

13

Text Indexing – Searching entire genomes

3 February 2025

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 13: Text Indexing

- 1. Know and understand methods for text indexing: *inverted indices*, *suffix trees*, (*enhanced*) *suffix arrays*
- 2. Know and understand *generalized suffix trees*
- **3.** Know properties, in particular *performance characteristics*, and limitations of the above data structures.
- **4.** Design (simple) algorithms based on suffix trees.
- **5.** Understand *construction algorithms* for suffix arrays and LCP arrays.

Outline

13 Text Indexing

- 13.1 Motivation
- 13.2 Suffix Trees
- 13.3 Applications
- 13.4 Longest Common Extensions
- 13.5 Suffix Arrays
- 13.6 Linear-Time Suffix Sorting: Overview
- 13.7 Linear-Time Suffix Sorting: The DC3 Algorithm
- 13.8 The LCP Array
- 13.9 LCP Array Construction

13.1 Motivation

Text indexing

- ► *Text indexing* (also: *offline text search*):
 - case of string matching: find P[0..m) in T[0..n)
 - ▶ but with *fixed* text \rightarrow preprocess T (instead of P)
 - \rightarrow expect many queries P, answer them without looking at all of T
 - \leadsto essentially a data structuring problem: "building an *index* of T"

Latin: "one who points out"

- application areas
 - web search engines
 - online dictionaries
 - online encyclopedia
 - ► DNA/RNA data bases
 - ... searching in any collection of text documents (that grows only moderately)

Inverted indices

same as "indexes"

- ▶ original indices in books: list of (key) words → page numbers where they occur
- ► assumption: searches are only for **whole** (key) **words**
- $\rightsquigarrow \ of ten \ reasonable \ for \ natural \ language \ text$

Inverted indices

- ▶ original indices in books: list of (key) words → page numbers where they occur
- ▶ assumption: searches are only for **whole** (key) **words**
- → often reasonable for natural language text

Inverted index:

- collect all words in T
 - ► can be as simple as splitting *T* at whitespace
 - actual implementations typically support stemming of words goes → go, cats → cat
- ► store mapping from words to a list of occurrences → how? Symbol tables
 (B5T)

Do you know what a *trie* is?

- (A) A what? No!
- (B) I have heard the term, but don't quite remember.
- C I remember hearing about it in a module.
- (D) Sure.

Tries

- efficient dictionary data structure for strings
- ▶ name from retrieval, but pronounced "try"
- tree based on symbol comparisons
- ► **Assumption:** stored strings are *prefix-free* (no string is a prefix of another)

some character $\notin \Sigma$

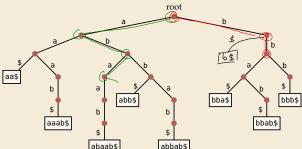
- strings of same length
 - strings have "end-of-string" marker \$

abab\$

56

Example:

{aa\$,aaab\$,abaab\$,abb\$, abbab\$, bba\$, bbab\$, bbb\$}



Suppose we have a trie that stores n strings over $\Sigma = \{A, ..., Z\}$. Each stored string consists of m characters.

We now search for a query string Q with |Q| = q (with $q \le m$). How many **nodes** in the trie are **visited** during this **query**?

 $(F) \Theta(\log m)$

B) $\Theta(\log(nm))$

 $\Theta(q)$

C) $\Theta(m \cdot \log n)$

 $(H) \Theta(\log q)$

D $\Theta(m + \log n)$

 \bigcap $\Theta(q \cdot \log n)$

 \bullet $\Theta(m)$

 $\int \int \Theta(q + \log n)$

Suppose we have a trie that stores n strings over $\Sigma = \{A, ..., Z\}$. Each stored string consists of m characters.

We now search for a query string Q with |Q| = q (with $q \le m$). How many **nodes** in the trie are **visited** during this **query**?

 $(A) \Theta(\log n)$

F $\Theta(\log m)$

B) $\Theta(\log(nm))$

 $G \Theta(q) \checkmark$

C) $\Theta(m - \log n)$

 $\Theta(\log q)$

D) $\Theta(m + \log n)$

 \overline{I} $\Theta(q - \log n)$

 $(E) \Theta(m)$

 $J = \Theta(q + \log n)$

Suppose we have a trie that stores n strings over $\Sigma = \{A, ..., Z\}$. Each stored string consists of m characters. How many **nodes** does the trie have **in total** *in the worst case*?

A) $\Theta(n)$

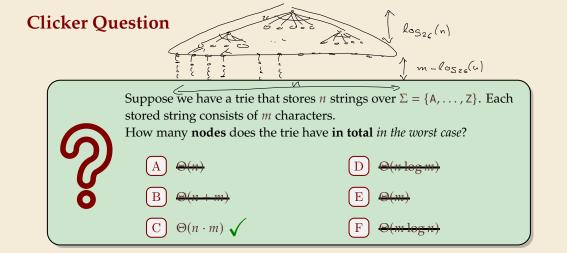
 \bigcirc $\Theta(n \log m)$

 $\mathbf{B}) \Theta(n+m)$

 $\left[\mathbf{E} \right] \Theta(m)$

 \bigcirc $\Theta(n \cdot m)$

 $\Theta(m \log n)$



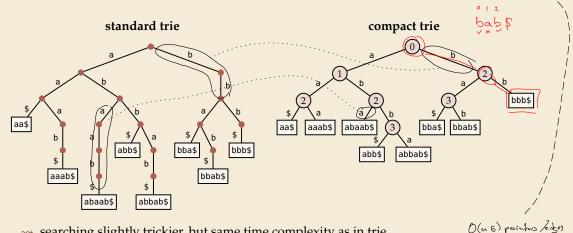
Compact tries

=1 child

- compress paths of unary nodes into single edge
- ▶ nodes store *index* of next character to check

how to suplement nodes? (BST) Ollos 5) time

(2) array chied (0.5) o(1) =



→ searching slightly trickier, but same time complexity as in trie

O(n) # nody ▶ all nodes ≥ 2 children → #nodes ≤ #leaves = #strings → linear space

Tries as inverted index

simple

lucene

fast lookup

- cannot handle more general queries:
 - ▶ search part of a word
 - ► search phrase (sequence of words)

Tries as inverted index

- simple
- fast lookup
- cannot handle more general queries:
 - ▶ search part of a word
 - search phrase (sequence of words)
- what if the 'text' does not even have words to begin with?!
 - biological sequences

binary streams

→ need new ideas

13.2 Suffix Trees

Suffix trees – A 'magic' data structure

Appetizer: Longest common substring problem

► Given: strings $S_1, ..., S_k$ Example: S_1 = superiorcalifornializes, S_2 = sealizer

► Goal: find the longest substring that occurs in all *k* strings

Suffix trees – A 'magic' data structure

Appetizer: Longest common substring problem

- ► Given: strings $S_1, ..., S_k$ Example: S_1 = superiorcalifornializes, S_2 = sealizer
- ▶ Goal: find the longest substring that occurs in all k strings \longrightarrow alive

Can we do this in time $O(|S_1| + \cdots + |S_k|)$? How??

Suffix trees – A 'magic' data structure

Appetizer: Longest common substring problem

► Given: strings $S_1, ..., S_k$ Example: S_1 = superiorcalifornializes, S_2 = sealizer

▶ Goal: find the longest substring that occurs in all k strings \rightarrow alive

Can we do this in time $O(|S_1| + \cdots + |S_k|)$? How??

Enter: *suffix trees*

- versatile data structure for index with full-text search
- ▶ linear time (for construction) and linear space
- ▶ allows efficient solutions for many advanced string problems

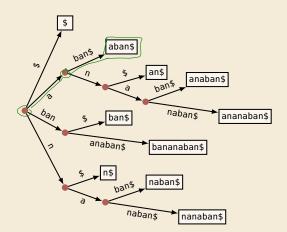
"Although the longest common substring problem looks trivial now, given our knowledge of suffix trees, it is very interesting to note that in 1970 Don Knuth conjectured that a linear-time algorithm for this problem would be impossible." [Gusfield: Algorithms on Strings, Trees, and Sequences (1997)]

suffix tree T for text T = T[0..n) = compact trie of all suffixes of <math>T\$ (set T[n] := \$)

▶ suffix tree \mathcal{T} for text T = T[0..n) = compact trie of all suffixes of T\$ (set <math>T[n] := \$)

Example:

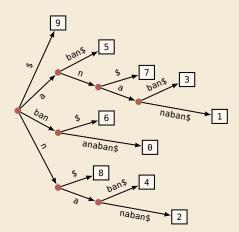
T = bananaban\$



- suffix tree T for text T = T[0..n) = compact trie of all suffixes of T\$ (set <math>T[n] := \$)
- except: in leaves, store *start index* (instead of copy of actual string)

Example:

T = bananaban\$

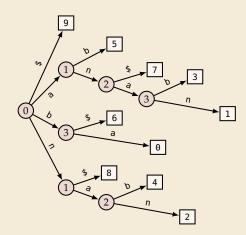


- suffix tree T for text T = T[0..n) = compact trie of all suffixes of T\$ (set <math>T[n] := \$)
- except: in leaves, store start index (instead of copy of actual string)

Example:

T = bananaban\$

- ▶ also: edge labels like in compact trie
- (more readable form on slides to explain algorithms)



Suffix trees – Construction

- ► T[0..n] has n + 1 suffixes (starting at character $i \in [0..n]$)
- ▶ We can build the suffix tree by inserting each suffix of T into a compressed trie. But that takes time $\Theta(n^2)$. \leadsto not interesting!

Suffix trees – Construction

- ► T[0..n] has n + 1 suffixes (starting at character $i \in [0..n]$)
- ▶ We can build the suffix tree by inserting each suffix of T into a compressed trie. But that takes time $\Theta(n^2)$. \leadsto not interesting!

same order of growth as reading the text!

Amazing result: Can construct the suffix tree of T in $\Theta(n)$ time!

- algorithms are a bit tricky to understand
- but were a theoretical breakthrough
- ▶ and they are efficient in practice (and heavily used)!

→ for now, take linear-time construction for granted. What can we do with them?

Recap: Check all correct statements about suffix tree \mathbb{T} of T[0..n].

- (A) We require T to end with \$.
- B The size of \mathcal{T} can be $\Omega(n^2)$ in the worst case.
- \bigcirc T is a standard trie of all suffixes of T\$.
- D T is a compact trie of all suffixes of T\$.
- $oxed{E}$ The leaves of \mathcal{T} store (a copy of) a suffix of T\$.
- F Naive construction of \mathcal{T} takes $\Omega(n^2)$ (worst case).
- G T can be computed in O(n) time (worst case).
- (H) Thas n leaves.

Recap: Check all correct statements about suffix tree \mathcal{T} of T[0..n].

- A We require T to end with $\*
- (B) The size of \mathbb{T} can be $\Omega(n^2)$ in the worst case.
- C T is a standard trie of all suffixes of T\$.
- D T is a compact trie of all suffixes of T\$. \checkmark
- E The leaves of T store (a copy of) a suffix of T\$.
 - Naive construction of \mathcal{T} takes $\Omega(n^2)$ (worst case). \checkmark
- G \mathbb{T} can be computed in O(n) time (worst case). \checkmark
- H) Thas n leaves. n+1

13.3 Applications

Applications of suffix trees

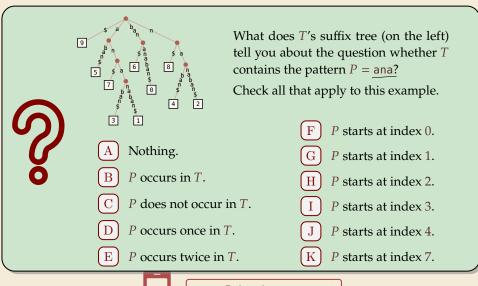
ana Ola)

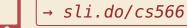
▶ In this section, always assume suffix tree \Im for T given.

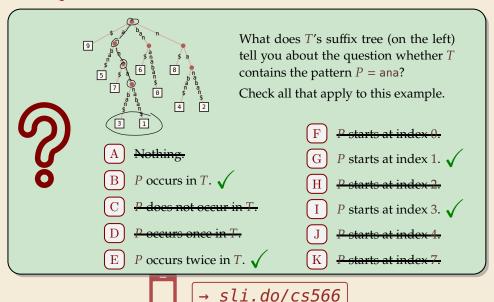
Recall: T stored like this:

 but think about this:

- ▶ Moreover: assume internal nodes store pointer to *leftmost leaf in subtree*.
- ► Notation: $T_i = T[i..n]$ (including \$)

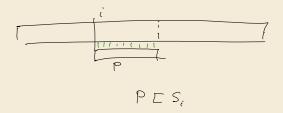






Application 1: Text Indexing / String Matching

- ▶ we have all suffixes in T!



