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Problem 1 20 + 10 + 10 points

Assume that the Quicksort algorithm presented in the lecture always selects the last
element as pivot. How does the ©-class of the expected running time of the algorithm
behave on the following inputs?

Give the extreme cases for each case, and analyse them by describing how Quicksort
proceeds (swaps, algorithm state at each recursion, etc.). Discuss also any negative
effects that occur for less extreme cases. If necessary, propose improvements to the
quicksort implementation that counteract these effects.

a) Keys appear multiple times, i.e., duplicates may exist.
b) The input is partially sorted.

¢) The input is partially sorted, but in reverse order.

Problem 2 10 4 30 + 20 points

Consider the following streaming model:

Given n (pairwise distinct) elements in an input stream I, you may repeatedly either
consume the next element in I, or output an element to the output stream O. There is
no other way to either modify or access I or O. You may think of the two streams as
two queues, where I supports only dequeue operations, and O only enqueue operations.
The number n of elements is known in advance.

In addition to I and O (and, perhaps, a constant number of local variables), the elements
may also be stored in a stack S. Thus at any point you can do one of the following:
remove an element from I or S; or insert an element into O or S.
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Note: Comparisons are only allowed between the element S on top of the stack and
the next element coming from the stream I. Thus, between any two non-redundant
operations, the elements must be moved by an operation I — S or S — O.

a)

Show that in this model, it is not always possible to generate a sorted output
stream. In other words, for some permutation n of the elements in I, it is impossible
to insert the elements into O in increasing order.

You may assume a large enough n in this proof.

Assume that O can be fed back into I as input for another pass, i.e. I and O are
connected and form one large queue.

We assume for simplicity that a pass must finish before the next one starts, i.e. be-
fore an element can be removed from I a second time, all n elements must have been
emitted to O. Hence elements cannot “overtake” each other, and each execution
has a well-defined number & of rounds.

Design a sorting algorithm for this model, i.e. a sequence of I — S or S —
O operations that correctly sorts every possible input. No other operations for
rearranging data are available, but your algorithm can use any amount of time or
memory to compute the next operation. Comparisons of Comparisons of S.top()
and I.front() are free.

Analyse the worst case for the number of rounds for your algorithm to sort n
elements. To receive full credit, the algorithm must achieve a runtime of k£ €

O(logn).

Hint: You may draw inspiration from sorting on tape drives:
https://en.wikipedia.org/wiki/Merge_sort#Use_with_tape_drives.

Give a nontrivial lower bound for k that any sorting algorithm must use in this
model.
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Problem 3 30 + 10 + 20 points

An array A[0..n) is d-deletion sortable if there exist positions 0 < i} <ig < -+ <ig<mn
such that, after deleting the elements at positions i1, . . ., i from A, the resulting sequence
is sorted. For example,

2,4,1,6,7,5,8,12,0

is 3-deletion sortable (by removing the elements 1,5,0), but is not 2-deletion sortable.

Below we assume that the array A[0..n) is d-deletion sortable. You may also assume
that the elements of A are pairwise distinct.

a) Design an adaptive sorting algorithm for A, which receives as input A and a sorted
array DI0..d) containing the positions i1, ..., iz which make A d-deletion sortable.

Under the assumption that d < n (i.e. d is “much smaller” than n), your algorithm
should run in o(nlogn) time; a full solution would sort a \/n-deletion sortable
sequence A[0..n) in O(n) time.

Describe your algorithm (either in text or pseudocode), and analyse its ©-asymptotic
running time.

b) For which size of d does your solution use w(n) time?
For which size of d does your solution use Q(nlogn) time?

c) Design an algorithm like in part a) without receiving d or the set of positions as
input.

Hint: Can you find a set of positions I such that, after removing the elements at
those positions, A becomes sorted, while keeping the size of I small?
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