem: A_;, with dummy tasks f_1 = —c0, 5, = +00 6. Backtrace

2. Guess: Task k € I

3. DP Recurrence: Denote c(i, j) = [I"(A; ;)| = maximum #independent tasks in A; ;

Q) 0, if A,‘,]' =0;
~ C 1, =
J max{c(i, k) +c(k,j)+1:ar € A;;j} otherwise.

4.-6. Omitted (could be done following the standard scheme)
» Problem-specific insight from Unit 11~ Can always use k = min{k : a; € A;;}
(earliest finish time)

No guess needed!

21

12.4 The Bellman-Ford Algorithm

Recall Shortest Paths

» Single Source Shortest Path Problem (SSSPP)

> Given: directed, edge-weighted, simple graph G = (V, E, c)
with edge costs ¢ : E — R, a start vertex s € V
» Goal: a data structure that reports for every v € V:
0G(s,v): the shortest-path distance from s to v
spath(v): a shortest path from s to v (if it exists)

> Og(s,v) = [inf ({+00} U {c(w) : w an s-v-walk in G})]

> Write 6 instead of 6 when graph clear from context

22

Recall Shortest Paths

» Single Source Shortest Path Problem (SSSPP)

> Given: directed, edge-weighted, simple graph G = (V, E, c)
with edge costs ¢ : E — R, a start vertex s € V
» Goal: a data structure that reports for every v € V:
0G(s,v): the shortest-path distance from s to v
spath(v): a shortest path from s to v (if it exists)

» 6¢(s,v) = [inf ({+00} U {c(w) : w an s-v-walk in G})]

> Write 6 instead of 6 when graph clear from context

> Here: Assume negative-weight edges are present

» but for now: assume there is no negative cycle

~ 0(s,v) > —oo and can restrict to shortest paths (not walks)
ir «

% CAcL (")LS

(otherwise Dijkstra suffices)

22

Shortest Paths as DP — Last Edge Decomposition

» Idea: Every nontrivial shortest path has a last edge. We don’t know which; so guess!

o >~ 9@

23

Shortest Paths as DP — Last Edge Decomposition

» Idea: Every nontrivial shortest path has a last edge. We don’t know which; so guess!
~ Subproblems: for w € V, compute 6(s, w).

~» Recurrence: 6(s, w) = min{é(s,v) + c(vw) :vw € E} Slss) = O

23

Clicker Question

4 What is the problem with basing a DP algorithm on:

Subproblems: for w € V, compute 6(s, w).
Recurrence: 6(s, w) = min{é(s,v) + c(ow) : vw € E}

>

Bellman’s Optimality Criterion is not satisfied.

Does not yield to an efficient algorithm: too many
subproblems.

Does not yield to an efficient algorithm: non-recursive cost
too high.

Subproblem dependency graph is cyclic.

Subproblem dependency graph is not connected.

EE6E @ @6

Does not always compute correct distances.

G |~ sli.do/cs566

Clicker Question

4 What is the problem with basing a DP algorithm on:

Subproblems: for w € V, compute 6(s, w).
Recurrence: 6(s, w) = min{é(s,v) + c(ow) : vw € E}

B]] s Optimalit Criterions ohied

subpreblems-

0o toohinh:
@ Subproblem dependency graph is cyclic. \/

D ‘—» sli.do/cs566

Shortest Paths as DP — Last Edge Decomposition

» Idea: Every nontrivial shortest path has a last edge. We don’t know which; so guess!

~ Subproblems: for w € V, compute 6(s, w).
~+ Recurrence: 0(s,w) = min{é(s, v) + c(vw) : vw € E}

subproblem dependency graph is isomorphic to GT! ~- doesn’t work in general

~» Yields usable (terminating!) algorithm iff G is a DAG.

24

Shortest Paths as DP — Last Edge Decomposition

0000

» Idea: Every nontrivial shortest path has a last edge. We don’t know which; so guess!

~ Subproblems: for w € V, compute 6(s, w).
~+ Recurrence: 0(s,w) = min{é(s, v) + c(vw) : vw € E}

subproblem dependency graph is isomorphic to GT! ~- doesn’t work in general

~» Yields usable (terminating!) algorithm iff G is a DAG.

To break the cycles, let’s turn them into a helix!

» Need to build “layers” in the subproblem dependency graph,
so that edges can’t go back up.

24

Shortest Paths as DP — Last Edge Decomposition

0000

» Idea: Every nontrivial shortest path has a last edge. We don’t know which; so guess!

~ Subproblems: for w € V, compute 6(s, w).
~+ Recurrence: 0(s,w) = min{é(s, v) + c(vw) : vw € E}

subproblem dependency graph is isomorphic to GT! ~- doesn’t work in general

~» Yields usable (terminating!) algorithm iff G is a DAG.

To break the cycles, let’s turn them into a helix!

» Need to build “layers” in the subproblem dependency graph,
so that edges can’t go back up.