Application 1: Text Indexing / String Matching

- ▶ P occurs in T \iff P is a prefix of a suffix of T
- \blacktriangleright we have all suffixes in \Im !
- → (try to) follow path with label *P*, until
 - 1. we get stuck
 at internal node (no node with next character of P)
 or inside edge (mismatch of next characters)
 P does not occur in T
 - 2. we run out of pattern

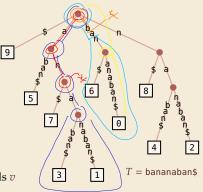
reach end of P at internal node v or inside edge towards $v \rightarrow P$ occurs at all leaves in subtree of v

3. we run out of tree

reach a leaf ℓ with part of P left \rightsquigarrow compare P to ℓ .

This cannot happen when testing edge labels since $\xi \notin \Sigma$, but needs check(s) in compact trie implementation!

► Finding first match (or NO_MATCH) takes O(|P|) time!

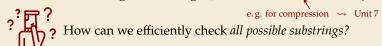


Examples:

- ► P = ann wot is T
- ightharpoonup P = baa
- ightharpoonup P = ana
- ightharpoonup P = ba
- ightharpoonup P = briar

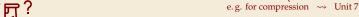
Application 2: Longest repeated substring

▶ **Goal:** Find longest substring $T[i..i + \ell)$ that occurs also at $j \neq i$: $T[j..j + \ell) = T[i..i + \ell)$.

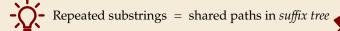


Application 2: Longest repeated substring

▶ **Goal:** Find longest substring $T[i..i + \ell)$ that occurs also at $j \neq i$: $T[j..j + \ell) = T[i..i + \ell)$.

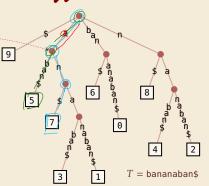


? How can we efficiently check all possible substrings?



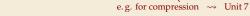
- ► T_5 = aban\$ and T_7 = an\$ have longest common prefix 'a'
- → ∃ internal node with path label 'a

here single edge, can be longer path

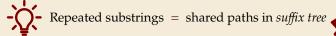


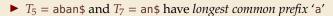
Application 2: Longest repeated substring

▶ **Goal:** Find longest substring $T[i..i + \ell)$ that occurs also at $j \neq i$: $T[j..j + \ell) = T[i..i + \ell)$.



Property How can we efficiently check all possible substrings?





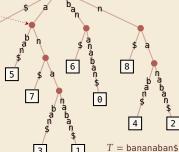
→ ∃ internal node with path label 'a

here single edge, can be longer path

→ longest repeated substring = longest common prefix (LCP) of two suffixes

actually: adjacent leaves

9



Application 2: Longest repeated substring

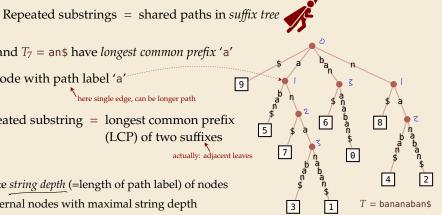
▶ **Goal:** Find longest substring $T[i..i + \ell]$ that occurs also at $j \neq i$: $T[j..j + \ell] = T[i..i + \ell]$.

- e.g. for compression \rightsquigarrow Unit 7
- How can we efficiently check all possible substrings?

- $ightharpoonup T_5 = aban\$$ and $T_7 = an\$$ have longest common prefix 'a'
- → ∃ internal node with path label 'a'

here single edge, can be longer path

- → longest repeated substring = longest common prefix (LCP) of two suffixes
 - actually: adjacent leaves
- ► Algorithm:
 - 1. Compute string depth (=length of path label) of nodes
 - 2. Find internal nodes with maximal string depth
- Both can be done in depth-first traversal $\rightsquigarrow \Theta(n)$ time



Generalized suffix trees

- ▶ longest *repeated* substring (of one string) feels very similar to longest *common* substring of several strings $T^{(1)}, ..., T^{(k)}$ with $T^{(j)} \in \Sigma^{n_j}$
- ► can we solve that in the same way?
- ightharpoonup could build the suffix tree for each $T^{(j)}$... but doesn't seem to help

Generalized suffix trees

- ▶ longest *repeated* substring (of one string) feels very similar to longest *common* substring of several strings $T^{(1)}, ..., T^{(k)}$ with $T^{(j)} \in \Sigma^{n_j}$
- ► can we solve that in the same way?
- ightharpoonup could build the suffix tree for each $T^{(j)}$... but doesn't seem to help
- → need a *single/joint* suffix tree for *several* texts

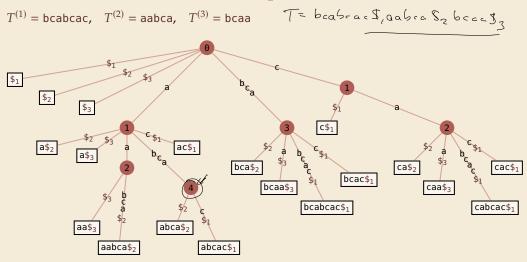
Generalized suffix trees

- ▶ longest *repeated* substring (of one string) feels very similar to longest *common* substring of several strings $T^{(1)}, ..., T^{(k)}$ with $T^{(j)} \in \Sigma^{n_j}$
- ▶ can we solve that in the same way?
- ightharpoonup could build the suffix tree for each $T^{(j)}$... but doesn't seem to help
- → need a *single/joint* suffix tree for *several* texts

Enter: generalized suffix tree

- ▶ Define $T := T^{(1)} \$_1 T^{(2)} \$_2 \cdots T^{(k)} \$_k$ for k new end-of-word symbols
- ightharpoonup Construct suffix tree T for T
- \Rightarrow \$j-edges always leads to leaves \Rightarrow \exists leaf (j,i) for each suffix $T_i^{(j)} = T^{(j)}[i..n_j]$

Generalized Suffix Tree – Example



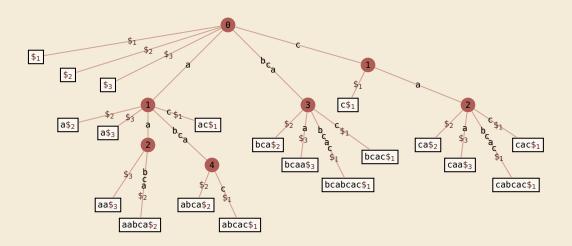
Application 3: Longest common substring

- ▶ With that new idea, we can find longest common substrings:
 - **1.** Compute generalized suffix tree T.
 - 2. Store with each node the *subset of strings* that contain its path label:
 - **2.1.** Traverse T bottom-up.
 - **2.2**. For a leaf (j, i), the subset is $\{j\}$.
 - **2.3**. For an internal node, the subset is the union of its children.
 - 3. In top-down traversal, compute *string depths* of nodes. (as above)
 - **4.** Report deepest node (by string depth) whose subset is $\{1, \ldots, k\}$.
- ▶ Each step takes time $\Theta(n)$ for $n = n_1 + \cdots + n_k$ the total length of all texts.

[&]quot;Although the longest common substring problem looks trivial now, given our knowledge of suffix trees, it is very interesting to note that in 1970 Don Knuth conjectured that a linear-time algorithm for this problem would be impossible." [Gusfield: Algorithms on Strings, Trees, and Sequences (1997)]

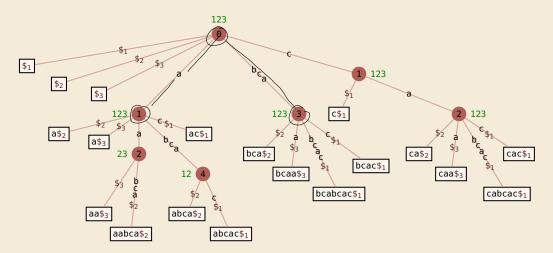
Longest common substring – Example

$$T^{(1)} = bcabcac$$
, $T^{(2)} = aabca$, $T^{(3)} = bcaa$



Longest common substring – Example

$$T^{(1)} = bca\underline{bcac}$$
, $T^{(2)} = aa\underline{bca}$, $T^{(3)} = \underline{bcaa}$



13.4 Longest Common Extensions

Application 4: Longest Common Extensions

▶ We implicitly used a special case of a more general, versatile idea:

The *longest common extension (LCE)* data structure:

- ▶ **Given:** String T[0..n)
- ► **Goal:** Answer LCE queries, i. e., given positions *i*, *j* in *T*,

how far can we read the same text from there?

formally: LCE $(i, j) = \max\{\ell : T[i..i + \ell) = T[j..j + \ell)\}$

Application 4: Longest Common Extensions

▶ We implicitly used a special case of a more general, versatile idea:

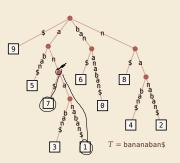
The *longest common extension (LCE)* data structure:

- ▶ **Given:** String T[0..n)
- ► **Goal:** Answer LCE queries, i. e., given positions *i*, *j* in *T*,
 - how far can we read the same text from there?
 - formally: LCE $(i, j) = \max\{\ell : T[i..i + \ell) = T[j..j + \ell)\}$
- \rightsquigarrow use suffix tree of T!

(length of) longest common prefix

of *i*th and *j*th suffix

- ► In \mathcal{T} : LCE $(i, j) = \text{LCP}(T_i, T_j) \rightsquigarrow \text{same thing, different name!}$ = string depth of lowest common ancester (LCA) of leaves i and j
- ▶ in short: $LCE(i, j) = LCP(T_i, T_j) = stringDepth(LCA(i, j))$



Efficient LCA

How to find lowest common ancestors?

- ► Could walk up the tree to find LCA \rightsquigarrow $\Theta(n)$ worst case
- ► Could store all LCAs in big table \rightsquigarrow $\Theta(n^2)$ space and preprocessing

Efficient LCA

How to find lowest common ancestors?

- ► Could walk up the tree to find LCA \rightsquigarrow $\Theta(n)$ worst case
- ► Could store all LCAs in big table \longrightarrow $\Theta(n^2)$ space and preprocessing

Amazing result: Can compute data structure in $\Theta(n)$ time and space that finds any LCA in **constant(!) time**.

- ▶ a bit tricky to understand
- but a theoretical breakthrough
- and useful in practice

- \rightarrow for now, use O(1) LCA as black box.
- \rightarrow After linear preprocessing (time & space), we can find LCEs in O(1) time.

Application 5: Approximate matching

k-mismatch matching:

▶ **Input:** text T[0..n), pattern P[0..m), $k \in [0..m)$

1014 | | |

Output:

- "Hamming distance $\leq k$ "
- ▶ smallest i so that T[i...i + m) are P differ in at most k characters
- ▶ or NO_MATCH if there is no such i
- \rightsquigarrow searching with typos
- ► Adapted brute-force algorithm \rightsquigarrow $O(n \cdot m)$

Application 5: Approximate matching

k-mismatch matching:

- ▶ **Input:** text T[0..n), pattern P[0..m), $k \in [0..m)$
- ► **Output:** "Hamming distance ≤ k"
 - ▶ smallest i so that T[i..i + m) are P differ in at most k characters
 - ightharpoonup or NO_MATCH if there is no such i
- → searching with typos
- ► Adapted brute-force algorithm \rightsquigarrow $O(n \cdot m)$
- ► Assume longest common extensions in T_{1}^{\uparrow} can be found in O(1)
 - → generalized suffix tree T has been built
 - → string depths of all internal nodes have been computed
 - → constant-time LCA data structure for T has been built

Kangaroo Algorithm for approximate matching


```
procedure kMismatch(T[0..n-1], P[0..m-1]):

// build LCE data structure

for i := 0, \ldots, n-m-1 do

mismatches := 0; t := i; p := 0

while mismatches \leq k \wedge p < m do

\ell := LCE(t, p) // jump over matching part

t := t + \ell + 1; p := p + \ell + 1

mismatches := mismatches + 1

if p == m then

return i
```

- ► **Analysis:** $\Theta(n + m)$ preprocessing + $O(n \cdot k)$ matching
- \rightsquigarrow very efficient for small k
- ► State of the art
 - $ightharpoonup O(n^{\frac{k^2 \log k}{m}})$ possible with complicated algorithms
 - ightharpoonup extensions for edit distance $\leq k$ possible

Application 6: Matching with wildcards

► Allow a wildcard character in pattern stands for arbitrary (single) character

```
unit* P in_unit5_we_will T
```

▶ similar algorithm as for *k*-mismatch \rightsquigarrow $O(n \cdot k + m)$ when *P* has *k* wildcards

