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Problem 1 20 + 20 + 20 points

Consider the following partial sorting problem:

Given an array A[0..n) with n (pairwise distinct) elements, and a number
k ∈ {0, . . . , n − 1}. Order the elements in the array, such that the first k
positions in the array contain the smallest k elements in sorted order.

After solving the problem, the following must hold:

A[0] ≤ A[1] ≤ · · · ≤ A[k − 2] ≤ A[k − 1] and ∀i ∈ {k, . . . , n − 1} : A[k − 1] ≤ A[i].

Elements in sorting problems can be large or complex objects. In this exercise, we simply
assume that a total order exists and can be found using the comparison operation <.

a) Develop an algorithm for this problem. Your solution should have an (expected)
runtime of O(n + k log n).

b) Attempt to develop solutions for the following more advanced questions:
Question 1: Can you create an algorithm with O(n + k log k) runtime?
Question 2: Can you develop a solution that requires only O(1) additional storage
space?
Question 3: Can you specify an algorithm that achieves the runtime in the worst
case?

c) Prove that every comparison-based algorithm for the partial sorting problem has
a runtime of Ω(n + k log k).
Note that this means that an algorithm for the extended question 1 has an optimal
complexity, i.e., has an asymptotically optimal runtime up to constant factors.
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Problem 2 5 points

If possible, use the Master Theorem to determine the solutions to the following recur-
rences. If the Master Theorem is not applicable, explain why.

1. T (n) = 8T (n
2 ) + n3

2. T (n) = 4T (n
3 ) + n log n

3. T (n) = 4T (n
2 ) + n2√

n

4. T (n) = 27T (n
3 ) + n3/ log n

5. T (n) = 3T (n
2 ) + n

Problem 3 10 + 10 + 20 points

In k-way mergesort, we divide the input into k parts. In particular, for k = 2, k-way
mergesort is identical to standard mergesort.

In the following question, you must analyse k-way mergesort from two points of view:
first in terms of the number of comparisons, second in terms of the number of element
visits. An element visit occurs both when reading an element or writing an element to
the output.

Note: For simplicity, you can assume that there exists i ∈ N0 such that n = ki.

a) Set up recurrence relations for the two quantities. For each, provide the most
accurate function possible for the “conquer” step of the algorithm.

b) If possible, use the Master Theorem to determine the solutions to the two recur-
rences. If the Master Theorem is not applicable, explain why.

c) Treat k as variable, and specify the smallest possible upper bound for the recur-
rence as a function of n and k. Justify your solution (e.g., by iterative substitution).
Discuss the solutions to parts b) and c). In particular, address the comparison to
the standard mergesort algorithm (k = 2).

Problem 4 5 points

In a tournament, n teams compete against each other, with each team playing against
every other team. Assume n is a power of two, i.e., n = 2k.

Design an efficient Divide & Conquer algorithm that creates a corresponding match
schedule in the form of a n × (n − 1) table, where each row represents a team and each
column represents a round. The entry at position (i, j) determines the opponent of team
i in round j.
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n = 2

i\j 1
1 2
2 1

n = 4

i\j 1 2 3
1 2 4 3
2 1 3 4
3 4 2 1
4 3 1 2

Table 1: Possible match plans for n = 2 and n = 4.

Examples can be seen in Table 1

Explain the correctness of your algorithm and determine its runtime (in terms of Θ
class).
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