» Subproblems: (w,!)forw €V, { € [0..n), compute 6<¢(s, w)
where 0<(s, v) = min({+o0} U {c(w) : w an s-v-walk with < ¢ edges})
» Original problems: (=17 -1 (without negative cycles, paths suffice)

24

Shortest Paths as DP — Last Edge Decomposition

» Idea: Every nontrivial shortest path has a last edge. We don’t know which; so guess!

~ Subproblems: for w € V, compute 6(s, w).
~» Recurrence: 6(s, w) = min{é(s, v) + c(vw) : vw € E}

subproblem dependency graph is isomorphic to GT! ~- doesn’t work in general

~» Yields usable (terminating!) algorithm iff G is a DAG.

To break the cycles, let’s turn them into a helix!

0000

» Need to build “layers” in the subproblem dependency graph,
so that edges can’t go back up.

» Subproblems: (w,!)forw €V, { € [0..n), compute 6<¢(s, w)

where 0<(s, v) = min({+o0} U {c(w) : w an s-v-walk with < £ edges})

» Original problems: (=17 -1 (without negative cycles, paths suffice)
0o iff=0ands #w
» Recurrence: 0<y(s,w) =10 iff=0ands =w

min{ég,l(s,v) + c(vw) :vw € E} otherwise

24

Shortest Paths as DP — Length Layers

/=0
2-41
J~= 2

25

Hold On — What about negative cycles?

» The recurrence for 6<y seems to

. : . if { =0and s #w
work fine with negative edges .)

O<i(s,w) =40 if ¢ =0ands =w

But G could contain a min{ég,1(s, v) + c(vw) : vw € E} otherwise

negative-weight cycle C . ..

ll Isn't that a contradiction to the non-existence of shortest paths?

26

Hold On — What about negative cycles?

» The recurrence for 6<y seems to

. g] if { =0and s # w
work fine with negative edges .) e

O<i(s,w) =40 if ¢ =0ands =w

But G could contain a - min{ég,1(s, v) + c(vw) : vw € E} otherwise

negative-weight cycle C . ..

ll Isn't that a contradiction to the non-existence of shortest paths?

»> No. If we restrict the length, shortest walks always exist.

» But: If there is a negative cycle C[0..k] with paths s ~» C and C ~» w,
then 6Sf(sr w) > 6Sé+k(sr w) > 6S€+2k(slw) > v (and 6(51 -w) = —OO)

Hold On — What about negative cycles?

» The recurrence for 6<y seems to

. g] if { =0and s #
work fine with negative edges * ' mes s

O<i(s,w) =40 if ¢ =0ands =w

But G could contain a min{ég,1(s, v) + c(vw) : vw € E} otherwise

negative-weight cycle C . ..

ll Isn't that a contradiction to the non-existence of shortest paths?

»> No. If we restrict the length, shortest walks always exist.
» But: If there is a negative cycle C[0..k] with paths s ~» C and C ~» w,
then 6Sf(sr w) > 6Sé+k(sr w) > 6S€+2k(sl w) > e (and 6(51 ZU) = —OO)

~> We can detect if any negative cycle is reachable from s by including more layers { > n
and check if some vertex still improves.

» How many further layers do we need / when is it safe to stop?

26

Detecting negative cycles

We can detect reachable negative cycles by including just the single extra layer ¢ = n!

Lemma: Jw : 0<,(s, w) < 0<4-1(s, w) iff negative cycle reachable from s

“

=

”

» If some vertex w improves further, i.e., 0<; (s, w) < 6<;—1(s, w)
a walk W[0..n] with ¢(W) = 6<, (s, w) was the shortest way to reach w
~+ W is a non-simple walk, i. e., it contains a cycle
» Let P[0..k] be the path resulting from W by shortcutting all cycles ~» k <n -1
~ ¢(P) 2 b<p-1(s,w) > d<n(s,w) = c(W)
~+ Jnegative cycle reachable from s

27

Detecting negative cycles

We can detect reachable negative cycles by including just the single extra layer £ = n!

Lemma: Jw : 6<,(s, w) < 0<u-1(s, w) iff negative cycle reachable froms subpeaSlen ¢

“

=

”

>

§ 8w g

vVivsw

If some vertex w improves further, i.e., d<y (s, w) < 6<;—1(s, w) (2.v) Zecfo.v]
a walk W[0..n] with ¢(W) = 6<, (s, w) was the shortest way to reach w

W is a non-simple walk, i. e., it contains a cycle

Let P[0..k] be the path resulting from W by shortcutting all cycles ~» k <n -1
¢(P) 2 b<p-1(s,w) > bgnls,w) = c(W)

J negative cycle reachable from s

Conversely, let negative cycle C[0..k] be reachable from s

c(C) = Z c(C[z] [i+1]) <0

Assume towards a contradiction that Vw : 6<; (s, w) = 6<,—1(s, w)