Application 6: Matching with wildcards

- ► Allow a wildcard character in pattern stands for arbitrary (single) character
- $\begin{array}{ccc} & & & & P \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$
- ▶ similar algorithm as for *k*-mismatch \rightsquigarrow $O(n \cdot k + m)$ when *P* has *k* wildcards

* * *

Many more applications, in particular for problems on biological sequences

20+ described in Gusfield, Algorithms on strings, trees, and sequences (1999)

Suffix trees – Discussion

► Suffix trees were a threshold invention

suddenly many questions efficiently solvable in theory

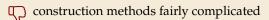
Suffix trees – Discussion

► Suffix trees were a threshold invention

linear time and space

suddenly many questions efficiently solvable in theory

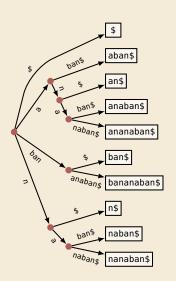
construction of suffix trees: linear time, but significant overhead



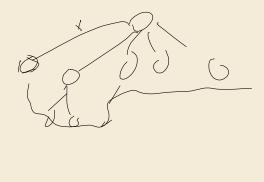
many pointers in tree incur large space overhead

13.5 Suffix Arrays

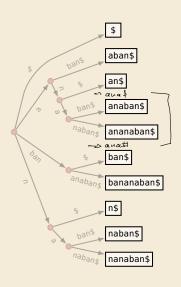
Putting suffix trees on a diet



► **Observation:** order of leaves in suffix tree = suffixes lexicographically *sorted*

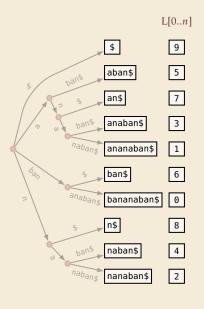


Putting suffix trees on a diet



- ► **Observation:** order of leaves in suffix tree = suffixes lexicographically *sorted*
- ▶ Idea: only store list of leaves L[0..n]
- ► Sufficient to do efficient string matching!
 - **1.** Use binary search for pattern *P*
 - **2.** check if *P* is prefix of suffix after position found
- **Example:** P = ana \$

Putting suffix trees on a diet



- ► **Observation:** order of leaves in suffix tree = suffixes lexicographically *sorted*
- ▶ Idea: only store list of leaves L[0..n]
- Sufficient to do efficient string matching!
 - **1.** Use binary search for pattern *P*
 - **2.** check if *P* is prefix of suffix after position found
- **Example:** P = ana
- \rightsquigarrow L[0..n] is called *suffix array*:
 - L[r] =(start index of) rth suffix in sorted order
- ▶ using L, can do string matching with $\leq (\lg n + 2) \cdot m$ character comparisons

Digression: Recall BWT

Burrows-Wheeler Transform

- **1.** Take all cyclic shifts of *S*
- 2. Sort cyclic shifts
- 3. Extract last column

S = alf_eats_alfalfa\$
B = asff\$f,e,lllaaata

alf, eats, alfalfa\$ lf_eats_alfalfa\$a f_eats_alfalfa\$al _eats_alfalfa\$alf eats, alfalfa\$alf, ats, alfalfa\$alf, e ts.,alfalfa\$alf.,ea s,,alfalfa\$alf,,eat "älfalfa\$alf"eats alfalfa\$alf..eats.. lfalfa\$alf,.eats,.a falfa\$alf,.eats,.al alfa\$alf, eats, alf lfa\$alfuēatsuālfa fa\$alf_eats_alfal a\$alf,,eats,,alfalf \$alf..eats..alfalfa

\$alf,_eats,_alfalfa "alfalfa\$alf_eats _eats_alfalfa\$al**f** a\$alf, eats, alfalf alf_eats_alfalfa\$ alfa\$alf,eats,alf alfalfa\$alf,,eats... ats_alfalfa\$alf_e eats_alfalfa\$alf_ f,,eats,,alfalfa\$at fa\$alf_eats_alfal falfa\$alf_eats_al lf_eats_alfalfa\$a lfa\$alf_eats_alf<mark>a</mark> lfalfa\$alf_eats_<mark>a</mark> s,,alfalfa\$alf,,eat ts,,alfalfa\$alf,,ea

 $\sim \rightarrow$

sort

BWT ↓ alfa eats

Digression: Computing the BWT

How can we compute the BWT of a text efficiently?

Digression: Computing the BWT

How can we compute the BWT of a text efficiently?

- ightharpoonup cyclic shifts S = suffixes of S
 - comparing cyclic shifts stops at first \$
 - for comparisons, anything after \$ irrelevant!
- BWT is essentially suffix sorting!
 - ► B[i] = S[L[i] 1]
 - where L[i] = 0, B[i] = \$
- \rightarrow Can compute *B* in O(n) time from *L*

```
\downarrow L[r]
  alf_eats_alfalfa$
                            $alf_eats_alfalfa
  lf_eats_alfalfa$a
                            _alfalfa$alf_eats
                                                 8
  f, eats, alfalfa$al
                            _eats_alfalfa$alf
  _eats_alfalfa$alf
                            a$alf_eats_alfalf
                                                 15
  eats_alfalfa$alf_
                            alf_eats_alfalfa$
  ats, alfalfa$alf,e
                            alfa$alf_eats_alf
  ts,,alfalfa$alf,,ea
                            alfalfa$alf,.eats...
  s, alfalfa$alf, eat
                            ats,,alfalfa$alf,e
  _alfalfa$alf_eats
                            eats, alfalfa$alf.
- alfalfa$alf_eats_
                            fueatsualfalfa$al
  lfalfa$alf..eats..a
                            fa$alf_eats_alfal
                                                14
  falfa$alf, eats, al
                            falfa$alf,,eats,,al
                                                11
- alfa$alf, eats, alf
                           lf,eats,alfalfa$a
                                                 1
  lfa$alf,.eats,.alfa
                        13 lfa$alf_eats_alfa
                                                13
  fa$alf_eats_alfal
                        14 lfalfa$alf_eats_a
                                                 10
  a$alf..eats..alfalf
                            s.,alfalfa$alf.,eat
  $alf_eats_alfalfa
                        16 ts_alfalfa$alf_ea
```

5

4

Suffix arrays – Construction

How to compute L[0..n]?

- ▶ from suffix tree
 - possible with traversal . . .
 - $\hfill \Box$ but we are trying to avoid constructing suffix trees!
- ▶ sorting the suffixes of *T* using general purpose sorting method
 - trivial to code!
 - **b** but: comparing two suffixes can take $\Theta(n)$ character comparisons
 - \bigcap $\Theta(n^2 \log n)$ time in worst case

Suffix arrays – Construction

How to compute L[0..n]?

- ▶ from suffix tree
 - possible with traversal . . .
 - $\hfill \Box$ but we are trying to avoid constructing suffix trees!
- ▶ sorting the suffixes of *T* using general purpose sorting method
 - trivial to code!
 - **b** but: comparing two suffixes can take $\Theta(n)$ character comparisons
 - $\Theta(n^2 \log n)$ time in worst case
- ▶ We can do better!

she **s**ells **s**eashells bу the sea **s**hore the **s**hells she **s**ells are **s**urely **s**eashells

she sells

seashells

bу

the

sea

shore

the

shells

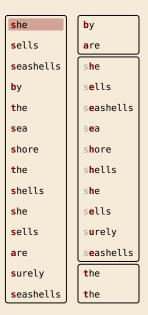
she

sells

are

surely

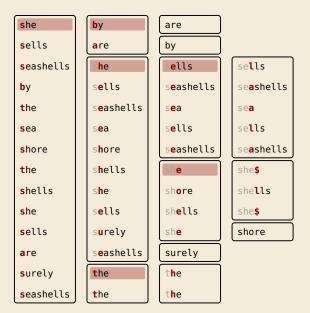
seashells



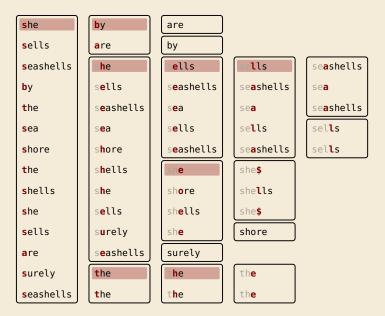
s he	b y	are
s ells	a re	by
s eashells	she	sells
b y	s e lls	s e ashells
t he	s e ashells	s e a
s ea	s e a	s e lls
s hore	s h ore	s e ashells
t he	s h ells	she
s hells	s h e	shore
s he	s e lls	sh e lls
s ells	surely	sh e
a re	s e ashells	surely
s urely	the	
s eashells	the	

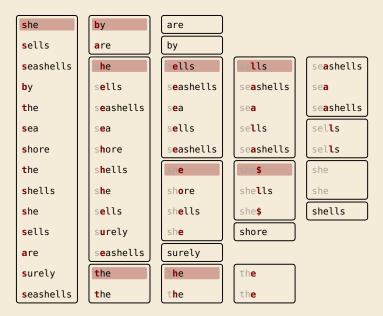
s he	b y	are
s ells	a re	by
s eashells	she	s e lls
b y	s e lls	s e ashells
t he	s e ashells	s e a
sea	s e a	s e lls
s hore	s h ore	s e ashells
t he	s h ells	sh e
s hells	s h e	shore
s he	s e lls	sh e lls
s ells	surely	sh e
		$\overline{}$
a re	s e ashells	surely
are surely	seashells the	surely the





she	b y	are	
s ells	a re	by	
s eashells	she	sells	se l ls
b y	s e lls	s e ashells	se a shells
the	s e ashells	s e a	se a
sea	s e a	s e lls	se l ls
s hore	s h ore	s e ashells	se a shells
the	s h ells	she	she \$
s hells	she	shore	she l ls
	30	31101 6	SHELLS
s he	s e lls	shells	she \$
she sells			
	s e lls	shells	she \$
s ells	s e lls s u rely	shells she	she \$

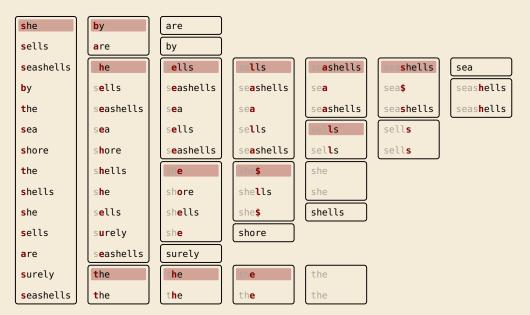


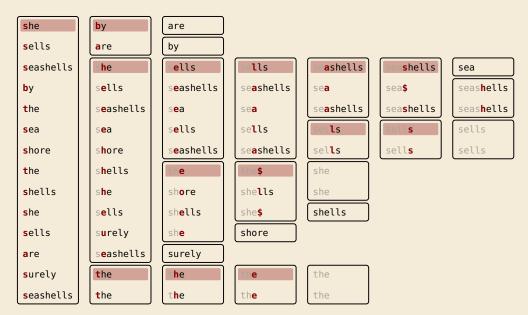


she	b y	are		
s ells	a re	by		
s eashells	she	ells	sells	seashells
b y	s e lls	s e ashells	se a shells	sea
the	s e ashells	s e a	sea	seashells
sea	s e a	s e lls	se <mark>l</mark> ls	sells
shore	s h ore	s e ashells	se a shells	sel ls
the	s h ells	she	she\$	she
s hells	s he	shore	she lls	she
s he	s e lls	sh e lls	she \$	shells
s ells	surely	sh e	shore	
a re	s e ashells	surely		
s urely	the	the	the	the
s eashells	t he	t h e	the	the

she	by	are			
s ells	a re	by			
s eashells	she	sells	sells	seashells	sea s hells
b y	s e lls	s e ashells	seashells	sea	sea \$
the	s e ashells	s e a	sea	seashells	sea s hells
sea	s e a	s e lls	se l ls	sells	
shore	s h ore	s e ashells	se a shells	sel ls	
the	s h ells	she	she\$	she	
s hells	s h e	shore	she l ls	she	
s he	s e lls	sh e lls	she \$	shells	
s ells	surely	sh e	shore		
a re	s e ashells	surely			
surely	the	the	the	the	
seashells	the	t h e	the	the	

she	b y	are			
s ells	a re	by			
s eashells	s h e	sells	se l ls	seashells	seashells
b y	s e lls	s e ashells	se a shells	se a	sea \$
the	s e ashells	s e a	se a	se a shells	sea s hells
sea	s e a	s e lls	se l ls	sells	sells
s hore	s h ore	s e ashells	se a shells	sel ls	sell s
the	s h ells	she	she\$	she	
s hells	she		shells	she	
3116 ((3	sne	shore	SHELLS	SHE	
she	sells	shells	she \$	shells	
s he	s e lls	shells	she \$		
she sells	sells surely	shells she	she \$		





s he	b y	are				
s ells	a re	by				
s eashells	she	sells	sells	seashells	seashells	sea
b y	s e lls	s e ashells	se a shells	se a	sea \$	seashells
the	s e ashells	s e a	se a	se a shells	sea s hells	seashells
sea	s e a	s e lls	se l ls	sells	sells	sells
shore	s h ore	s e ashells	se a shells	sel ls	sell s	sells
the	s h ells	she	she\$	she		
s hells	s h e	shore	she lls	she		
s he	s e lls	sh e lls	she \$	shells		
s ells	surely	sh e	shore			
a re	s e ashells	surely				
s urely	the	the	the	the		
seashells	the	t h e	the	the		

