

Exercise Sheet 12 for Effiziente Algorithmen (Winter 2025/26)

Hand In: Until 2026-01-30 18:00, on ILIAS.

Problem 1

20 + 20 + 10 points

- a) Show or refute: Let $G = (V, E)$ be a graph with edge weights $\ell_e \geq 0$. Furthermore, let P be a shortest path from s to t , i.e., a solution of the shortest-paths problem. Then P remains a solution of the problem if we replace all edge lengths ℓ_e by their squares ℓ_e^2 .
- b) Let $G = (V, E)$ be a directed graph that contains no negative cycles. Show: If $(s = v_0, v_1, \dots, v_k = t)$ is a shortest (*vertex-simple*) path from s to t , then every sub-path (v_0, \dots, v_l) for $l = 1, \dots, k-1$ is also a shortest (*vertex-simple*) path from s to v_l .
- c) Show that b) does *not* hold in general when the graph contains negative cycles.

Problem 2

30 points

A path graph is an undirected graph $P = (V, E)$, where

$$\begin{aligned}V &= \{v_1, \dots, v_n\} \\E &= \{\{v_1, v_2\}, \{v_2, v_3\}, \dots, \{v_{n-1}, v_n\}\}\end{aligned}$$

Consider the following problem:

Given a path graph $P = (V, E)$ and an edge function $c : E \rightarrow \{\text{red, blue}\}$ that assigns a colour to each edge, determine the minimum number of edges that must be deleted from P so that no vertex is incident to both a red and a blue edge.

Develop a greedy algorithm that solves the problem in $\mathcal{O}(n)$ time. Prove that your algorithm is correct.

(Note: In the in-person exercise a possible greedy strategy is disproved.)

Problem 3

40 points

Let S be a finite set with $|S| \geq 2$. Let S_1, \dots, S_k be a partition of S and let

$$\mathcal{U} = \{A \subseteq S \mid |A \cap S_i| \leq 1, 1 \leq i \leq k\}$$

be a collection of subsets.

Show that (S, \mathcal{U}) is a matroid. Note that a *hereditary set system* does not have to be non-empty.

Problem 4

20 + 10 + 30 points

Consider the following problem:

Given a string s and a list of words w , check whether s can be transformed into a sequence of words from w by inserting spaces.

Example:

$s = \text{platzangstübersehen}$

$w = [\text{angst}, \text{über}, \text{unter}, \text{weit}, \text{sehen}, \text{platz}, \text{platzangst}, \text{wir}, \text{übersehen}]$

Possible solutions:

- platz angst über sehen
- platzangst übersehen

The following algorithm solves the problem recursively:

```

1 procedure WordRek( $s, w$ ):
2   if  $s.isEmpty()$ 
3     return True
4   for  $i := 1, \dots, |s|$ 
5      $pre := s.substring(0, i)$ 
6      $suf := s.substring(i + 1, |s|)$ 
7     if  $w.contains(pre) \wedge \text{WordRek}(suf, w)$ 
8       return True
9   return False

```

- a) Assume simplistically that calls to *contains* and *isEmpty* each cost c , and that forming prefixes and suffixes incurs no additional cost. How can you estimate the complexity of the solution above?
- b) The presented algorithm contains sub-problems that are recomputed repeatedly. Discuss which sub-problems these are.
- c) Develop an algorithm based on dynamic programming that solves the problem in $\mathcal{O}(n^2)$ time and $\mathcal{O}(n)$ space. Use the **bottom-up** approach.