Yow € E/i 10 (s,w)< 06 (s,v) + c(vw) (no update in layer ¢ = 1)

summing this inequality over C[0..k] yields (abbrev1at1ng M

k
el < Z(é(C[i—1J)+c(C[iJC[i+l) Za(qz)+z C[iIC[i +1])

k
y\/ﬁ
0<c(C)<0 ¥ =

=¢(C)<0

27

Shortest Paths as DP — Template Algorithm

» Strictly following the template works . . .
» Subproblem order: by increasing ¢ € [0..n]and v € V
» Bottom-up table filling:

1 procedure shortestPathsDP(G, s):

2 // Base case { = 0:

3 6[0..1][0..n) := 400 // 6[¢][v] will store 6<¢(s,v)

4 o[0][s] := 0 -

5 for ¢ :=1,...,n//layer bee(s,w) = 0

6 forw :=0,...,n—1//vertex -

7 forow € E

8 o[l][w] = min{é[é][w], o[¢ —1][v] + C(vw)}

9 return 0 Gread CGWFVLJ

. Subproblems
. Guess!

. Memoization
. Table Filling
. Backtrace

SR N R

DP Recurrence

if{=0ands # w

if{=0ands =w

min{bgpq(s,’u) +c(ow) :vw € E} otherwise

28

Shortest Paths as DP — Template Algorithm

> Strictly following the template works . . . 1. Subproblems
2. Guess!
» Subproblem order: by increasing ¢ € [0..n]and v € V 3. DP Recurrence
> Bottom-up table filling: 4. Memoization
5. Table Filling
1 procedure shortestPathsDP(G, s): 6. Backtrace
2 // Base case { = 0:
3 6[0..1][0..n) := 400 // 6[¢][v] will store 6<¢(s,v)
4 o[0]s] := 0 oo if¢ =0ands # w
s forl:=1,...,n//layer d<els,w) = {0 iff=0ands=w
6 forw := 0,...,n=1 // vertex min{bgq(s,’u) +c(ow) : vw € E} otherwise
7 forow € E
8 o[l][w] = min{é[[][w], o[¢ —1][v] + C(vw)}
9 return 0
» ... but some improvements are possible!

» Iterating over incoming edges is not convenient

~+ order of updates within layer ¢ doesn’t matter ~- iterate forwards!

» only use final distances in the end; we waste space by keeping 2D array around

~» can actually just do updates in place, using a single array o
~- Don't strictly solve subproblems (¢, v) any more! (but final result correct)

28

The Bellman-Ford Algorithm

1 procedure bellmanFord(G, s):

2 dist[0..n) := +o0; pred[0..n) := null

3 dist[s] := 0

4 for{:=1,...,n-1

5 forov = O,ﬁ -1

6 for (w, c) € G.adj[v]

7 if distlw] > dist[v]+ ¢ ¢awv—>o
8 wellax (o) dist[w] := dist[v] + ¢

9 pred[w] := v // remember for backtrace
10 forv =0,...,n—-1 Vi Qager n

11 for (w, c) € G.adj[v]

12 if dist[w] > dist[v] + ¢

13 return HAS_NEGATIVE_CYCLE

14 return (dist, pred)

Extensions:

» Final algorithm
(including shortest path tree via pred)
» Correctness:

» by induction over loop iteration show
distlw] < 6<¢(s, w) and if finite,
dist[w] is c¢(P) for some s-w-path

> negative cycle detection from Lemma

> Space: O(n) % donct) =

» Running time: O(n(n + m))

» Can be implemented in O(nm) time by removing unreachable vertices from consideration

» Instead of only detecting a negative cycle, we can return one;

we can also explicitly find all vertices with 6(s, w) = —co

(needs another traversal).

» Can terminate with smaller ¢ if no distance changed ~- faster for some graphs

29

12.5 Making Change in Pre-1971 UK

Recall Unit 11

Greed For Change
The Change-Making Problem (a.k.a. Coin-Exchange Problem)

> Given: a set of integer denominations of coins w; < wy < --- < wy withw; =1,

target value 1 € N1 (we have sufficient supply of all coins)

»> Goal: “fewest coins to give change n”, i.e.,
multiplicities ¢y, . .., cx € Ny with fo:l i - w; = n minimizing Zle ci

For Euro coins, denominations are , , , , , @, @ ,and @
formally: 1, 2, 5, 10, 20, 50 , 100, and 200.
W] Wy W3 Wy W5 We Wy ws

1 procedure greedyChange(w|[1..k], n):
2 /) Assumes 1 = w[l] < w[2] < -+ < w[k]

~ Simple greedy algorithm: . fori = kk—1,...1:

largest coins first

4 cli] = |n/wlil]
» optimal time (O (k) if coins sorted) 5 n = n—cli] - w[i]
» is)} ¢; minimal? 6 //Now n ==

7 return c[1..k]

30

Pre-Decimal English Coins

We discussed that for some (unwise) choices of denominations, Greedy cannot give optimal change.