Fat-pivot radix quicksort

details in §5.1 of Sedgewick, Wayne Algorithms 4th ed. (2011), Pearson

- **partition** based on *d*th character only (initially d = 0)
- \rightarrow 3 segments: smaller, equal, or larger than dth symbol of pivot
- recurse on smaller and large with same d, on equal with d + 1
 - \leadsto never compare equal prefixes twice

Fat-pivot radix quicksort

details in §5.1 of Sedgewick, Wayne Algorithms 4th ed. (2011), Pearson

- **partition** based on *d*th character only (initially d = 0)
- → 3 segments: smaller, equal, or larger than *d*th symbol of pivot
- recurse on smaller and large with same d, on equal with d + 1
 - → never compare equal prefixes twice

for random strings

- \rightarrow can show: $\sim 2 \ln(2) \cdot n \lg n \approx 1.39 n \lg n$ character comparisons on average
- simple to code
- efficient for sorting many lists of strings

random string

• fat-pivot radix quicksort finds suffix array in $O(n \log n)$ expected time

Fat-pivot radix quicksort

details in §5.1 of Sedgewick, Wayne Algorithms 4th ed. (2011), Pearson

- **partition** based on *d*th character only (initially d = 0)
- \rightarrow 3 segments: smaller, equal, or larger than dth symbol of pivot
- recurse on smaller and large with same d, on equal with d + 1
 - → never compare equal prefixes twice

for random strings

- \rightarrow can show: $\sim 2 \ln(2) \cdot n \lg n \approx 1.39 n \lg n$ character comparisons on average
- simple to code
- efficient for sorting many lists of strings

random string

• fat-pivot radix quicksort finds suffix array in $O(n \log n)$ expected time

but we can do O(n) time worst case!

13.6 Linear-Time Suffix Sorting: Overview

Inverse suffix array: going left & right

▶ to understand the fastest algorithm, it is helpful to define the *inverse suffix array*:

►
$$R[i] = r$$
 \iff $L[r] = i$ $L = leaf array$ \iff there are r suffixes that come before T_i in sorted order \iff T_i has $(0\text{-based}) rank r$ \implies call $R[0..n]$ the $rank array$

i	R[i]	T_i	right	r	L[r]	$T_{L[r]}$
0	6 th	bananaban\$	R[0] = 6	0	9	\$
1	$4^{ ext{th}}$	ananaban\$	K[0] = 0	1	5	aban\$
2	9 th	nanaban\$		2	7	an\$
3	3^{th}	anaban\$		3	3	anaban\$
4	8 th	naban\$		4	1	ananaban\$
5	$1^{ ext{th}}$	aban\$		5	6	ban\$
6	5 th	ban\$		6	0	bananaban\$
7	2^{th}	an\$	$_{\pi}L[8] = 4$	7	8	n\$
8	$7^{ m th}$	n\$	left	8	4	naban\$
9	0^{th}	\$		9	2	nanaban\$

sort suffixes

Clicker Question

Recap: Check all correct statements about suffix array L[0..n], inverse suffix array R[0..n], and suffix tree T of text T.

- A) L lists the leaves of \mathfrak{T} in left-to-right order.
- $oxed{B}$ R lists the leaves of \mathcal{T} in right-to-left order.
- R lists starting indices of suffixes in lexciographic order.
- D *L* lists starting indices of suffixes in lexciographic order.
- E L[r] = i iff R[i] = r
- F L stands for leaf
- G L stands for left
- H R stands for rank
- \overline{I} R stands for right



Clicker Question

Recap: Check all correct statements about suffix array L[0..n], inverse suffix array R[0..n], and suffix tree T of text T.

- A L lists the leaves of $\mathcal T$ in left-to-right order. \checkmark
- \mathbb{B} \mathbb{R} lists the leaves of \mathbb{T} in right to left order.
- $\left(\mathrm{C}
 ight)$ R lists starting indices of suffixes in lexciographic order.
- L lists starting indices of suffixes in lexciographic order. $\sqrt{\ }$
- E $L[r] = i \text{ iff } R[i] = r \checkmark$
- F L stands for leaf $\sqrt{}$
- G L stands for left $\sqrt{}$
- $\stackrel{\cdot}{\mathsf{H}}$ R stands for rank \checkmark
- I R stands for right $\sqrt{}$



Linear-time suffix sorting

DC3 / Skew algorithm

not a multiple of 3

- **1.** Compute rank array $R_{1,2}$ for suffixes T_i starting at $i \not\equiv 0 \pmod{3}$ recursively.
- **2.** Induce rank array R_3 for suffixes T_0 , T_3 , T_6 , T_9 , ... from $R_{1,2}$.
- 3. Merge $R_{1,2}$ and R_0 using $R_{1,2}$.
 - \rightarrow rank array R for entire input

Linear-time suffix sorting

DC3 / Skew algorithm

not a multiple of 3

- **1.** Compute rank array $R_{1,2}$ for suffixes T_i starting at $i \not\equiv 0 \pmod{3}$ recursively.
- **2.** Induce rank array R_3 for suffixes T_0 , T_3 , T_6 , T_9 , ... from $R_{1,2}$.
- 3. Merge $R_{1,2}$ and R_0 using $R_{1,2}$.
 - \rightsquigarrow rank array R for entire input

▶ We will show that steps 2. and 3. take $\Theta(n)$ time

Total complexity is
$$n + \frac{2}{3}n + \left(\frac{2}{3}\right)^2 n + \left(\frac{2}{3}\right)^3 n + \cdots \le n \cdot \sum_{i \ge 0} \left(\frac{2}{3}\right)^i = 3n = \Theta(n)$$

Linear-time suffix sorting

DC3 / Skew algorithm

not a multiple of 3

- **1.** Compute rank array $R_{1,2}$ for suffixes T_i starting at $i \not\equiv 0 \pmod{3}$ recursively.
- **2.** Induce rank array R_3 for suffixes T_0 , T_3 , T_6 , T_9 , ... from $R_{1,2}$.
- 3. Merge $R_{1,2}$ and R_0 using $R_{1,2}$.
 - \rightarrow rank array R for entire input

▶ We will show that steps 2. and 3. take $\Theta(n)$ time

$$ightharpoonup$$
 Total complexity is $n + \frac{2}{3}n + \left(\frac{2}{3}\right)^2 n + \left(\frac{2}{3}\right)^3 n + \cdots \le n \cdot \sum_{i \ge 0} \left(\frac{2}{3}\right)^i = 3n = \Theta(n)$

- ▶ **Note:** *L* can easily be computed from *R* in one pass, and vice versa.
 - → Can use whichever is more convenient.

DC3 / Skew algorithm – Step 2: Inducing ranks

► **Assume:** rank array $R_{1,2}$ known:

$$R_{1,2}[i] = \begin{cases} \text{rank of } T_i \text{ among } T_1, T_2, T_4, T_5, T_7, T_8, \dots & \text{for } i = 1, 2, 4, 5, 7, 8, \dots \\ \text{undefined} & \text{for } i = 0, 3, 6, 9, \dots \end{cases}$$

▶ **Task:** sort the suffixes T_0 , T_3 , T_6 , T_9 , . . . in linear time (!)

DC3 / Skew algorithm – Step 2: Inducing ranks

- ► **Assume:** rank array $R_{1,2}$ known:
 - $R_{1,2}[i] = \begin{cases} \text{rank of } T_i \text{ among } T_1, T_2, T_4, T_5, T_7, T_8, \dots & \text{for } i = 1, 2, 4, 5, 7, 8, \dots \\ \text{undefined} & \text{for } i = 0, 3, 6, 9, \dots \end{cases}$
- ▶ **Task:** sort the suffixes T_0 , T_3 , T_6 , T_9 , ... in linear time (!)
- ▶ Suppose we want to compare T_0 and T_3 .

- Characterwise comparisons too expensive
- **b** but: after removing first character, we obtain T_1 and T_4
- ▶ these two can be compared in *constant time* by comparing $R_{1,2}[1]$ and $R_{1,2}[4]!$
- T_0 comes before T_3 in lexicographic order iff pair $(T[0], R_{1,2}[1])$ comes before pair $(T[3], R_{1,2}[4])$ in lexicographic order

T = hannahbansbananasman\$

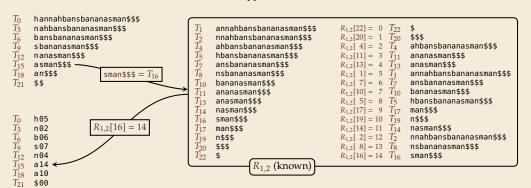
(append 3 \$ markers)

 $\begin{array}{ll} T_0 & \text{hannahbansbananasman}\$\$\\ T_3 & \text{nahbansbananasman}\$\$\$\\ T_6 & \text{bansbananasman}\$\$\\ T_9 & \text{sbananasman}\$\$\$\\ T_{12} & \text{nanasman}\$\$\$\\ T_{15} & \text{asman}\$\$\$\\ T_{18} & \text{an}\$\$\$\\ T_{21} & \$\$\\ \end{array}$

```
annahbansbananasman$$$
                                R_{1,2}[22] = 0 T_{22}
nnahbansbananasman$$$
                                                  $$$
                                R_{1,2}[20] = 1
ahbansbananasman$$$
                                                  ahbansbananasman$$$
hbansbananasman$$$
                                                  ananasman$$$
ansbananasman$$$
                                                  anasman$$$
                                R_{1,2}[13] = 4
                                R_{1,2}[1] = 5
                                                  annahbansbananasman$$$
nsbananasman$$$
                                R_{1,2}[7] = 6
                                                  ansbananasman$$$
bananasman$$$
                                                  bananasman$$$
ananasman$$$
                                R_{1,2}[10] = 7
anasman$$$
                                R_{1,2}[5] = 8
                                                  hbansbananasman$$$
nasman$$$
                                R_{1,2}[17] = 9
                                                  man$$$
sman$$$
                                R_{1,2}[19] = 10 T_{19}
                                                  n$$$
man$$$
                                                  nasman$$$
                                R_{1,2}[14] = 11
n$$$
                                                  nnahbansbananasman$$$
                                R_{1,2}[2] = 12
$$$
                                R_{1,2}[8] = 13 T_8
                                                  nsbananasman$$$
                                R_{1,2}[16] = 14 T_{16}
                                                  sman$$$
         R_{1,2} (known)
```

T = hannahbansbananasman\$\$

(append 3 \$ markers)



T = hannahbansbananasman\$\$

(append 3 \$ markers)

```
hannahbansbananasman$$$
nahbansbananasman$$$
                                                  annahbansbananasman$$$
                                                                                    R_{1,2}[22] = 0
bansbananasman$$$
                                                  nnahbansbananasman$$$
                                                                                                       $$$
                                                                                    R_{1,2}[20] = 1
                                                  ahbansbananasman$$$
                                                                                     R_{1,2}[4] = 2
                                                                                                       ahbansbananasman$$$
sbananasman$$$
nanasman$$$
                                                  hbansbananasman$$$
                                                                                    R_{1,2}[11] = 3
                                                                                                       ananasman$$$
                                                  ansbananasman$$$
                                                                                                       anasman$$$
asman$$$ -
                                                                                    R_{1,2}[13] = 4
                   sman$$$ = T_{16}
                                                                                     R_{1,2}[1] = 5
                                                                                                       annahbansbananasman$$$
an$$$
                                                  nsbananasman$$$
                                            T_{10}
                                                                                     R_{1,2}[7] = 6
                                                                                                       ansbananasman$$$
$$
                                                  bananasman$$$
                                                                                                       bananasman$$$
                                                  ananasman$$$
                                                                                    R_{1,2}[10] = 7
                                                  anasman$$$
                                                                                    R_{1,2}[5] = 8
                                                                                                       hbansbananasman$$$
                                                  nasman$$$
                                                                                    R_{1,2}[17] = 9
                                                                                                       man$$$
h05
                                                  sman$$$
                                                                                                       n$$$
                                                                                     R_{1,2}[19] = 10
                R_{1,2}[16] = 14
n 02
                                            T_{17}
                                                  man$$$
                                                                                                       nasman$$$
                                                                                     R_{1,2}[14] = 11
b06
                                                  n$$$
                                                                                                       nnahbansbananasman$$$
                                                                                     R_{1,2}[2] = 12
s 07
                                            T_{20}
                                                  $$$
                                                                                    R_{1,2}[8] = 13
                                                                                                       nsbananasman$$$
n 04
                                                                                     R_{1,2}[16] = 14 T_{16}
                                                                                                       sman$$$
a 14
                                                            R_{1,2} (known)
a 10
$00
                                            T_{21}
T_{18}
T_{15}
T_{6}
T_{7}
T_{12}
T_{7}
                                                  $00
                                                               R_0[21] = 0
                                                  a 10
                                                               R_0[18] = 3
            radix sort
                                                  a 14
                                                               R_0[15] = 2
                                                  b06
                                                               R_0[6] = 3
                                                  h05
                                                               R_0[0] = 4
                                                  n 02
                                                               R_0[3] = 5
                                                  n 04
                                                               R_0[12] = 6
```

 $R_0[9] = 7$

s 07

T = hannahbansbananasman\$\$ (append 3 \$ markers) hannahbansbananasman\$\$\$ nahbansbananasman\$\$\$ annahbansbananasman\$\$\$ $R_{1,2}[22] = 0$ nnahbansbananasman\$\$\$ \$\$\$ bansbananasman\$\$\$ $R_{1,2}[20] =$ ahbansbananasman\$\$\$ ahbansbananasman\$\$\$ sbananasman\$\$\$ nanasman\$\$\$ hbansbananasman\$\$\$ ananasman\$\$\$ ansbananasman\$\$\$ anasman\$\$\$ asman\$\$\$ - $R_{1,2}[13] = 4$ $sman$$$ = T_{16}$ annahbansbananasman\$\$\$ an\$\$\$ nsbananasman\$\$\$ $R_{1,2}[1] = 5$ T_{10} $R_{1,2}[7] = 6$ ansbananasman\$\$\$ \$\$ bananasman\$\$\$ ananasman\$\$\$ $R_{1,2}[10] = 7$ bananasman\$\$\$ anasman\$\$\$ $R_{1,2}[5] = 8$ hbansbananasman\$\$\$ nasman\$\$\$ $R_{1,2}[17] = 9$ man\$\$\$ h05 sman\$\$\$ n\$\$\$ $R_{1,2}[19] = 10$ $R_{1,2}[16] = 14$ n 02 man\$\$\$ nasman\$\$\$ $R_{1,2}[14] = 11$ b06 n\$\$\$ nnahbansbananasman\$\$\$ $R_{1,2}[2] = 12$ s 07 T_{20} \$\$\$ $R_{1,2}[8] = 13$ nsbananasman\$\$\$ n 04 $R_{1,2}[16] = 14 T_{16}$ sman\$\$\$ a 14 $R_{1,2}$ (known) a 10 \$00 \$00 $R_0[21] = 0$ a 10 $R_0[18] = 1$ radix sort a14 $R_0[15] = 2$ b06 $R_0[6] = 3$ $R_0[0] = 4$ h 05 n 02 $R_0[3] = 5$ n 04 $R_0[12] = 6$ s 0.7 $R_0[9] = 7$

n 02

n 04

s 0.7

T = hannahbansbananasman\$\$ (append 3 \$ markers) hannahbansbananasman\$\$\$ nahbansbananasman\$\$\$ annahbansbananasman\$\$\$ $R_{1,2}[22] = 0$ nnahbansbananasman\$\$\$ \$\$\$ bansbananasman\$\$\$ ahbansbananasman\$\$\$ ahbansbananasman\$\$\$ sbananasman\$\$\$ nanasman\$\$\$ hbansbananasman\$\$\$ ananasman\$\$\$ ansbananasman\$\$\$ asman\$\$\$ · $R_{1,2}[13] = 4$ anasman\$\$\$ $sman$$$ = T_{16}$ annahbansbananasman\$\$\$ an\$\$\$ nsbananasman\$\$\$ $R_{1,2}[1] = (5)T_1$ T_{10} $R_{1,2}[7] = 6$ bananasman\$\$\$ ansbananasman\$\$\$ \$\$ ananasman\$\$\$ $R_{1,2}[10] =$ bananasman\$\$\$ anasman\$\$\$ hbansbananasman\$\$\$ nasman\$\$\$ man\$\$\$ h05 n\$\$\$ sman\$\$\$ $R_{1,2}[19] = 10$ $R_{1,2}[16] = 14$ n 02 man\$\$\$ nasman\$\$\$ b06 n\$\$\$ nnahbansbananasman\$\$\$ $R_{1,2}[2] = 12$ s 07 T_{20} \$\$\$ $R_{1,2}[8] = 13$ nsbananasman\$\$\$ n 04 $R_{1,2}[16] = 14 T_{16}$ sman\$\$\$ a 14 $R_{1,2}$ (known) a 10 \$00 \$00 $R_0[21] = 0$ a 10 $R_0[18] = 1$ \triangleright sorting of pairs doable in O(n) time radix sort a 14 $R_0[15] = 2$ by 2 iterations of counting sort b06 $R_0[6] = 3$ h 05 $R_0[0] = 4$

 $R_0[3] = 5$

 $R_0[12] = 6$

 $R_0[9] = 7$

Obtain R_0 in O(n) time

```
\begin{array}{lll} T_{22} & \$ \\ T_{20} & \$ \$ \$ \\ T_4 & \text{ahbansbananasm} \\ T_{11} & \text{ananasman} \$ \$ \\ T_{13} & \text{anasman} \$ \$ \$ \\ T_1 & \text{ansbananasman} \$ T_1 \\ & \text{bananasman} \$ \$ \$ \\ T_1 & \text{bananasman} \$ \$ \$ \end{array}
$$
an$$$
asman$$$
                                                                             ahbansbananasman$$$
bansbananasman$$$
hannahbansbananasman$$$
nahbansbananasman$$$
                                                                             annahbansbananasman$$$
nanasman$$$
                                                                             ansbananasman$$$
sbananasman$$$
                                                                             hbansbananasman$$$
                                                                             man$$$
                                                                             n$$$
                                                                             nasman$$$
                                                                             nnahbansbananasman$$$
                                                                             nsbananasman$$$
                                                                             sman$$$
```

► Have:

▶ sorted 1,2-list:

$$T_1, T_2, T_4, T_5, T_7, T_8, T_{10}, T_{11}, \ldots$$

▶ sorted 0-list:

$$T_0, T_3, T_6, T_9, \dots$$

- ► Task: Merge them!
 - use standard merging method from Mergesort
 - \blacktriangleright but speed up comparisons using $R_{1,2}$

T_{21}	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
T_6	bansbananasman\$\$\$
T_0	hannahbansbananasman\$\$\$
T_3	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
T9	sbananasman\$\$\$

```
 \begin{array}{lll} T_{22} & \$ & \$ & \$ & \$ \\ T_{20} & \$ & \$ & \$ & \$ \\ T_{4} & \text{ahbansbananasman} \$ & \$ & \$ \\ T_{13} & \text{anasman} \$ & \$ & \$ & \$ \\ T_{10} & \text{bananasman} \$ & \$ & \$ & \$ \\ T_{10} & \text{bananasman} \$ & \$ & \$ & \$ \\ T_{10} & \text{bananasman} \$ & \$ & \$ & \$ \\ T_{10} & \text{man} \$ & \$ & \$ & \$ \\ T_{17} & \text{man} \$ & \$ & \$ & \$ \\ T_{19} & \text{ns} \$ & \$ & \$ & \$ \\ T_{18} & \text{nanbanasman} \$ & \$ & \$ & \$ \\ T_{20} & \text{nanbanasman} \$ & \$ & \$ & \$ \\ T_{20} & \text{nanbanasman} \$ & \$ & \$ \\ T_{20} & \text{nanbanasman} \$ & \$ & \$ \\ T_{20} & \text{nanbanasman} \$ & \$ & \$ \\ T_{20} & \text{nanbanasman} \$ & \$ & \$ \\ T_{20} & \text{nanbanasman} \$ & \$ & \$ \\ T_{20} & \text{nanbanasman} \$ & \$ & \$ \\ \end{array}
```

 $\begin{array}{ccc} T_{22} & \$ & \\ T_{21} & \$\$ & \\ T_{20} & \$\$ & \\ T_{4} & \text{ahbansbananasman}\$\$ & \\ T_{18} & \text{an}\$\$ & \\ \end{array}$

► Have:

▶ sorted 1,2-list:

$$T_1$$
, T_2 , T_4 , T_5 , T_7 , T_8 , T_{10} , T_{11} , . . .

▶ sorted 0-list:

$$T_0, T_3, T_6, T_9, \dots$$

► Task: Merge them!

- use standard merging method from Mergesort
- \blacktriangleright but speed up comparisons using $R_{1,2}$

```
\begin{array}{lll} T_{21} & \$\$ & \\ T_{18} & \text{an}\$\$\$ & \\ T_{15} & \text{asman}\$\$\$ & \\ T_{6} & \text{bansbananasman}\$\$\$ & \\ T_{0} & \text{hannahbanabananasman}\$\$\$ & \\ T_{3} & \text{nahbansbananasman}\$\$\$ & \\ T_{12} & \text{nanasman}\$\$\$ & \\ T_{9} & \text{sbananasman}\$\$\$ & \\ \end{array}
```

```
        122
        $

        T20
        $$$

        T4
        ahbansbananasman$$$

        T13
        anasman$$$$

        T1
        annasman$$$$

        T1
        ansbananasmanasman$$$$

        T5
        bananasman$$$$

        T6
        man$$$$

        T17
        man$$$$

        T19
        ns$$$

        T14
        nasman$$$$

        T2
        nahbansbananasman$$$$

        T8
        nsbananasman$$$$

        T16
        sman$$$$
```

► Have:

sorted 1,2-list:

$$T_1, T_2, T_4, T_5, T_7, T_8, T_{10}, T_{11}, \ldots$$

sorted 0-list: $T_0, T_3, T_6, T_9, \dots$

► Task: Merge them!

- use standard merging method from Mergesort
- ▶ but speed up comparisons using $R_{1,2}$

```
T_{22} $ T_{21} $$ T_{20} $$ $$ T_{20} $$ $$ T_{20} $$ $$ T_{18} an$$$

Compare T_{15} to T_{11}

Idea: try same trick as before T_{15} = asman$$$ = aT_{16}

T_{11} = ananasman$$$ = aT_{16}
```

 $= aT_{12}$

```
\begin{array}{lll} T_{21} & \$\$ & \\ T_{18} & \text{an}\$\$\$ & \\ T_{15} & \text{asman}\$\$\$ & \\ T_{6} & \text{bansbananasman}\$\$\$ & \\ T_{0} & \text{hannahbanabananasman}\$\$\$ & \\ T_{3} & \text{nahbansbananasman}\$\$\$ & \\ T_{12} & \text{nanasman}\$\$\$ & \\ T_{9} & \text{sbananasman}\$\$\$ & \\ \end{array}
```

```
 \begin{array}{lll} T_{22} & \$ & \\ T_{20} & \$ \$ & \\ T_{4} & ahbansbananasman\$\$\$ \\ T_{13} & anasman\$\$\$ & \\ T_{13} & anasman\$\$\$ & \\ T_{10} & bananasman\$\$\$ & \\ T_{10} & bananasman\$\$\$ & \\ T_{10} & bananasman\$\$\$ & \\ T_{10} & n\$\$\$ & \\ T_{17} & n\$\$\$ & \\ T_{19} & n\$\$\$ & \\ T_{19} & n\$\$\$ & \\ T_{18} & nsman\$\$\$ & \\ nahbansbananasman\$\$\$ & \\ T_{2} & nshananasman\$\$\$ & \\ T_{8} & nsbananasman\$\$\$ & \\ T_{16} & sman\$\$\$ & \\ \end{array}
```

► Have:

▶ sorted 1,2-list:

$$T_1, T_2, T_4, T_5, T_7, T_8, T_{10}, T_{11}, \ldots$$

▶ sorted 0-list:

$$T_0, T_3, T_6, T_9, \dots$$

- ► Task: Merge them!
 - use standard merging method from Mergesort
 - ▶ but speed up comparisons using $R_{1,2}$

```
T_{22} $ T_{21} $$ T_{20} $$ T_{20
```