31

Pre-Decimal English Coins

We discussed that for some (unwise) choices of denominations, Greedy cannot give optimal change.
Welcome to Britain until 1971!

British Pre-Decimal Coins:
> 1 penny,
1 penny,
3 pence,
6 pence,

shilling = 12 pence,

| 4

| 4

>

>

» florin = 24 pence
» half-crown = 30 pence
» crown = 60 pence

» pound = 240 pence

>

guinea = 21 - 12 = 252 pence

(obsolete as coin since 1816)

Pre-Decimal English Coins

We discussed that for some (unwise) choices of denominations, Greedy cannot give optimal change.
Welcome to Britain until 1971!

British Pre-Decimal Coins:

>

>
>
>
>
>
>
>
>
>

1
> penny,

~ Greedy would give 48 pence
1 penny,

as 30p + 12p + 6p
3 pence, » obviously, 2 florins are more efficient
6 pence,

shilling = 12 pence,
florin = 24 pence ~» How to solve exactly?
half-crown = 30 pence

crown = 60 pence

pound = 240 pence

guinea = 21 - 12 = 252 pence

(obsolete as coin since 1816)

31

Pre-Decimal English Coins

We discussed that for some (unwise) choices of denominations, Greedy cannot give optimal change.

Welcome to Britain until 1971!

British Pre-Decimal Coins:

>

>
>
>
>
>
>
>
>
>

! penny,
1 penny,

3 pence,

6 pence,

shilling = 12 pence,

florin = 24 pence
half-crown = 30 pence
crown = 60 pence

pound = 240 pence

guinea = 21 - 12 = 252 pence

(obsolete as coin since 1816)

~ Greedy would give 48 pence
as 30p + 12p + 6p

» obviously, 2 florins are more efficient

~+ How to solve exactly?

As the old saying goes . ..
Where Greedy fails, DP prevails.

(but mind details, and how it scales)

31

Making Change by DP

Idea: Every solution must pick a first coin. Which one? Unclear, so guess!

. Subproblems
. Guess!

DP Recurrence

. Memoization
. Table Filling
. Backtrace

32

Making Change by DP

Idea: Every solution must pick a first coin. Which one? Unclear, so guess!

» Subproblems: Change for m € [0..1]
Original problem m = n
» Guess: first coin w; to use

(with coins w1, . .

., Wk)

SR N R

. Subproblems
. Guess!

DP Recurrence

. Memoization
. Table Filling
. Backtrace

32

Making Change by DP
Idea: Every solution must pick a first coin. Which one? Unclear, so guess!
» Subproblems: Change for m € [0..1] (with coins wy, ..., wy)
Original problem m = n
» Guess: first coin w; to use
» Recurrence C(m) = smallest #coins to give change m

C(m) 0 ifm=0
m) =
1+ min{C(m —w;):i€[l.k]Aw; < m} otherwise

'
ouess

SR N R

. Subproblems
. Guess!

DP Recurrence

. Memoization
. Table Filling
. Backtrace

32

Making Change by DP

Idea: Every solution must pick a first coin. Which one? Unclear, so guess!

» Subproblems: Change for m € [0..1]

>
>

Original problem m = n
Guess: first coin w; to use

. Guess!

DP Recurrence
. Memoization
. Table Filling

. Backtrace

(with coins w1, . .., W)

SR N R

Recurrence C(m) = smallest #coins to give change m

C(m) =

Bottom-up implementation & Backtrace

ifm=0

1+ min{C(m —w;):i€[l.k]Aw; < m} otherwise

1 procedure dpChange(w|[1..k], n):

2
3
4
5
6
7
8
9

C[0..n] := 40

C[0] :=0

form :=1,...,n
fori:=1,...,k

if wli] i m
g =1+ C[m—wl[i]]
C[m] := min{C[m], q}
return C{@ Co..w\

1
2
]
4
b}
6
7
8
9

procedure tracebackChange(w|[1..k], n):
C[0..n] :=dpChange(w|1..k], n)
c[1..k] := 0// coin multiplicities
m:=n
while m > 0

fori := 1,..(.,k
if wli] & m A C[m]==1+C[m —wl[i]]
cli] :== clil+1, m = m—wli]
return c[1..k]|

. Subproblems

32

Clicker Question

f What is the running time of dpChange(w|[1..k], 1)?
Dunno. O(nk)

o(m) O(n2k)

O(n) O(nk?)

o (D) ok O(n2k?)

L O(klogn) O(13k?)