 $= aT_{12}$

```
\begin{array}{lll} T_{21} & \$ \\ T_{18} & \text{an} \$ \$ \\ T_{15} & \text{asman} \$ \$ \\ T_{6} & \text{bansbananasman} \$ \$ \\ T_{0} & \text{hannahbansbananasman} \$ \$ \\ T_{3} & \text{nahbansbananasman} \$ \$ \\ T_{12} & \text{nanasman} \$ \$ \$ \\ T_{9} & \text{sbananasman} \$ \$ \\ \end{array}
```

```
\begin{array}{lll} T_{22} & \$ \\ T_{20} & \$ \$ \\ T_4 & ahbansbanana\$man\$\$ \\ \hline T_{11} & anana\$man\$\$\$ \\ T_{13} & anas\$man\$\$\$ \\ T_7 & ansbanana\$man\$\$\$ \\ T_{7} & ansbanana\$man\$\$\$ \\ T_{10} & banana\$man\$\$\$ \\ T_{17} & man\$\$ \\ T_{17} & man\$\$ \\ T_{19} & n\$\$\$ \\ T_{19} & n\$\$\$ \\ T_{19} & n\$\$\$ \\ T_{19} & n\$\$\$ \\ T_{10} & n\$\$\$\$ \\ T_{10} & n\$\$\$ \\ T_{10} & n\$\$\$\$ \\ T_{10} & n\$\$\$\$ \\ T_{10} & n\$\$\$ \\ T_{10} & n\$\$ \\ T_{10} & n\$
```

► Have:

sorted 1,2-list:

 $T_1, T_2, T_4, T_5, T_7, T_8, T_{10}, T_{11}, \ldots$

- sorted 0-list: $T_0, T_3, T_6, T_9, \dots$
- ► Task: Merge them!
 - use standard merging method from Mergesort
 - ▶ but speed up comparisons using $R_{1,2}$

```
$$$
        ahbansbananasman$$$
   Compare T_{15} to T_{11}
   Idea: try same trick as before
   T_{15} = asman$$
        = asman$$$
                            can't compare T_{16}
        = aT_{16}
                            and T_{12} either!
   T_{11} = ananasman$$
        = ananasman$$$
        = aT_{12}
\rightarrow Compare T_{16} to T_{12}
   T_{16} = sman\$\$\$
        = sman$$
        = sT_{17}
   T_{12} = nanasman$$
        = aanasman$$$
        = aT_{13}
```

T_{21}	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
I_6	bansbananasman\$\$\$
T_0	hannahbansbananasman\$\$\$
T_3	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
T9	sbananasman\$\$\$

```
    T22
    $

    T20
    $$$

    4
    ahbansbananasman$$$

    T1
    ananasman$$$$

    T3
    anasman$$$$

    T4
    ansbananasman$$$$

    T5
    ansbananasman$$$$

    T6
    banasmanasman$$$

    T7
    man$$

    T10
    man$$$

    T17
    man$$$

    T19
    n$$$

    T14
    nasman$$$$

    T2
    nnahbansbananasman$$$$

    T8
    nsbananasman$$$$

    T10
    swan$$$$$
```

► Have:

▶ sorted 1,2-list:

$$T_1, T_2, T_4, T_5, T_7, T_8, T_{10}, T_{11}, \ldots$$

- sorted 0-list: $T_0, T_3, T_6, T_9, \dots$
- ► Task: Merge them!
 - use standard merging method from Mergesort
 - ▶ but speed up comparisons using $R_{1,2}$

```
$$$
        ahbansbananasman$$$
   Compare T_{15} to T_{11}
   Idea: try same trick as before
   T_{15} = asman$$
        = asman$$$
                            can't compare T_{16}
        = aT_{16}
                            and T_{12} either!
   T_{11} = ananasman$$
        = ananasman$$$
        = aT_{12}
\rightarrow Compare T_{16} to T_{12}
   T_{16} = sman\$\$\$
                         always at most 2 steps
        = sman$$$
                         then can use R_{1,2}!
        = sT_{17}
   T_{12} = nanasman$$
        = aanasman$$$
        = aT_{13}
```

T_{21}	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
16	bansbananasman\$\$\$
T_0	hannahbansbananasman\$\$\$
T_3	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
T9	sbananasman\$\$\$

```
        T22
        $

        T20
        $$ 5

        T4
        ahbansbananasman$$$

        T11
        ananasman$$$$

        T3
        anasman$$$$

        T4
        ansbananasman$$$$

        T5
        bananasman$$$$

        T6
        bananasman$$$$

        T7
        man$$$$

        T10
        man$$$$$

        T10
        man$$$$$

        T11
        man$$$$$

        T12
        man$$$$$

        T13
        nasman$$$$

        T2
        nnahbansbananasman$$$$

        T8
        nsbananasman$$$$

        T16
        sman$$$$$
```

► Have:

▶ sorted 1,2-list:

$$T_1, T_2, T_4, T_5, T_7, T_8, T_{10}, T_{11}, \ldots$$

- sorted 0-list: $T_0, T_3, T_6, T_9, \dots$
- -0/-3/-0/-9/
- ► Task: Merge them!
 - use standard merging method from Mergesort
 - ▶ but speed up comparisons using $R_{1,2}$
 - \rightarrow O(n) time for merge

```
$$
        $$$
        ahbansbananasman$$$
   Compare T_{15} to T_{11}
   Idea: try same trick as before
   T_{15} = asman$$
       = asman$$$
                            can't compare T_{16}
       = aT_{16}
                            and T_{12} either!
   T_{11} = ananasman$$
       = ananasman$$$
       = aT_{12}
\rightarrow Compare T_{16} to T_{12}
   T_{16} = sman\$\$\$
                         always at most 2 steps
       = sman$$$
                         then can use R_{1,2}!
       = sT_{17}
   T_{12} = nanasman$$
       = aanasman$$$
       = aT_{13}
```

13.7 Linear-Time Suffix Sorting: The DC3

Algorithm

▶ both step 2. and 3. doable in O(n) time!

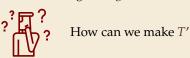
- ▶ both step 2. and 3. doable in O(n) time!
- ▶ But: we cheated in 1. step! "compute rank array $R_{1,2}$ recursively"
 - ▶ Taking a *subset* of suffixes is *not* an instance of the same problem!

- ▶ both step 2. and 3. doable in O(n) time!
- ▶ But: we cheated in 1. step! "compute rank array $R_{1,2}$ recursively"
 - ▶ Taking a *subset* of suffixes is *not* an instance of the same problem!
 - \rightsquigarrow Need a single *string* T' to recurse on, from which we can deduce $R_{1,2}$.

How can we make T' "skip" some suffixes?

- **b** both step 2. and 3. doable in O(n) time!
- ▶ But: we cheated in 1. step! "compute rank array $R_{1,2}$ recursively"
 - ► Taking a *subset* of suffixes is *not* an instance of the same problem!
 - \rightarrow Need a single string T' to recurse on, from which we can deduce $R_{1,2}$.

How can we make T' "skip" some suffixes?



- redefine alphabet to be triples of characters abo

$$\rightsquigarrow$$
 suffixes of $T^{\square} \iff T_0, T_3, T_6, T_9, \dots$

- ► $T' = T[1..n)^{\square}$ [\$\$\$] $T[2..n)^{\square}$ [\$\$\$] \iff T_i with $i \not\equiv 0 \pmod{3}$.
- \sim Can call suffix sorting recursively on T' and map result to $R_{1,2}$

T = bananaban\$\$

ana ban \$\$\$

ban \$\$\$ \$\$\$

 \rightarrow $T^{\square} = \text{bananaban}$ \$\$\$

DC3 / Skew algorithm – Fix alphabet explosion

► Still does not quite work!

DC3 / Skew algorithm – Fix alphabet explosion

- ► Still does not quite work!
 - **Each** recursive step *cubes* σ by using triples!
 - → (Eventually) cannot use linear-time sorting anymore!

DC3 / Skew algorithm – Fix alphabet explosion

- ► Still does not quite work!
 - **Each** recursive step *cubes* σ by using triples!
 - → (Eventually) cannot use linear-time sorting anymore!
- ▶ But: Have at most $\frac{2}{3}n$ different triples abc in T'!
- → Before recursion:
 - **1.** Sort all occurring triples. (using counting sort in O(n))
 - **2.** Replace them by their *rank* (in Σ).
- \rightarrow Maintains $\sigma \leq n$ without affecting order of suffixes.

$$T' = T[1..n)^{\square} \$\$\$ T[2..n)^{\square} \$\$\$$$

ightharpoonup T = hannahbansbananasman\$

$$T' = T[1..n)^{\square} \$\$\$ T[2..n)^{\square} \$\$\$$$

 $T={\rm hannahbansbananasman} \quad T_2={\rm nnahbansbananasman} \\ T'={\rm annahbansbananasman} \\ \$\$\$ \\ {\rm nnahbansbananasman} \\ \$\$ \\ {\rm nnahbansbananasman} \\ {\rm nnahbansbanasman} \\ {\rm nnahbansbanasman} \\ {\rm nnahbansbanasman} \\ {\rm nnahbansbanasman} \\ {\rm nnahbansban$

$$T' = T[1..n)^{\square} \$\$\$ T[2..n)^{\square} \$\$\$$$

- ▶ T = hannahbansbananasman $T_2 = \text{nnahbansbananasman}$ T' = annahbansbananasman \$\$\$ \text{sts} \text{nnahbansbananasman}\$\$\$\$
- ► Occurring triples:

$$T' = T[1..n)^{\square} \$\$\$ T[2..n)^{\square} \$\$\$$$

- ► T = hannahbansbananasman $T_2 = \text{nnahbansbananasman}$ T' = annahbansbananasman \$\$\$\text{ (\$\frac{1}{2}\text{ nnahbansbananasman}\$\$\$) \$\$\$\$\$\$ \text{ (\$\frac{1}{2}\text{ nnahbansbananasman}\$\$\$)}\$\$\$\$\$
- ► Occurring triples:

Sorted triples with ranks:

$$T' = T[1..n)^{\square} \$\$\$ T[2..n)^{\square} \$\$\$$$

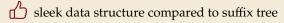
- T = hannahbansbananasman\$ T_2 = nnahbansbananasman\$ T' = anniahbiansbananasman|\$\$\$ | \$\$\$ | nnahbansbananasman|\$\$\$
- ► Occurring triples:

ann ahb ans ban ana sma n\$\$ \$\$\$ nna hba nsb nas man

Sorted triples with ranks:

T' = ann ahb ans ban ana sma n\$\$ \$\$\$ nna hba nsb ana nas man \$\$\$ T'' = 03 01 04 05 02 12 08 00 10 06 11 02 09 07 00

Suffix array – Discussion



simple and fast $O(n \log n)$ construction

more involved but optimal O(n) construction

supports efficient string matching

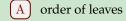
 \bigcap string matching takes $O(m \log n)$, not optimal O(m)

Cannot use more advanced suffix tree features e.g., for longest repeated substrings

13.8 The LCP Array

Clicker Question

Which feature of suffix **trees** did we use to find the <u>length</u> of a longest repeated substring?



B path label of internal nodes

C string depth of internal nodes

D constant-time traversal to child nodes

E constant-time traversal to parent nodes

(F) constant-time traversal to leftmost leaf in subtree

→ sli.do/cs566

Clicker Question

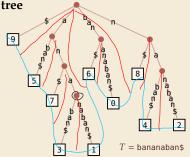
Which feature of suffix **trees** did we use to find the *length* of a longest repeated substring?

- A order of leaves
- B path label of internal nodes
- $\stackrel{ ext{C}}{ ext{C}}$ string depth of internal nodes \checkmark
- D) constant time traversal to child nodes
- E) constant time traversal to parent nodes
- F constant time traversal to leftmost leaf in subtree

→ sli.do/cs566

String depths of internal nodes

- ► Recall algorithm for longest repeated substring in **suffix tree**
 - **1.** Compute *string depth* of nodes
 - 2. Find path label to node with maximal string depth
- ► Can we do this using **suffix** *arrays*?



String depths of internal nodes

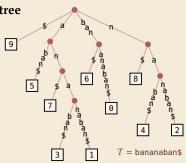
- ▶ Recall algorithm for longest repeated substring in **suffix tree**
 - **1.** Compute *string depth* of nodes
 - 2. Find path label to node with maximal string depth
- ► Can we do this using **suffix** *arrays*?

► Yes, by **enhancing** the suffix array with the *LCP array*! LCP[1..*n*]

 $LCP[r] = LCP(T_{L[r]}, T_{L[r-1]})$

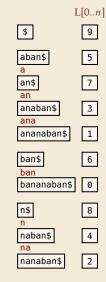
length of longest common prefix of suffixes of rank r and r-1

 \rightarrow longest repeated substring = find maximum in LCP[1..n]

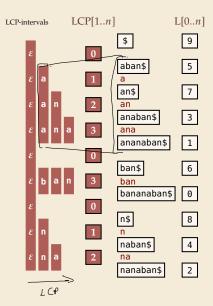


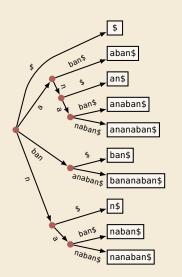
- L[0..n]

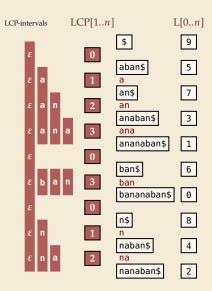
L[0..n]\$ 9 5 aban\$ an\$ 3 anaban\$ ananaban\$ 6 ban\$ bananaban\$ 0 n\$ 8 naban\$ 4 nanaban\$ 2

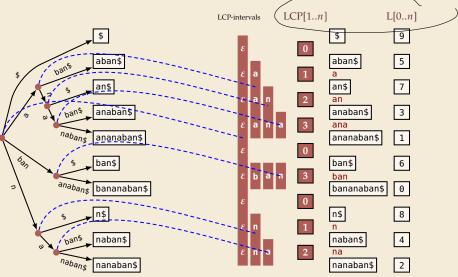


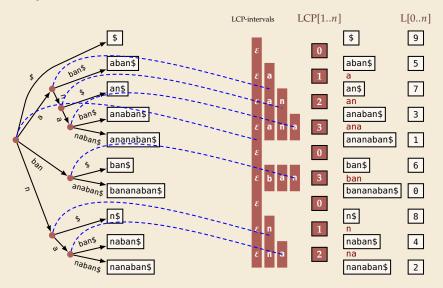
LCP[1n]		L[0n]
0	\$	9
0	aban\$	5
1	an\$	7
2	an anaban\$	3
3	ana ananaban\$	1
0	ban\$	6
3	ban bananaban\$	Θ
0	n\$	8
1	n naban\$	4
2	nanaban\$	2







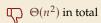




 \rightarrow Leaf array L[0..n] plus LCP array LCP[1..n] encode full tree!

13.9 LCP Array Construction

- ightharpoonup computing LCP[1..n] naively too expensive
 - ▶ each value could take $\Theta(n)$ time



- ► computing LCP[1..*n*] naively too expensive
 - ightharpoonup each value could take $\Theta(n)$ time

```
\Theta(n^2) in total
```

- ▶ but: seeing one large (=costly) LCP value → can find another large one!
- ► Example: T = Buffalo_buffalo_buffalo\$
 - ► first few suffixes in sorted order:

```
\begin{split} T_{L[0]} &= \$ \\ T_{L[1]} &= \mathsf{alo}_\mathsf{u} \mathsf{buffalo} \$ \\ T_{L[2]} &= \mathsf{alo}_\mathsf{u} \mathsf{buffalo}_\mathsf{u} \mathsf{buffalo} \\ &\qquad \qquad \mathsf{alo}_\mathsf{u} \mathsf{buffalo}_\mathsf{u} \mathsf{buffalo} \\ T_{L[3]} &= \mathsf{alo}_\mathsf{u} \mathsf{buffalo}_\mathsf{u} \mathsf{buffalo}_\mathsf{u} \mathsf{buffalo} \$ \end{split}
```

- ▶ computing LCP[1..*n*] naively too expensive
 - each value could take $\Theta(n)$ time

$$\Theta(n^2)$$
 in total

- ▶ but: seeing one large (= costly) LCP value → can find another large one!
- ► Example: T = Buffalo_buffalo_buffalo\$
 - first few suffixes in sorted order:

```
\begin{split} T_{L[0]} &= \$ \\ T_{L[1]} &= \mathsf{alo}_{\mathsf{u}} \mathsf{buffalo} \$ \\ T_{L[2]} &= \mathsf{alo}_{\mathsf{u}} \mathsf{buffalo}_{\mathsf{u}} \mathsf{buffalo} \\ &\qquad \qquad \mathsf{alo}_{\mathsf{u}} \mathsf{buffalo}_{\mathsf{u}} \mathsf{buffalo} \\ T_{L[3]} &= \mathsf{alo}_{\mathsf{u}} \mathsf{buffalo}_{\mathsf{u}} \mathsf{buffalo}_{\mathsf{u}} \mathsf{buffalo} \$ \end{split}
```

 \sim **Removing first character** from $T_{L[2]}$ and $T_{L[3]}$ gives two new suffixes:

```
T_{L[?]} = lo_{u}buffalo_{u}buffalo  \Rightarrow LCP[?] = 18 T_{L[?]} = lo_{u}buffalo_{u}buffalo_{u}buffalo  \downarrow unclear \ where...
```

- ▶ computing LCP[1..*n*] naively too expensive
 - ightharpoonup each value could take $\Theta(n)$ time

$$\Theta(n^2)$$
 in total

- ▶ but: seeing one large (=costly) LCP value → can find another large one!
- ► Example: T = Buffalo_buffalo_buffalo\$
 - first few suffixes in sorted order:

```
\begin{array}{l} T_{L[0]} = \$ \\ T_{L[1]} = {\tt alo\_buffalo\$} \\ T_{L[2]} = {\tt alo\_buffalo\_buffalo\$} \\ & {\tt alo\_buffalo\_buffalo} \qquad \leadsto \quad {\tt LCP[3]} = {\tt 19} \\ T_{L[3]} = {\tt alo\_buffalo\_buffalo\_buffalo\$} \end{array}
```

 \rightarrow **Removing first character** from $T_{L[2]}$ and $T_{L[3]}$ gives two new suffixes:

$$T_{L[?]} = lo_{u}buffalo_{u}buffalo$$ lo_{u}buffalo_{u}buffalo$$ $\sim LCP[?] = 18$$ $T_{L[?]} = lo_{u}buffalo_{u}buffalo_{u}buffalo$$ unclear where...$$

Shortened suffixes might *not* be *adjacent* in sorted order!

→ no LCP entry for them!

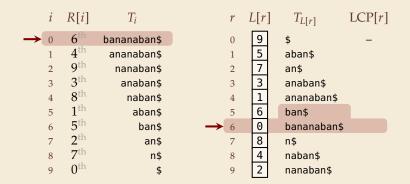
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

i	R[i]	T_i	r	L[r	$T_{L[r]}$	LCP[r]
0	6 th	bananaban\$	0	9	\$	_
1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
2	9 th	nanaban\$	2	7	an\$	
3	3^{th}	anaban\$	3	3	anaban\$	
4	8^{th}	naban\$	4	1	ananaban\$	
5	$1^{ m th}$	aban\$	5	6	ban\$	
6	$5^{ m th}$	ban\$	6	0	bananaban\$	
7	2^{th}	an\$	7	8	n\$	
8	$7^{ m th}$	n\$	8	4	naban\$	
9	0^{th}	\$	9	2	nanaban\$	

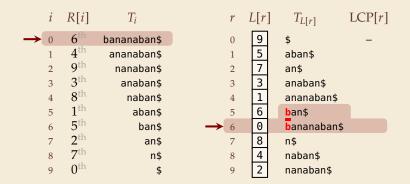
- ► Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

	i	R[i]	T_i	r	L[r	$T_{L[r]}$	LCP[r]
\rightarrow	0	6 th	bananaban\$	0	9	\$	_
	1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
	2	9 th	nanaban\$	2	7	an\$	
	3	3^{th}	anaban\$	3	3	anaban\$	
	4	8^{th}	naban\$	4	1	ananaban\$	
	5	$1^{ ext{th}}$	aban\$	5	6	ban\$	
	6	$5^{ m th}$	ban\$	6	0	bananaban\$	
	7	2^{th}	an\$	7	8	n\$	
	8	$7^{ m th}$	n\$	8	4	naban\$	
	9	0^{th}	\$	9	2	nanaban\$	

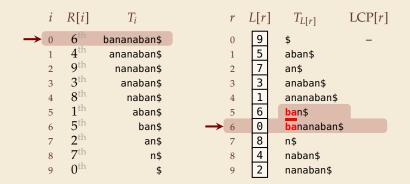
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



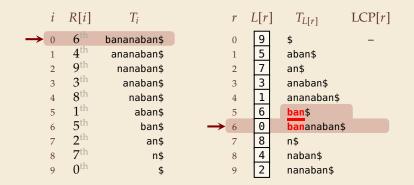
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



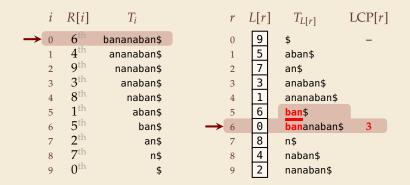
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



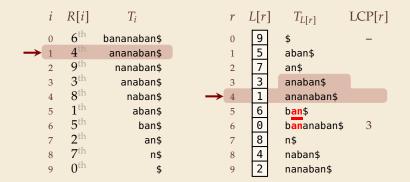
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

i	R[i]	T_i	r	L[r	$T_{L[r]}$	LCP[r]
0	6 th	bananaban\$	0	9	\$	_
1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
2	9 th	nanaban\$	2	7	an\$	
3	3^{th}	anaban\$	3	3	anaban\$	
4	8^{th}	naban\$	4	1	ananaban\$	
5	$1^{ m th}$	aban\$	5	6	b <mark>an</mark> \$	
6	$5^{ m th}$	ban\$	6	0	b <mark>an</mark> anaban\$	3
7	2^{th}	an\$	7	8	n\$	
8	$7^{ m th}$	n\$	8	4	naban\$	
9	0^{th}	\$	9	2	nanaban\$	

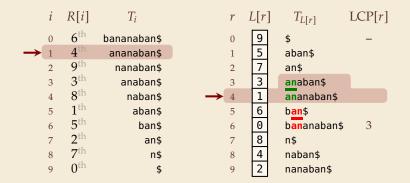
- ► Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

	i	R[i]	T_i	r	L[r	$T_{L[r]}$	LCP[r]
	0	6 th	bananaban\$	0	9	\$	-
\rightarrow	1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
	2	9 th	nanaban\$	2	7	an\$	
	3	3^{th}	anaban\$	3	3	anaban\$	
	4	8^{th}	naban\$	4	1	ananaban\$	
	5	$1^{ ext{th}}$	aban\$	5	6	b <mark>an</mark> \$	
	6	5^{th}	ban\$	6	0	b <mark>an</mark> anaban\$	3
	7	2^{th}	an\$	7	8	n\$	
	8	$7^{ m th}$	n\$	8	4	naban\$	
	9	0^{th}	\$	9	2	nanaban\$	

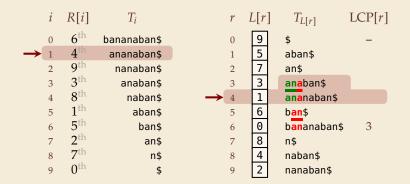
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



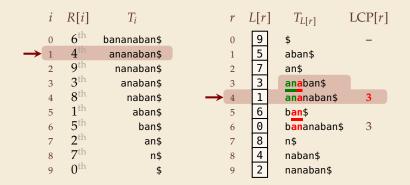
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



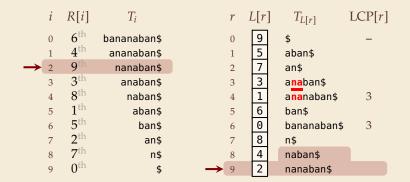
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

i	R[i]	T_i	r	L[r]	$T_{L[r]}$	LCP[r]
0	6 th	bananaban\$	0	9	\$	_
1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
2	9 th	nanaban\$	2	7	an\$	
3	3^{th}	anaban\$	3	3	a na ban\$	
4	8^{th}	naban\$	4	1	a <mark>na</mark> naban\$	3
5	$1^{ m th}$	aban\$	5	6	ban\$	
6	$5^{ m th}$	ban\$	6	0	bananaban\$	3
7	2^{th}	an\$	7	8	n\$	
8	$7^{ m th}$	n\$	8	4	naban\$	
9	0^{th}	\$	9	2	nanaban\$	

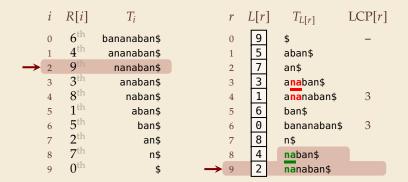
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

	i	R[i]	T_i	r	L[r	$T_{L[r]}$	LCP[r]
	0	6 th	bananaban\$	0	9	\$	-
	1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
\rightarrow	2	9 th	nanaban\$	2	7	an\$	
	3	3^{th}	anaban\$	3	3	a <mark>na</mark> ban\$	
	4	8 th	naban\$	4	1	a <mark>na</mark> naban\$	3
	5	1 th	aban\$	5	6	ban\$	
	6	5 th	ban\$	6	0	bananaban\$	3
	7	2 th	an\$	7	8	n\$	
	8	7^{th}	n\$	8	4	naban\$	
	9	0^{th}	\$	9	2	nanaban\$	