D |~ sli.do/cs566 |

Clicker Question

4 What is the running time of dpChange(w([1..k],)?
Dunser o@nk)
Sm) Stniy
e e
O P cwiid
L e ———

D |~ sli.do/cs566 |

Making Change by DP — Analysis

» Input: denominations of coins
w1 < wy < -+ <wiwithwy =1,
target value n € N>4

. #subproblems
> Space' @(Tl) time per subproblem

» Running Time: O(# - k)

1 procedure dpChange(w|[1..k], 1):

2 C[0..n] := +o0

3 C[0] :== 0

4 form:=1,...,n

5 fori:=1,...,k

6 if w[i] > m

7 q = 1+C[m—wl[i]]

8 C[m] = min{C[m], q}
9 return C[n]

33

Making Change by DP — Analysis

. . . rocedure dpChange(w|[1..k], n):
» Input: denominations of coins : P C[0.1] }i +mg (w[1--k], n)
w1 < wy < -+ <wiwithwy =1, 3 C[0] := 0
target value n € N>4 4 form :=1,...,n
5 fori :=1,...,k
P 6 if w[i] > m
. subproblems — o
> Space' e(n) time per subproblem 7 g =1 +C[‘m wld]
8 C[m] := min{C[m], q}
» Running Time: O(# - k) 9 return C[]

How good is this running time?
> A linear function in both input numbers seems decent, right? (if k and 1 small, certainly Yes.)

» Running time is also certainly a polynomial in n and k

33

Making Change by DP — Analysis

» Input: denominations of coins
w1 < wy < -+ <wiwithwy =1,
target value n € N>4

. #subproblems
> Space' @(ﬂ) time per subproblem

» Running Time: O(# - k)

How good is this running time?

1 procedure dpChange(w|[1..k], 1):

2 C[0..n] := +o0

3 C[0] :=0

4 form:=1,...,n

5 fori :=1,...,k

6 if w[i] > m

7 q = 1+C[m—wl[i]]

8 C[m] := min{C[m], q}
9 return C[n]

> A linear function in both input numbers seems decent, right? (if k and 1 small, certainly Yes.)

» Running time is also certainly a polynomial in n and k

» But: Interms of computational complexity, dpChange is an exponential-time algorithm!

» Reason: We give the input number 7 in binary, so n is exponential in its input size.

A Must distinguish: value of a number (in the input) vs. size of the (encoding of the) input

~ [dehange is a pseudo-polynomial time algorithm]

33

Making Change by DP — Analysis

» Input: denominations of coins
w1 < wy < -+ <wiwithwy =1,
target value n € N>4

. #subproblems
> Space' @(ﬂ) time per subproblem

» Running Time: O(# - k)

How good is this running time?

1 procedure dpChange(w|[1..k], 1):

2 C[0..n] := +o0

3 C[0] :=0

4 form:=1,...,n

5 fori :=1,...,k

6 if w[i] > m

7 q = 1+C[m—wl[i]]

8 C[m] := min{C[m], q}
9 return C[n]

> A linear function in both input numbers seems decent, right? (if k and 1 small, certainly Yes.)

» Running time is also certainly a polynomial in(7and k

» But: Interms of computational complexity, dpChange is an exponential-time algorithm!

» Reason: We give the input number 7 in binary, so n is exponential in its input size.

A Must distinguish: value of a number (in the input) vs. size of the (encoding of the) input

~ [dehange is a pseudo-polynomial time algorithm] i quesi - paly vouiek

> Actually, the general making-change problem is NP-complete (!)

33

Knapsack

Let’s look at slightly more interesting problem: Knapsack (,,Rucksack”).
N

The 0/1-Knapsack Problem a.k.a. the burglar’s problem

> Given: k items with weights w; ..., wx € N> and values vy, ..., v € Rxo;
a weight budget W € N

» Goal: Subset] C [1..k] such that }};c; w; < W with maximum };.; v;.

Variant closer to Making change: Can use each item several times

34

Knapsack

Let’s look at slightly more interesting problem: Knapsack (,,Rucksack”).
N

The 0/1-Knapsack Problem a.k.a. the burglar’s problem

> Given: k items with weights w; ..., wx € N> and values vy, ..., v € Rxo;
a weight budget W € N

» Goal: Subset] C [1..k] such that }};c; w; < W with maximum };.; v;.

Variant closer to Making change: Can use each item several times

» Recall from tutorials: Greedy fails miserably in general.

. Subproblems
~ Let’s try DP! . Guess!
. DP Recurrence
> Subproblems: B € [0..W], best value with total weight < B - Memoization
—_— . Table Filling
» Guess: firstitem i with w; < B. . Backtrace

34

Knapsack

Let’s look at slightly more interesting problem: Knapsack (,,Rucksack”).
N

The 0/1-Knapsack Problem a.k.a. the burglar’s problem

> Given: k items with weights w; ..., wx € N> and values vy, ..., v € Rxo;
a weight budget W € N

» Goal: Subset] C [1..k] such that }};c; w; < W with maximum };.; v;.

Variant closer to Making change: Can use each item several times

» Recall from tutorials: Greedy fails miserably in general.
. Subproblems

. Guess!
. DP Recurrence

~ Let’s try DP!

> Subproblems: B € [0..W], best value with total weight < B » Wilemeirzztiom
. Table Filling
» Guess: firstitem i with w; < B. . Backtrace

% Subproblem not of same type since w; no longer there!

~ 2K possible “states” to be in (items already used) (0/I-Knapsack)

34

Knapsack

Let’s look at slightly more interesting problem: Knapsack (,,Rucksack”).
N

The 0/1-Knapsack Problem a.k.a. the burglar’s problem

> Given: k items with weights w; ..., wx € N> and values vy, ..., v € Rxo;
a weight budget W € N

» Goal: Subset] C [1..k] such that }};c; w; < W with maximum };.; v;.

Variant closer to Making change: Can use each item several times

» Recall from tutorials: Greedy fails miserably in general.

. Subproblems
~ Let’s try DP! . Guess!
. DP Recurrence
> Subproblems: B € [0..W], best value with total weight < B - Memoization
. Table Filling
» Guess: firstitem i with w; < B. . Backtrace

% Subproblem not of same type since w; no longer there!
~ 2K possible “states” to be in (items already used) (0/I-Knapsack)
b4 need a table of size W - 2k . . . mi¢ht as well do brute force then!
8

34

Knapsack by DP

~+ Force order to consider items in!

SR N R

. Subproblems
. Guess!

DP Recurrence

. Memoization
. Table Filling
. Backtrace

35

Knapsack by DP

~+ Force order to consider items in!

> Let’s refine the guessing part to
Guess: Whether or not to include the last item (k)

~~ For subproblem, restrict to items 1,...,k —1 (in either case)

SO LN R

. Subproblems
. Guess!

DP Recurrence

. Memoization
. Table Filling
. Backtrace

35

Knapsack by DP

~+ Force order to consider items in!

> Let’s refine the guessing part to
Guess: Whether or not to include the last item (k)

~~ For subproblem, restrict to items 1,...,k —1 (in either case)

SR W=

~» Subproblems: (¢,B) for ¢ € [1..k] and B € [0..W]

. Subproblems
. Guess!
. DP Recurrence
. Memoization
. Table Filling
. Backtrace

V(,B)= max Z v; over sets of items [C [1..£] with }};c;w; < B

iel

Original problem corresponds to V (k, W)

Knapsack by DP

~+ Force order to consider items in!

1
2. Guess!
> Let’s refine the guessing part to 3. DP Recurrence
Guess: Whether or not to include the last item (k) 4. Memoization
5. Table Filling
~~ For subproblem, restrict to items 1,...,k —1 (in either case) 6. Backtrace

~+ Subproblems: (¢,B) for ¢ € [1..k] and B € [0..W]
V({,B) = m;axz v; over sets of items [C [1..£] with }};c;w; < B

i€l
Original problem corresponds to V (k, W)
0 ifl=1Aw; >B
» Recurrence: V({,B) = qv; take item ¢ dory take ¢ if¢=1Aw; <B

max{vg +V({-1,B—wy), V(£ -1, B)} otherwise
¢

. Subproblems

35

Knapsack by DP

~~ Force order to consider items in! . Subproblems

. Guess!

. DP Recurrence
. Memoization
. Table Filling

. Backtrace

> Let’s refine the guessing part to
Guess: Whether or not to include the last item (k)

~+ For subproblem, restrict to items 1,...,k —1 (in either case)

~+ Subproblems: (¢,B) for ¢ € [1..k] and B € [0..W]

V(,B)= max Z v; over sets of items [C [1..£] with }};c;w; < B
i€l
Original problem corresponds to V (k, W)
0 if{=1Awq;>B
take item ¢ don't take ¢ o
» Recurrence: V({,B) = vy / if{=1Aw1 <B

max{w +V({-1,B—wy), V(- 1,B)} otherwise

@ Cookie-Cutter Steps 4.—6. Omitted

> V() only needs V({ —1,:) ~» two arrays V[0..W]and Vprey[0..W] suffice
~ O(W) space, O(W - k) time (pseudo-polynomial algorithm)

12.6 Optimal Merge Trees & Optimal BSTs

Recall Unit 4

Good merge orders

« Let’s take a step back and breathe.

» Conceptually, there are two tasks:

1. Detect and use existing runs in the input ~ #1,..., ¢ (easy)/

2. Determine a favorable order of merges of runs (“automatic” in top-down mergesort)

ﬂ [—‘j i ‘L|~] well-understood problem
2 2 3 2 6 2 6

with known algorithms

/
Merge cost = total areaof () ~ |optimal merge tree j
= total length of paths to all array entries = optimal binary search tree
= Zweiglzt(w) - depth(w) for leaf weights 01, ..., ¢,
w leaf (optimal expected search cost)

29

Optimal Alphabetic Trees

“well-understood problem with known algorithms” ... let's make it so =
> Given: Leaf weights {,..., ¢, normalizedto fp +---+ ¢, =1