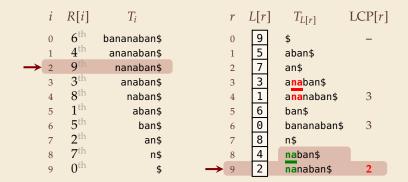
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



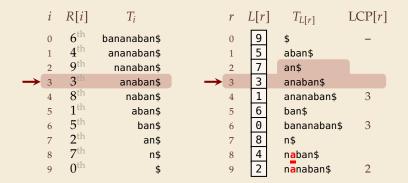
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

i	R[i]	T_i	r	L[r]	$T_{L[r]}$	LCP[r]
0	6 th	bananaban\$	0	9	\$	_
1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
2	9 th	nanaban\$	2	7	an\$	
3	3^{th}	anaban\$	3	3	anaban\$	
4	8^{th}	naban\$	4	1	ananaban\$	3
5	$1^{ m th}$	aban\$	5	6	ban\$	
6	$5^{ m th}$	ban\$	6	0	bananaban\$	3
7	2^{th}	an\$	7	8	n\$	
8	$7^{ m th}$	n\$	8	4	n <mark>a</mark> ban\$	
9	0^{th}	\$	9	2	n <mark>a</mark> naban\$	2

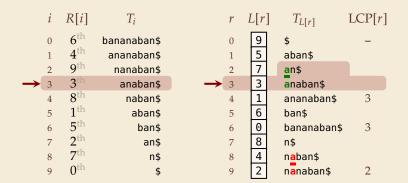
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

	i	R[i]	T_i	r	L[r	$T_{L[r]}$	LCP[r]
	0	6 th	bananaban\$	0	9	\$	_
	1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
	2	9 th	nanaban\$	2	7	an\$	
\rightarrow	3	3 th	anaban\$	3	3	anaban\$	
	4	8^{th}	naban\$	4	1	ananaban\$	3
	5	$1^{ ext{th}}$	aban\$	5	6	ban\$	
	6	5 th	ban\$	6	0	bananaban\$	3
	7	2^{th}	an\$	7	8	n\$	
	8	$7^{ m th}$	n\$	8	4	n <mark>a</mark> ban\$	
	9	0^{th}	\$	9	2	n <mark>a</mark> naban\$	2

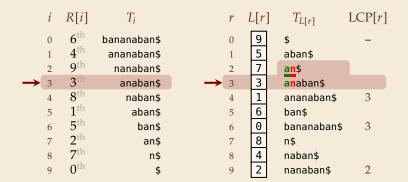
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



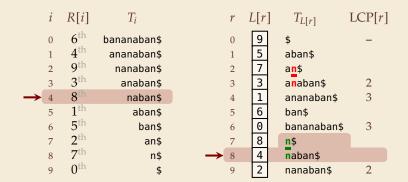
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

	i	R[i]	T_i		r	L[r]	$T_{L[r]}$	LCP[r]
	0	6 th	bananaban\$		0	9	\$	_
	1	$4^{ ext{th}}$	ananaban\$		1	5	aban\$	
	2	9 th	nanaban\$		2	7	an\$	
\rightarrow	3	3 th	anaban\$	\rightarrow	3	3	anaban\$	2
	4	8 th	naban\$		4	1	ananaban\$	3
	5	$1^{ m th}$	aban\$		5	6	ban\$	
	6	5^{th}	ban\$		6	0	bananaban\$	3
	7	2^{th}	an\$		7	8	n\$	
	8	$7^{ m th}$	n\$		8	4	naban\$	
	9	0^{th}	\$		9	2	nanaban\$	2

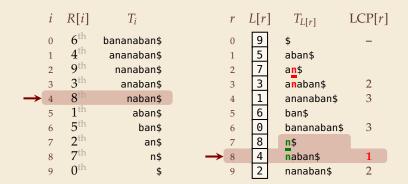
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

i	R[i]	T_i	r	L[r]	$T_{L[r]}$	LCP[r]
0	6 th	bananaban\$	0	9	\$	_
1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
2	9 th	nanaban\$	2	7	a <u>n</u> \$	
3	3^{th}	anaban\$	3	3	a <mark>n</mark> aban\$	2
4	8^{th}	naban\$	4	1	ananaban\$	3
5	$1^{ m th}$	aban\$	5	6	ban\$	
6	$5^{ m th}$	ban\$	6	0	bananaban\$	3
7	2^{th}	an\$	7	8	n\$	
8	$7^{ m th}$	n\$	8	4	naban\$	
9	0^{th}	\$	9	2	nanaban\$	2

- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



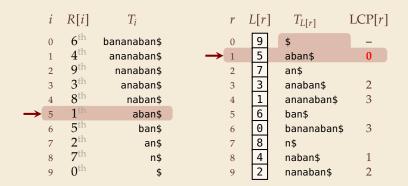
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

	i	R[i]	T_i		r	L[r]	$T_{L[r]}$	LCP[r]
	0	6 th	bananaban\$		0	9	\$	_
	1	$4^{ ext{th}}$	ananaban\$	\rightarrow	1	5	aban\$	
	2	9 th	nanaban\$		2	7	an\$	
	3	3^{th}	anaban\$		3	3	anaban\$	2
	4	8 th	naban\$		4	1	ananaban\$	3
\rightarrow	5	1 th	aban\$		5	6	ban\$	
	6	5 th	ban\$		6	0	bananaban\$	3
	7	2^{th}	an\$		7	8	n\$	
	8	7 th	n\$		8	4	naban\$	1
	9	0^{th}	\$		9	2	nanaban\$	2

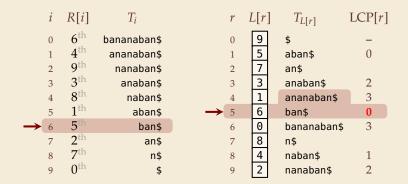
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

	i	R[i]	T_i		r	L[r]	$T_{L[r]}$	LCP[r]
	0	6 th	bananaban\$		0	9	\$	-
	1	$4^{ ext{th}}$	ananaban\$		1	5	aban\$	0
	2	9 th	nanaban\$		2	7	an\$	
	3	3^{th}	anaban\$		3	3	anaban\$	2
	4	8 th	naban\$		4	1	ananaban\$	3
	5	$1^{ m th}$	aban\$	\rightarrow	5	6	ban\$	
\rightarrow	6	5 th	ban\$		6	0	bananaban\$	3
	7	2 th	an\$		7	8	n\$	
	8	7^{th}	n\$		8	4	naban\$	1
	9	0^{th}	\$		9	2	nanaban\$	2

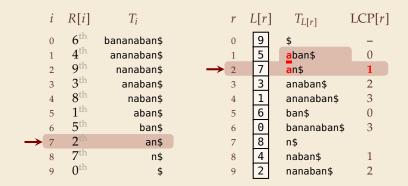
- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

	i	R[i]	T_i		r	L[r]	$T_{L[r]}$	LCP[r]
	0	6 th	bananaban\$		0	9	\$	_
	1	$4^{ ext{th}}$	ananaban\$		1	5	<u>a</u> ban\$	0
	2	9 th	nanaban\$	\rightarrow	2	7	an\$	
	3	3^{th}	anaban\$		3	3	anaban\$	2
	4	8^{th}	naban\$		4	1	ananaban\$	3
	5	$1^{ m th}$	aban\$		5	6	ban\$	0
	6	5 th	ban\$		6	0	bananaban\$	3
\rightarrow	7	2 th	an\$		7	8	n\$	
	8	$7^{ m th}$	n\$		8	4	naban\$	1
	9	0^{th}	\$		9	2	nanaban\$	2

- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.



- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

	i	R[i]	T_i		r	L[r]	$T_{L[r]}$	LCP[r]
	0	6 th	bananaban\$		0	9	\$	_
	1	$4^{ ext{th}}$	ananaban\$		1	5	aban\$	0
	2	9 th	nanaban\$		2	7	an\$	1
	3	3^{th}	anaban\$		3	3	anaban\$	2
	4	8 th	naban\$		4	1	ananaban\$	3
	5	1^{th}	aban\$		5	6	ban\$	0
	6	5 th	ban\$		6	0	bananaban\$	3
	7	2 th	an\$	\rightarrow	7	8	n\$	
\rightarrow	8	7 th	n\$		8	4	naban\$	1
	9	0^{th}	\$		9	2	nanaban\$	2

- ► Kasai et al. used above observation systematically
- ► Key idea: *compute* LCP values in *text order*
- ▶ Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

i	R[i]	T_i	r	L[[r]	$T_{L[r]}$	LCP[r]
0	6 th	bananaban\$	0	Ę	9	\$	-
1	$4^{ ext{th}}$	ananaban\$	1	[5	aban\$	0
2	9 th	nanaban\$	2	[5	7	an\$	1
3	$3^{ m th}$	anaban\$	3		3	anaban\$	2
4	$8^{ m th}$	naban\$	4		1	ananaban\$	3
5	$1^{ m th}$	aban\$	5	(5	ban\$	0
6	$5^{ m th}$	ban\$	6	Γ	9	bananaban\$	3
7	2^{th}	an\$	→ 7	[8	3	n\$	0
→ 8	7 th	n\$	8		4	naban\$	1
9	0^{th}	\$	9		2	nanaban\$	2

Kasai's algorithm – Code

```
1 procedure computeLCP(T[0..n], L[0..n], R[0..n]):
       // Assume T[n] = \$, L and R are suffix array and inverse
       \ell := 0
       for i := 0, ..., n-1 // Consider T_i now
           r := R[i]
5
           // compute LCP[r]; note that r > 0 since R[n] = 0
         i_{-1} := L[r-1]
7
        while T[i + \ell] = T[i_{-1} + \ell] do
8
                \ell := \ell + 1
9
           LCP[r] := \ell
10
            \ell := \max\{\ell - 1, 0\}
11
       return LCP[1..n]
12
```

- ightharpoonup remember length ℓ of induced common prefix
- ▶ use *L* to get start index of suffixes

Kasai's algorithm – Code

```
1 procedure computeLCP(T[0..n], L[0..n], R[0..n]):
       // Assume T[n] = \$, L and R are suffix array and inverse
       \ell := 0
       for i := 0, \ldots, n-1 // Consider T_i now
            r := R[i]
5
            // compute LCP[r]; note that r > 0 since R[n] = 0
           i_{-1} := L[r-1]
7
           while T[i + \ell] == T[i_{-1} + \ell] do
8
                \ell := \ell + 1
9
            LCP[r] := \ell
10
            \ell := \max\{\ell - 1, 0\}
11
       return LCP[1..n]
12
```

- ▶ remember length ℓ of induced common prefix
- ▶ use *L* to get start index of suffixes

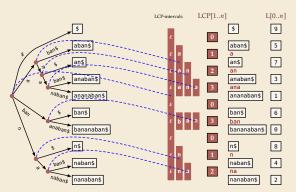
Analysis:

- dominant operation: character comparisons
- Separately count those with outcomes "=" resp. "≠"
- ► each \neq ends iteration of for-loop $\rightsquigarrow \leq n$ cmps
- ▶ each = implies increment of ℓ , but $\ell \le n$ and decremented $\le n$ times $\Rightarrow \le 2n$ cmps
- \rightsquigarrow $\Theta(n)$ overall time

Back to suffix trees

We can finally look into the black box of linear-time suffix-array construction!

- **1.** Compute suffix array for *T*.
- **2.** Compute LCP array for *T*.
- **3.** Construct \mathcal{T} from suffix array and LCP array.



Conclusion

- ► (*Enhanced*) *Suffix Arrays* are the modern version of suffix trees
 - ightharpoonup directly simulate suffix tree operations on L and LCP arrays
- can be harder to reason about
- can support same algorithms as suffix trees
- but use much less space
- simpler linear-time construction

Conclusion

- ► (Enhanced) Suffix Arrays are the modern version of suffix trees
 - ▶ directly simulate suffix tree operations on *L* and LCP arrays
- Can be harder to reason about
- can support same algorithms as suffix trees
- but use much less space
- simpler linear-time construction

Outlook:

- ▶ enhanced suffix arrays still need original text *T* to work
- ▶ a *self-index* avoids that
 - can store T in compressed form and support operations like string matching
- → Advanced Data Structures