» Goal: Binary search tree T with n + 1 null pointers Ly, . .., L,, such that

n
co(T) = Z {; - depth(L;) is minimized
i=1

37

Optimal Alphabetic Trees
“well-understood problem with known algorithms” ... let's make it so =
> Given: Leaf weights {,..., ¢, normalizedto fp +---+ ¢, =1
» Goal: Binary search tree T with n + 1 null pointers Ly, . .., L,, such that

n
co(T) = Z {; - depth(L;) is minimized
i=1

» Equivalent interpretations:
q P Plreosy= 0

1. Optimal Static BST with keys 1,2,...,n / #Comfarisons
~~ leaf L; reached when searching for i + 0.5 ~» ¢(T) expected cost of unsuccessful search

37

Optimal Alphabetic Trees

“well-understood problem with known algorithms” ... let's make it so =

> Given: Leaf weights {,..., ¢, normalizedto fp +---+ ¢, =1
» Goal: Binary search tree T with n + 1 null pointers Ly, . .., L,, such that

n
co(T) = Z {; - depth(L;) is minimized
i=1

» Equivalent interpretations:

#comparisons

1. Optimal Static BST with keys 1,2,...,n /
~~ leaf L; reached when searching for i + 0.5 ~» ¢(T) expected cost of unsuccessful search

2. Alphabetic code for o = n + 1 symbols; like Huffman code, but codewords must retain order

(if i < j then the codeword for i lexicographically smaller than codeword for j)
~» ¢(T) expected codeword length

n
1
» Inherit lower bound from Huffman codes: ¢(T) > H with H = Z l - 1082([)
i=0 !

37

Optimal Alphabetic Trees
“well-understood problem with known algorithms” ... let's make it so =
> Given: Leaf weights {,..., ¢, normalizedto fp +---+ ¢, =1

» Goal: Binary search tree T with n + 1 null pointers Ly, . .., L,, such that

n
c(T) = Z {; - depth(L;) is minimized
i=1

» Equivalent interpretations:
#comparisons

1. Optimal Static BST with keys 1,2,...,n /
~~ leaf L; reached when searching for i + 0.5 ~» ¢(T) expected cost of unsuccessful search
2. Alphabetic code for o = n + 1 symbols; like Huffman code, but codewords must retain order

(if i < j then the codeword for i lexicographically smaller than codeword for j)
~» ¢(T) expected codeword length

n
1
» Inherit lower bound from Huffman codes: ¢(T) > H with H = Z l - 10g2(z)
i=0 !

3. Merge tree for adaptive sorting; c(T) = merge cost per element.
» Via Peeksort or Powersort know methods to achieve ¢(T) < H + 2
» But neither are in general optimal
37

Optimal Alphabetic Trees by DP

» Guess: (Keyin)rootr € [1..n] of BST T (= #leaves in left subtree)

SR N R

. Subproblems
. Guess!

DP Recurrence

. Memoization
. Table Filling
. Backtrace

38

Optimal Alphabetic Trees by DP

» Guess: (Keyin)rootr € [1..n] of BST T (= #leaves in left subtree)

» Subproblems: [i..j)for0<i<j<n+1
C(i,) = cost of opt. BST with leaf weights ¢;, ..., ;1
Original problem: C(0, 7 + 1)

SR N R

. Subproblems
. Guess!

DP Recurrence

. Memoization
. Table Filling
. Backtrace

38

Optimal Alphabetic Trees by DP

» Guess: (Keyin)rootr € [1..n] of BST T (= #leaves in left subtree)

» Subproblems: [i..j)for0<i<j<n+1
C(i,) = cost of opt. BST with leaf weights ¢;, ..., ;1
Original problem: C(0, 7 + 1)
» Recurrence:
all leaves in subtree pay 1 at root. .. n

Co /
C.j) {e,- +-+ 481 +min{C(i,r)+ C(r,j) : r € [i +1..j — 1]}

... plus cost to continue in left/right subtree

. Subproblems
. Guess!
DP Recurrence
. Memoization
. Table Filling
. Backtrace

SR N R

ifj—i=1

3
otherwise / <>\

T, T,

38

Optimal Alphabetic Trees by DP

» Guess: (Keyin)rootr € [1..n] of BST T (= #leaves in left subtree) . éu};psz?blems
» Subproblems: [i..j)for0<i<j<n+1 5[1; 2:;;:2:6
C(i, j) = cost of opt. BST with leaf weights ¢;, ..., {; . Table Filling
Original problem: C(0,7 + 1) Badkimae
» Recurrence:
ifj—i=1

0 all leaves in subtree pay 1 at root. . .
CG,j) = {

b+ + 6+ min{C(i, r)+C(r,j):reli+1.j- 1]} otherwise

... plus cost to continue in left/right subtree

@ ~~ Obtain a O(n®) time and O(n?) space algorithm

38

Optimal Binary Search Trees

» Algorithm can be generalized to Optimal BSTs when also internal nodes have weights
» Same DP subproblems
» Running time can be reduced to O(n?) using quadrangle inequality

» Intuitively: When adding more weight in right subtree, optimal root cannot move left.

> Requires to remember r for each subproblem

=y

39

Optimal Binary Search Trees

» Algorithm can be generalized to Optimal BSTs when also internal nodes have weights
» Same DP subproblems
» Running time can be reduced to O(n?) using quadrangle inequality

» Intuitively: When adding more weight in right subtree, optimal root cannot move left.

> Requires to remember r for each subproblem

» For original alphabetic tree problem, can actually find optimal tree in O(n log 1) time
with a much more intricate algorithm

39

12.7 Edit Distance

Clicker Question

What does diff A.txt B.txt do?

S

o

D |~ sli.do/cs566

Edit Distance

Our last DP application here: (algorithmic foundation of) diff!
> diff is a classic Unix tool to compare two text files

» routinely used in version control systems such as git

40

Edit Distance

Our last DP application here: (algorithmic foundation of) diff!
> diff is a classic Unix tool to compare two text files

» routinely used in version control systems such as git

> abstract problem: measure how different two strings are

> We've seen Hamming distance . ..
But how to deal with strings of different lengths?

» how to match common parts that are far apart?

» diff works line-oriented, but we will formulate the problem character oriented

40

Edit Distance

Our last DP application here: (algorithmic foundation of) diff!
> diff is a classic Unix tool to compare two text files
» routinely used in version control systems such as git

> abstract problem: measure how different two strings are

> We've seen Hamming distance . ..
But how to deal with strings of different lengths?

» how to match common parts that are far apart?
» diff works line-oriented, but we will formulate the problem character oriented
Edit Distance Problem
» Given: String A[0..m) and B[0..n) over alphabet © = [0..0).

» Goal: deqit(A, B) = minimal #symbol operations to transform A into B
operations can be insertion/deletion/substitution of single character

40

Edit Distance Example

Example: edit distance dogit(algorithm, logarithm)?

41

Edit Distance Example

Example: edit distance dogit(algorithm, logarithm)?

algorithm

e

logarithm

41

Edit Distance Example

Example: edit distance dogit(algorithm, logarithm)?

algorithm

logarithm

al-gorithm
-[+IXT]
-logarithm

>

S

P o

<

a !

G (2

J
50(:*(‘(/\/\/\

3 45678 9

41

Edit Distance by DP

1. Subproblems: (i,j)for0<i < m,0< j< m compute degit(A[0..7), B[0..]))

2. Guess: What to do with last positions? (insert/delete/(mis)match)

42

Edit Distance by DP

1. Subproblems: (i,j)for0<i < m,0< j< m compute degit(A[0..7), B[0..]))
2. Guess: What to do with last positions? (insert/delete/(mis)match)

3. Recurrence: D(i,]) = degit(A[0..7), B[0..]))

i Alo.) = ¢ ifj=0

j s~ B(0-3) ifi=0
D(i,j) = D@i-1,7)+1,

min{D(,j-1)+1, otherwise

D(i—1,j-1)+ [Ali - 1] # B[j - 1]]
- 7

42

Edit Distance by DP

1. Subproblems: (i,j)for0<i < m,0< j< m compute degit(A[0..7), B[0..]))
2. Guess: What to do with last positions? (insert/delete/(mis)match)

3. Recurrence: D(i,j) = deqit(A[0..7), B[O..j))

i ifj=0
j ifi=0
min{D(,j-1)+1, otherwise

D(i—1,j-1)+ [Ali - 1] # B[j - 1]]

~» O(nm) space and time
space can be improved to O(min{#n, m}) by remembering only 2 rows or columns

> An optimal edit script can be constructed by a backtrace (aswwioy o< shore enhe D30

42

Generalized Edit Distances

» The variant we discussed is also called Levenshtein distance

» all operation have cost 1

43

Generalized Edit Distances

» The variant we discussed is also called Levenshtein distance

» all operation have cost 1

> we can directly give each of the following its own cost in our DP algorithm
» deleting an occurrence of 7 € X
> insertingana € &

» substituting a € X for b € &

43

Generalized Edit Distances

» The variant we discussed is also called Levenshtein distance

» all operation have cost 1

> we can directly give each of the following its own cost in our DP algorithm
» deleting an occurrence of 7 € X
> insertingana € &
» substituting a € X for b € &

> Extensions of the algorithm can support: N

> free insert/delete at beginning/end of a string

> affine gap costs, i. e., inserting / deleting k consecutive chars costs ¢ - k + d for constants c and d

> extensions widely used to find approximate matches, e. g., in DNA sequences

43

Dynamic Programming — Summary

Subproblems
Guess!

DP Recurrence
Memoization
Table Filling
Backtrace

SYESIRIRECOR IR

[C] Versatile and powerful algorithm design paradigm

[ﬁ) Once key idea (recurrence) clear, implementation rather straight-forward

=

44

